Update giga_App.py
Browse files- giga_App.py +28 -20
giga_App.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
from aura_sr import AuraSR
|
5 |
import torch
|
6 |
import os
|
7 |
import time
|
8 |
-
from pathlib import Path
|
9 |
import platform
|
10 |
import argparse
|
11 |
|
@@ -16,6 +16,17 @@ def open_folder():
|
|
16 |
elif platform.system() == "Linux":
|
17 |
os.system(f'xdg-open "{open_folder_path}"')
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# Force CPU usage
|
20 |
torch.set_default_tensor_type(torch.FloatTensor)
|
21 |
|
@@ -34,7 +45,9 @@ def process_single_image(input_image_path, reduce_seams):
|
|
34 |
raise gr.Error("Please provide an image to upscale.")
|
35 |
|
36 |
# Send an initial progress update.
|
37 |
-
|
|
|
|
|
38 |
|
39 |
# Load the image.
|
40 |
pil_image = Image.open(input_image_path)
|
@@ -42,11 +55,9 @@ def process_single_image(input_image_path, reduce_seams):
|
|
42 |
# Upscale using the chosen method.
|
43 |
start_time = time.time()
|
44 |
if reduce_seams:
|
45 |
-
# Using upscale_4x_overlapped to reduce seam artifacts.
|
46 |
print("using reduce seams")
|
47 |
upscaled_image = aura_sr.upscale_4x_overlapped(pil_image)
|
48 |
else:
|
49 |
-
# Default upscaling method.
|
50 |
upscaled_image = aura_sr.upscale_4x(pil_image)
|
51 |
processing_time = time.time() - start_time
|
52 |
print(f"Processing time: {processing_time:.2f} seconds")
|
@@ -66,8 +77,8 @@ def process_single_image(input_image_path, reduce_seams):
|
|
66 |
|
67 |
upscaled_image.save(output_path)
|
68 |
|
69 |
-
# Send the final progress update along with the before/after
|
70 |
-
yield [
|
71 |
f"Upscaling complete in {processing_time:.2f} seconds"]
|
72 |
|
73 |
def process_batch(input_folder, output_folder=None, reduce_seams=False):
|
@@ -84,7 +95,6 @@ def process_batch(input_folder, output_folder=None, reduce_seams=False):
|
|
84 |
processed_files = 0
|
85 |
results = []
|
86 |
|
87 |
-
# Initial progress update.
|
88 |
yield [results, "Starting batch processing..."]
|
89 |
|
90 |
for filename in input_files:
|
@@ -107,16 +117,13 @@ def process_batch(input_folder, output_folder=None, reduce_seams=False):
|
|
107 |
counter += 1
|
108 |
|
109 |
upscaled_image.save(output_path)
|
110 |
-
|
111 |
processed_files += 1
|
112 |
results.append(output_path)
|
113 |
-
# Yield progress update after processing each image.
|
114 |
yield [results, f"Processed {processed_files}/{total_files}: {filename} in {processing_time:.2f} seconds"]
|
115 |
|
116 |
-
# Final update.
|
117 |
yield [results, f"Batch processing complete. {processed_files} images processed."]
|
118 |
|
119 |
-
title = """<h1 align="center">AuraSR Giga Upscaler
|
120 |
<p><center>AuraSR: new open source super-resolution upscaler based on GigaGAN. Works perfect on some images and fails on some images so give it a try</center></p>
|
121 |
<p><center>Works very fast and very VRAM friendly</center></p>
|
122 |
<h2 align="center">Latest version on : <a href="https://www.patreon.com/posts/110060645">https://www.patreon.com/posts/110060645</a></h2>
|
@@ -132,43 +139,44 @@ def create_demo():
|
|
132 |
input_image = gr.Image(label="Input Image", type="filepath")
|
133 |
reduce_seams = gr.Checkbox(
|
134 |
label="Reduce Seam Artifacts",
|
135 |
-
value=
|
136 |
info="upscale_4x upscales the image in tiles that do not overlap. This can result in seams. Use upscale_4x_overlapped to reduce seams. This will double the time upscaling by taking an additional pass and averaging the results."
