File size: 12,923 Bytes
94aaa8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03783e6
94aaa8e
03783e6
94aaa8e
 
 
 
 
 
 
 
 
 
 
 
9f2ee4f
94aaa8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda3da5
94aaa8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import torch
from torch import Tensor, nn
from torch.nn import Sequential
from torch.utils.checkpoint import checkpoint, checkpoint_sequential
from xformers.components.attention.utils import maybe_merge_masks
from xformers.components import MultiHeadDispatch
from xformers.components.attention import ScaledDotProduct

from transformers import AutoTokenizer


class RotaryEmbedding(nn.Module):
    def __init__(
        self,
        dim_per_head: int,
        max_seq_len: int = 4096,
        interpolation_ratio: float | None = 0.25,
        device=None,
        dtype=None,
    ):
        super().__init__()

        self.dim_per_head = dim_per_head
        self.max_seq_len = max_seq_len
        freqs = 1.0 / (
            10000
            ** (
                torch.arange(0, dim_per_head, 2, device=device, dtype=dtype).float() / 6
            )
        )
        freqs = torch.repeat_interleave(freqs, 2)

        r = (
            freqs
            * torch.arange(max_seq_len, device=device, dtype=dtype).float()[:, None]
        )
        if interpolation_ratio is not None:
            r = r * interpolation_ratio

        r1 = r.cos()
        self.register_buffer("r1", r1)

        r2 = r.sin()
        self.register_buffer("r2", r2)

        aranged = torch.arange(dim_per_head, device=device, dtype=dtype)

        mask1 = torch.where(
            aranged % 2 == 1,
            aranged - 1,
            aranged + 1,
        ).float()
        self.register_buffer("mask1", mask1)

        mask2 = torch.where(aranged % 2 == 0, -1, 1).float()
        self.register_buffer("mask2", mask2)

    def forward(self, x: Tensor):
        """
        Args:
            x (Tensor): input tensor. shape: (bs, seq_len, n_heads, dim_per_head)

        Returns:
            Tensor: input tensor with rotary embeddings. shape: (bs, seq_len, n_heads, dim_per_head)
        """

        assert (
            x.ndim == 4
        ), "input must have 4 dimensions: (bs, n_heads, seq_len, dim_per_head)"
        assert x.shape[3] % 2 == 0, "dim_per_head must be divisible by 2"

        x = x.transpose(1, 2)

        return (
            x * self.r1[None, : x.shape[1], None, :]
            + x[
                :,
                :,
                :,
                self.mask1.int(),
            ]
            * self.mask2.int()
            * self.r2[None, : x.shape[1], None, :]
        ).transpose(1, 2)

    def extra_repr(self) -> str:
        return f"dim_per_head={self.dim_per_head}, max_seq_len={self.max_seq_len}"


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-9):
        super().__init__()

        self.dim = dim
        self.trainable = nn.Parameter(data=torch.ones((dim,)), requires_grad=True)
        self.eps = eps

    def forward(self, x: Tensor):
        """
        Args:
            x (Tensor): input tensor. shape: (bs, seq_len, embed_dim)

        Returns:
            Tensor: input tensor with rotary embeddings. shape: (bs, seq_len, embed_dim)
        """

        assert x.ndim == 3, "input must have 3 dimensions: (bs, seq_len, embed_dim)"

        return (
            x
            / torch.sqrt_(torch.mean(torch.square(x), dim=-1) + self.eps)[:, :, None]
            * self.trainable
        )

    def extra_repr(self) -> str:
        return f"dim={self.dim}, eps={self.eps}"


class SiLU(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x: Tensor):
        """
        Args:
            x (Tensor): input
        """
        return x * x.sigmoid()


class SwiGLU(nn.Module):
    def __init__(self, dim: int) -> None:
        super().__init__()
        self.linear_inp1 = nn.Linear(dim, (8 * dim) // 3, bias=False)
        self.linear_inp2 = nn.Linear(dim, (8 * dim) // 3, bias=False)
        self.linear_out = nn.Linear((8 * dim) // 3, dim, bias=False)
        self.silu = SiLU()

