Delete dt0_1/targets_shortcut.py
Browse files- dt0_1/targets_shortcut.py +0 -136
dt0_1/targets_shortcut.py
DELETED
|
@@ -1,136 +0,0 @@
|
|
| 1 |
-
import jax
|
| 2 |
-
import jax.numpy as jnp
|
| 3 |
-
import numpy as np
|
| 4 |
-
|
| 5 |
-
def get_targets(FLAGS, key, train_state, images, labels, force_t=-1, force_dt=-1):
|
| 6 |
-
label_key, time_key, noise_key = jax.random.split(key, 3)
|
| 7 |
-
info = {}
|
| 8 |
-
|
| 9 |
-
#Convert dt_base to 0-1
|
| 10 |
-
#Make everything be continuous
|
| 11 |
-
#So if everything is continuous, then we don't sample dt_base like this
|
| 12 |
-
#We just allow us to sample anywhere
|
| 13 |
-
#And we say that two small steps = 1 big step
|
| 14 |
-
#But the biggest step, full = 1.0
|
| 15 |
-
#So two small steps to equal one big in log 2...???
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
# 1) =========== Sample dt. ============
|
| 19 |
-
bootstrap_batchsize = FLAGS.batch_size // FLAGS.model['bootstrap_every']
|
| 20 |
-
log2_sections = np.log2(FLAGS.model['denoise_timesteps']).astype(np.int32)
|
| 21 |
-
if FLAGS.model['bootstrap_dt_bias'] == 0:
|
| 22 |
-
dt_base = jnp.repeat(log2_sections - 1 - jnp.arange(log2_sections), bootstrap_batchsize // log2_sections)
|
| 23 |
-
dt_base = jnp.concatenate([dt_base, jnp.zeros(bootstrap_batchsize-dt_base.shape[0],)])
|
| 24 |
-
num_dt_cfg = bootstrap_batchsize // log2_sections
|
| 25 |
-
else:
|
| 26 |
-
dt_base = jnp.repeat(log2_sections - 1 - jnp.arange(log2_sections-2), (bootstrap_batchsize // 2) // log2_sections)
|
| 27 |
-
dt_base = jnp.concatenate([dt_base, jnp.ones(bootstrap_batchsize // 4), jnp.zeros(bootstrap_batchsize // 4)])
|
| 28 |
-
dt_base = jnp.concatenate([dt_base, jnp.zeros(bootstrap_batchsize-dt_base.shape[0],)])
|
| 29 |
-
num_dt_cfg = (bootstrap_batchsize // 2) // log2_sections
|
| 30 |
-
force_dt_vec = jnp.ones(bootstrap_batchsize, dtype=jnp.float32) * force_dt
|
| 31 |
-
dt_base = jnp.where(force_dt_vec != -1, force_dt_vec, dt_base)
|
| 32 |
-
|
| 33 |
-
#Continuous time is easy
|
| 34 |
-
#And then just divide by 7 as needed for 0-1 log space.
|
| 35 |
-
#I guess we can also just have a special embedding for maximum or something
|
| 36 |
-
if False:
|
| 37 |
-
#dt_base = jnp.randint(0,7)#7 because exclusive.
|
| 38 |
-
dt_base = jax.random.uniform(0,1)*6
|
| 39 |
-
dt_base = dt_base / 7#First step
|
| 40 |
-
|
| 41 |
-
dt = 1 / (2 ** (dt_base)) # [1, 1/2, 1/4, 1/8, 1/16, 1/32]
|
| 42 |
-
dt_base_bootstrap = dt_base + 1
|
| 43 |
-
dt_bootstrap = dt / 2
|
| 44 |
-
|
| 45 |
-
# 2) =========== Sample t. ============
|
| 46 |
-
dt_sections = jnp.power(2, dt_base) # [1, 2, 4, 8, 16, 32]
|
| 47 |
-
t = jax.random.randint(time_key, (bootstrap_batchsize,), minval=0, maxval=dt_sections).astype(jnp.float32)
|
| 48 |
-
t = t / dt_sections # Between 0 and 1.