|
137 |
)
|
138 |
process_btn = gr.Button(value="Upscale Image", variant="primary")
|
139 |
with gr.Column(scale=1):
|
140 |
-
|
|
|
|
|
141 |
progress_text = gr.Markdown("Progress messages will appear here.")
|
142 |
btn_open_outputs = gr.Button("Open Outputs Folder", variant="primary")
|
143 |
btn_open_outputs.click(fn=open_folder)
|
144 |
-
|
145 |
-
# The function now yields two outputs: a gallery and a progress message.
|
146 |
process_btn.click(
|
147 |
fn=process_single_image,
|
148 |
inputs=[input_image, reduce_seams],
|
149 |
-
outputs=[
|
150 |
)
|
151 |
-
|
152 |
with gr.Tab("Batch Processing"):
|
153 |
with gr.Row():
|
154 |
input_folder = gr.Textbox(label="Input Folder Path")
|
155 |
output_folder = gr.Textbox(label="Output Folder Path (Optional)")
|
156 |
reduce_seams_batch = gr.Checkbox(
|
157 |
label="Reduce Seam Artifacts",
|
158 |
-
value=
|
159 |
info="upscale_4x upscales the image in tiles that do not overlap. This can result in seams. Use upscale_4x_overlapped to reduce seams. This will double the time upscaling by taking an additional pass and averaging the results."
|
160 |
)
|
161 |
batch_process_btn = gr.Button(value="Process Batch", variant="primary")
|
162 |
with gr.Column():
|
163 |
output_gallery_batch = gr.Gallery(label="Processed Images")
|
164 |
progress_text_batch = gr.Markdown("Progress messages will appear here.")
|
165 |
-
|
166 |
batch_process_btn.click(
|
167 |
fn=process_batch,
|
168 |
inputs=[input_folder, output_folder, reduce_seams_batch],
|
169 |
outputs=[output_gallery_batch, progress_text_batch]
|
170 |
)
|
171 |
-
|
172 |
return demo
|
173 |
|
174 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_imageslider import ImageSlider
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
from aura_sr import AuraSR
|
6 |
import torch
|
7 |
import os
|
8 |
import time
|
|
|
9 |
import platform
|
10 |
import argparse
|
11 |
|
|
|
16 |
elif platform.system() == "Linux":
|
17 |
os.system(f'xdg-open "{open_folder_path}"')
|
18 |
|
19 |
+
def get_placeholder_image():
|
20 |
+
"""
|
21 |
+
Creates a placeholder image (if not already present) and returns its file path.
|
22 |
+
This placeholder is a blank (white) image that will be used for progress updates.
|
23 |
+
"""
|
24 |
+
placeholder_path = "placeholder.png"
|
25 |
+
if not os.path.exists(placeholder_path):
|
26 |
+
placeholder = Image.new("RGB", (256, 256), (255, 255, 255))
|
27 |
+
placeholder.save(placeholder_path)
|
28 |
+
return placeholder_path
|
29 |
+
|
30 |
# Force CPU usage
|
31 |
torch.set_default_tensor_type(torch.FloatTensor)
|
32 |
|
|
|
45 |
raise gr.Error("Please provide an image to upscale.")
|
46 |
|
47 |
# Send an initial progress update.
|
48 |
+
# Instead of (None, None), we use the placeholder image file paths.
|
49 |
+
placeholder = get_placeholder_image()
|
50 |
+
yield [(placeholder, placeholder), "Starting upscaling..."]
|
51 |
|
52 |
# Load the image.
|
53 |
pil_image = Image.open(input_image_path)
|
|
|
55 |
# Upscale using the chosen method.
|
56 |
start_time = time.time()
|
57 |
if reduce_seams:
|
|
|
58 |
print("using reduce seams")
|
59 |
upscaled_image = aura_sr.upscale_4x_overlapped(pil_image)
|
60 |
else:
|
|
|
61 |
upscaled_image = aura_sr.upscale_4x(pil_image)
|
62 |
processing_time = time.time() - start_time
|
63 |
print(f"Processing time: {processing_time:.2f} seconds")
|
|
|
77 |
|
78 |
upscaled_image.save(output_path)
|
79 |
|
80 |
+
# Send the final progress update along with the before/after slider images.
|
81 |
+
yield [(input_image_path, output_path),
|
82 |
f"Upscaling complete in {processing_time:.2f} seconds"]
|
83 |
|
84 |
def process_batch(input_folder, output_folder=None, reduce_seams=False):
|
|
|
95 |
processed_files = 0
|
96 |
results = []
|
97 |
|
|
|
98 |
yield [results, "Starting batch processing..."]