        # nn.init.xavier_uniform_(self.linear_inp1.weight)
        # nn.init.xavier_uniform_(self.linear_inp2.weight)
        # nn.init.xavier_uniform_(self.linear_out.weight)

    def forward(self, x: Tensor):
        """
        Args:
            x (Tensor): input tensor
        """
        return self.linear_out(self.silu(self.linear_inp1(x)) * self.linear_inp2(x))


class MistralTokenizer(nn.Module):
    def __init__(self, max_length=1024, *args, **kwargs):
        super().__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(
            "mistralai/Mistral-7B-v0.1", *args, **kwargs
        )
        self.tokenizer.add_special_tokens({"pad_token": "<pad>"})
        self.special_tokens_ids = {
            token: id
            for token, id in zip(
                self.tokenizer.special_tokens_map.keys(), self.tokenizer.all_special_ids
            )
        }
        self.max_length = max_length
        self.pad_token_id = self.tokenizer.pad_token_id

    def forward(self, text):
        return self.tokenizer(
            text,
            return_tensors="pt",
            return_attention_mask=False,
            max_length=self.max_length,
            truncation=True,
            padding=True,
            padding_side="right",
        )

    def convert_ids_to_tokens(self, ids):
        return self.tokenizer.convert_ids_to_tokens(ids)

    def decode(self, x):
        return self.tokenizer.batch_decode(x)

    def __len__(self):
        return len(self.tokenizer)


class MultiHeadAttention(nn.Module):
    def __init__(
        self,
        emb_size: int,
        n_heads: int,
        dropout: float = 0.0,
        use_rotary_embeddings: bool = False,
        bias_qkv: bool = False,
        bias_out: bool = False,
    ):
        super().__init__()
        self.emb_size = emb_size
        self.n_heads = n_heads
        assert (
            self.emb_size % n_heads == 0
        ), "Embedding size needs to be divisible by heads"

        self.head_dim = emb_size // n_heads

        self.use_rotary_embeddings = use_rotary_embeddings
        if self.use_rotary_embeddings:
            self.rotary_embed = RotaryEmbedding(self.head_dim)

        self.qkv = nn.Linear(emb_size, emb_size * 3, bias=bias_qkv)
        self.dropout = nn.Dropout(dropout)
        self.out = nn.Linear(emb_size, emb_size, bias=bias_out)

        self.scaling = self.head_dim**-0.5

    def forward(self, x: Tensor, att_mask: Tensor = None):
        qkv = self.qkv(x).chunk(3, dim=-1)
        q, k, v = map(
            lambda t: t.reshape(x.shape[0], -1, self.n_heads, self.head_dim).transpose(
                1, 2
            ),
            qkv,
        )  # [batch_size, n_heads, seq_len, head_dim]

        if self.use_rotary_embeddings:
            q, k = self.rotary_embed(q), self.rotary_embed(k)

        dots = (
            torch.matmul(q, k.transpose(-1, -2)) * self.scaling
        )  # [batch_size, n_heads, seq_len, seq_len]

        if att_mask is not None:
            dots = dots + att_mask

        attn = self.dropout(torch.softmax(dots, dim=-1))
        out = (
            torch.matmul(attn, v).transpose(1, 2).reshape(x.shape[0], -1, self.emb_size)
        )
        out = self.out(out)

        return out


class LLaMADecoderLayer(nn.Module):
    def __init__(
        self,
        emb_size: int,
        n_heads: int,
        dropout: float,
    ) -> None:
        super().__init__()
        self.emb_size = emb_size
        self.multihead_attn = MultiHeadDispatch(
            dim_model=emb_size,
            num_heads=n_heads,
            attention=ScaledDotProduct(
                dropout=dropout,
            ),
            bias=(False, False, False, False),
            use_rotary_embeddings=True,
        )
        self.rmsnorm1 = nn.RMSNorm(emb_size, eps=1e-9)
        self.rmsnorm2 = nn.RMSNorm(emb_size, eps=1e-9)
        self.swiglu = SwiGLU(emb_size)
        self.n_heads = n_heads

    def forward(self, in_tuple) -> Tensor:
        """
        Args:
            in_tuple (tuple[Tensor, Tensor, Tensor]): tuple, containing 3 tensors:
                x (Tensor): input tensor    (bs, seq_len, dim)
                attn_mask (Tensor): attention mask  (seq_len, seq_len)
                padding_mask (Tensor): padding mask (bs, seq_len)