|
| 49 |
-
force_t_vec = jnp.ones(bootstrap_batchsize, dtype=jnp.float32) * force_t
|
| 50 |
-
t = jnp.where(force_t_vec != -1, force_t_vec, t)
|
| 51 |
-
t_full = t[:, None, None, None]
|
| 52 |
-
|
| 53 |
-
# 3) =========== Generate Bootstrap Targets ============
|
| 54 |
-
x_1 = images[:bootstrap_batchsize]
|
| 55 |
-
x_0 = jax.random.normal(noise_key, x_1.shape)
|
| 56 |
-
x_t = (1 - (1 - 1e-5) * t_full) * x_0 + t_full * x_1
|
| 57 |
-
bst_labels = labels[:bootstrap_batchsize]
|
| 58 |
-
call_model_fn = train_state.call_model if FLAGS.model['bootstrap_ema'] == 0 else train_state.call_model_ema
|
| 59 |
-
if not FLAGS.model['bootstrap_cfg']:
|
| 60 |
-
#We should just have dt_base /= 7
|
| 61 |
-
v_b1 = call_model_fn(x_t, t, dt_base_bootstrap, bst_labels, train=False)
|
| 62 |
-
t2 = t + dt_bootstrap
|
| 63 |
-
x_t2 = x_t + dt_bootstrap[:, None, None, None] * v_b1
|
| 64 |
-
x_t2 = jnp.clip(x_t2, -4, 4)
|
| 65 |
-
v_b2 = call_model_fn(x_t2, t2, dt_base_bootstrap, bst_labels, train=False)
|
| 66 |
-
v_target = (v_b1 + v_b2) / 2
|
| 67 |
-
else:
|
| 68 |
-
x_t_extra = jnp.concatenate([x_t, x_t[:num_dt_cfg]], axis=0)
|
| 69 |
-
t_extra = jnp.concatenate([t, t[:num_dt_cfg]], axis=0)
|
| 70 |
-
dt_base_extra = jnp.concatenate([dt_base_bootstrap, dt_base_bootstrap[:num_dt_cfg]], axis=0)
|
| 71 |
-
labels_extra = jnp.concatenate([bst_labels, jnp.ones(num_dt_cfg, dtype=jnp.int32) * FLAGS.model['num_classes']], axis=0)
|
| 72 |
-
#step 1
|
| 73 |
-
dt_base_extra = dt_base_extra / 7.0
|
| 74 |
-
v_b1_raw = call_model_fn(x_t_extra, t_extra, dt_base_extra, labels_extra, train=False)
|
| 75 |
-
v_b_cond = v_b1_raw[:x_1.shape[0]]
|
| 76 |
-
v_b_uncond = v_b1_raw[x_1.shape[0]:]
|
| 77 |
-
v_cfg = v_b_uncond + FLAGS.model['cfg_scale'] * (v_b_cond[:num_dt_cfg] - v_b_uncond)
|
| 78 |
-
v_b1 = jnp.concatenate([v_cfg, v_b_cond[num_dt_cfg:]], axis=0)
|
| 79 |
-
|
| 80 |
-
t2 = t + dt_bootstrap
|
| 81 |
-
x_t2 = x_t + dt_bootstrap[:, None, None, None] * v_b1
|
| 82 |
-
x_t2 = jnp.clip(x_t2, -4, 4)
|
| 83 |
-
x_t2_extra = jnp.concatenate([x_t2, x_t2[:num_dt_cfg]], axis=0)
|
| 84 |
-
t2_extra = jnp.concatenate([t2, t2[:num_dt_cfg]], axis=0)
|
| 85 |
-
v_b2_raw = call_model_fn(x_t2_extra, t2_extra, dt_base_extra, labels_extra, train=False)
|
| 86 |
-
v_b2_cond = v_b2_raw[:x_1.shape[0]]
|
| 87 |
-
v_b2_uncond = v_b2_raw[x_1.shape[0]:]
|
| 88 |
-
v_b2_cfg = v_b2_uncond + FLAGS.model['cfg_scale'] * (v_b2_cond[:num_dt_cfg] - v_b2_uncond)
|
| 89 |
-
v_b2 = jnp.concatenate([v_b2_cfg, v_b2_cond[num_dt_cfg:]], axis=0)
|
| 90 |
-
v_target = (v_b1 + v_b2) / 2
|
| 91 |
-
|
| 92 |
-
v_target = jnp.clip(v_target, -4, 4)
|
| 93 |
-
bst_v = v_target
|
| 94 |
-
bst_dt = dt_base
|
| 95 |
-
bst_t = t
|
| 96 |
-
bst_xt = x_t
|
| 97 |
-
bst_l = bst_labels
|
| 98 |
-
|
| 99 |
-
# 4) =========== Generate Flow-Matching Targets ============
|
| 100 |
-
|
| 101 |
-
labels_dropout = jax.random.bernoulli(label_key, FLAGS.model['class_dropout_prob'], (labels.shape[0],))
|
| 102 |
-
labels_dropped = jnp.where(labels_dropout, FLAGS.model['num_classes'], labels)
|
| 103 |
-
info['dropped_ratio'] = jnp.mean(labels_dropped == FLAGS.model['num_classes'])