|
99 |
|
100 |
for filename in input_files:
|
|
|
117 |
counter += 1
|
118 |
|
119 |
upscaled_image.save(output_path)
|
|
|
120 |
processed_files += 1
|
121 |
results.append(output_path)
|
|
|
122 |
yield [results, f"Processed {processed_files}/{total_files}: {filename} in {processing_time:.2f} seconds"]
|
123 |
|
|
|
124 |
yield [results, f"Batch processing complete. {processed_files} images processed."]
|
125 |
|
126 |
+
title = """<h1 align="center">AuraSR Giga Upscaler V3 by SECourses - Upscales to 4x</h1>
|
127 |
<p><center>AuraSR: new open source super-resolution upscaler based on GigaGAN. Works perfect on some images and fails on some images so give it a try</center></p>
|
128 |
<p><center>Works very fast and very VRAM friendly</center></p>
|
129 |
<h2 align="center">Latest version on : <a href="https://www.patreon.com/posts/110060645">https://www.patreon.com/posts/110060645</a></h2>
|
|
|
139 |
input_image = gr.Image(label="Input Image", type="filepath")
|
140 |
reduce_seams = gr.Checkbox(
|
141 |
label="Reduce Seam Artifacts",
|
142 |
+
value=True,
|
143 |
info="upscale_4x upscales the image in tiles that do not overlap. This can result in seams. Use upscale_4x_overlapped to reduce seams. This will double the time upscaling by taking an additional pass and averaging the results."
|
144 |
)
|
145 |
process_btn = gr.Button(value="Upscale Image", variant="primary")
|
146 |
with gr.Column(scale=1):
|
147 |
+
# Use the ImageSlider component for comparing before & after images.
|
148 |
+
# "filepath" type means the component expects image file paths.
|
149 |
+
output_slider = ImageSlider(label="Before / After", type="filepath", slider_color="blue")
|
150 |
progress_text = gr.Markdown("Progress messages will appear here.")
|
151 |
btn_open_outputs = gr.Button("Open Outputs Folder", variant="primary")
|
152 |
btn_open_outputs.click(fn=open_folder)
|
153 |
+
|
|
|
154 |
process_btn.click(
|
155 |
fn=process_single_image,
|
156 |
inputs=[input_image, reduce_seams],
|
157 |
+
outputs=[output_slider, progress_text]
|
158 |
)
|
159 |
+
|
160 |
with gr.Tab("Batch Processing"):
|
161 |
with gr.Row():
|
162 |
input_folder = gr.Textbox(label="Input Folder Path")
|
163 |
output_folder = gr.Textbox(label="Output Folder Path (Optional)")
|
164 |
reduce_seams_batch = gr.Checkbox(
|
165 |
label="Reduce Seam Artifacts",
|
166 |
+
value=True,
|
167 |
info="upscale_4x upscales the image in tiles that do not overlap. This can result in seams. Use upscale_4x_overlapped to reduce seams. This will double the time upscaling by taking an additional pass and averaging the results."
|
168 |
)
|
169 |
batch_process_btn = gr.Button(value="Process Batch", variant="primary")
|
170 |
with gr.Column():
|
171 |
output_gallery_batch = gr.Gallery(label="Processed Images")
|
172 |
progress_text_batch = gr.Markdown("Progress messages will appear here.")
|
173 |
+
|
174 |
batch_process_btn.click(
|
175 |
fn=process_batch,
|
176 |
inputs=[input_folder, output_folder, reduce_seams_batch],
|
177 |
outputs=[output_gallery_batch, progress_text_batch]
|
178 |
)
|
179 |
+
|
180 |
return demo
|
181 |
|
182 |
if __name__ == "__main__":
|