--- license: mit datasets: Hemanth-thunder/en_ta language: - ta - en widget: - text: Actor Vijay is competing an 2026 election. - text: you need to study well for exams pipeline_tag: text2text-generation --- ## Model Details - **Model Name**: English-Tamil-Translator - **Model Type**: Deep Learning Model - **Language**: Python - **Task**: Language Translation ## How to Use 1. **Install Gemma Python Package**: ```bash pip install -q -U transformers==4.38.0 ``` ## Inference 1. **How to use the model in our notebook**: ```python # Load model directly import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM checkpoint = "Mr-Vicky-01/English-Tamil-Translator" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) def language_translator(text): tokenized = tokenizer([text], return_tensors='pt') out = model.generate(**tokenized, max_length=128) return tokenizer.decode(out[0],skip_special_tokens=True) text_to_translate = "i have to play football now!" output = language_translator(text_to_translate) print(output) ```