|
| 104 |
-
|
| 105 |
-
# Sample t.
|
| 106 |
-
t = jax.random.randint(time_key, (images.shape[0],), minval=0, maxval=FLAGS.model['denoise_timesteps']).astype(jnp.float32)
|
| 107 |
-
t /= FLAGS.model['denoise_timesteps']
|
| 108 |
-
force_t_vec = jnp.ones(images.shape[0], dtype=jnp.float32) * force_t
|
| 109 |
-
t = jnp.where(force_t_vec != -1, force_t_vec, t) # If force_t is not -1, then use force_t.
|
| 110 |
-
t_full = t[:, None, None, None] # [batch, 1, 1, 1]
|
| 111 |
-
|
| 112 |
-
# Sample flow pairs x_t, v_t.
|
| 113 |
-
x_0 = jax.random.normal(noise_key, images.shape)
|
| 114 |
-
x_1 = images
|
| 115 |
-
x_t = x_t = (1 - (1 - 1e-5) * t_full) * x_0 + t_full * x_1
|
| 116 |
-
v_t = v_t = x_1 - (1 - 1e-5) * x_0
|
| 117 |
-
dt_flow = np.log2(FLAGS.model['denoise_timesteps']).astype(jnp.int32)
|
| 118 |
-
dt_base = jnp.ones(images.shape[0], dtype=jnp.int32) * dt_flow
|
| 119 |
-
|
| 120 |
-
# ==== 5) Merge Flow+Bootstrap ====
|
| 121 |
-
bst_size = FLAGS.batch_size // FLAGS.model['bootstrap_every']
|
| 122 |
-
bst_size_data = FLAGS.batch_size - bst_size
|
| 123 |
-
x_t = jnp.concatenate([bst_xt, x_t[:bst_size_data]], axis=0)
|
| 124 |
-
t = jnp.concatenate([bst_t, t[:bst_size_data]], axis=0)
|
| 125 |
-
dt_base = jnp.concatenate([bst_dt, dt_base[:bst_size_data]], axis=0)
|
| 126 |
-
v_t = jnp.concatenate([bst_v, v_t[:bst_size_data]], axis=0)
|
| 127 |
-
labels_dropped = jnp.concatenate([bst_l, labels_dropped[:bst_size_data]], axis=0)
|
| 128 |
-
info['bootstrap_ratio'] = jnp.mean(dt_base != dt_flow)
|
| 129 |
-
|
| 130 |
-
info['v_magnitude_bootstrap'] = jnp.sqrt(jnp.mean(jnp.square(bst_v)))
|
| 131 |
-
info['v_magnitude_b1'] = jnp.sqrt(jnp.mean(jnp.square(v_b1)))
|
| 132 |
-
info['v_magnitude_b2'] = jnp.sqrt(jnp.mean(jnp.square(v_b2)))
|
| 133 |
-
|
| 134 |
-
dt_base = dt_base / 7.0
|
| 135 |
-
#print("dt base", dt_base)
|
| 136 |
-
return x_t, v_t, t, dt_base, labels_dropped, info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|