        Returns:
            Tensor: output tensor
        """
        assert len(in_tuple) == 2, "input tuple must have 2 elements"
        x, mask = in_tuple

        x = self.multihead_attn(self.rmsnorm1(x), att_mask=mask) + x
        return self.swiglu(self.rmsnorm2(x)) + x, mask


class CustomAttentionLLaMaDecoder(LLaMADecoderLayer):
    def __init__(
        self,
        emb_size: int,
        n_heads: int,
        dropout: float,
    ) -> None:
        super().__init__(emb_size, n_heads, dropout)
        self.multihead_attn = MultiHeadAttention(
            emb_size=emb_size,
            n_heads=n_heads,
            bias_qkv=False,
            bias_out=False,
            use_rotary_embeddings=True,
            dropout=dropout,
        )
        self.rmsnorm1 = RMSNorm(emb_size, eps=1e-9)
        self.rmsnorm2 = RMSNorm(emb_size, eps=1e-9)


class LLaMaBase(nn.Module):
    def __init__(
        self,
        embed_dim: int = 512,
        n_layers: int = 2,
        n_heads: int = 8,
        dropout: int = 0.0,
        n_chckpnt_segments: int = 1,
        tokenizer=MistralTokenizer(),
        **kwargs,
    ):
        """
        Args:
            n_feats (int): number of input features.
            n_class (int): number of classes.
            fc_hidden (int): number of hidden features.
        """
        super().__init__()

        self.tokenizer = tokenizer
        self.vocab_len = len(tokenizer)
        self.n_heads = n_heads
        self.dropout = dropout
        self.n_layers = n_layers
        self.embed_dim = embed_dim
        self.n_segments = n_chckpnt_segments

        self.embed = nn.Embedding(
            self.vocab_len, embed_dim, padding_idx=self.tokenizer.pad_token_id
        )
        self.head = nn.Linear(embed_dim, self.vocab_len, bias=False)

    def forward(self, src: Tensor, attn_mask: Tensor, pad_mask: Tensor, **batch):
        """
        Model forward method.

        Args:
            tokenized (Tensor): input text. shape: (batch_size, seq_len)
        Returns:
            output (dict): output dict containing logits.
        """

        raise NotImplementedError

    def __str__(self):
        """
        Model prints with the number of parameters.
        """
        all_parameters = sum([p.numel() for p in self.parameters()])
        trainable_parameters = sum(
            [p.numel() for p in self.parameters() if p.requires_grad]
        )
        embedding_parameters = sum([p.numel() for p in self.embed.parameters()])

        result_info = super().__str__()
        result_info = result_info + f"\nAll parameters: {all_parameters}"
        result_info = result_info + f"\nTrainable parameters: {trainable_parameters}"
        result_info = (
            result_info
            + f"\nWithout embedding: {trainable_parameters - embedding_parameters}"
        )

        return result_info


class CustomAttentionLLaMa(LLaMaBase):
    def __init__(
        self,
        embed_dim: int = 512,
        n_layers: int = 2,
        n_heads: int = 8,
        dropout: int = 0.0,
        n_chckpnt_segments: int = 1,
        tokenizer=MistralTokenizer(),
        **kwargs,
    ):
        """
        Args:
            n_feats (int): number of input features.
            n_class (int): number of classes.
            fc_hidden (int): number of hidden features.
        """
        super().__init__(
            embed_dim,
            n_layers,
            n_heads,
            dropout,
            n_chckpnt_segments,
            tokenizer,
        )

        self.decoders = nn.Sequential(
            *[
                CustomAttentionLLaMaDecoder(
                    emb_size=embed_dim, n_heads=self.n_heads, dropout=dropout
                )
                for _ in range(n_layers)
            ]
        )
        self.rmsnorm = RMSNorm(embed_dim, eps=1e-9)

    def forward(self, src: Tensor, attn_mask: Tensor, pad_mask: Tensor, **batch):
        """
        Model forward method.

        Args:
            tokenized (Tensor): input text. shape: (batch_size, seq_len)
        Returns:
            output (dict): output dict containing logits.
        """
        x = self.embed(src)  # embeds shape: [batch_size, seq_len, embed_dim]
        sizes = x.shape
        mask = maybe_merge_masks(
            attn_mask, pad_mask, sizes[0], sizes[1], self.n_heads
        ).view(x.shape[0], self.n_heads, sizes[1], sizes[1])
        x, _ = checkpoint_sequential(self.decoders, self.n_segments, input=(x, mask))
        # for decoder in self.decoders:
        #     x, _, _ = decoder((x, attn_mask, pad_mask))

        logits = self.head(self.rmsnorm(x))
        return {
            "logits": logits.permute(0, 2, 1)
        }  # logits shape: [batch_size, vocab_len, seq_len]