--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: my_awesome_power_model_llmv2 results: [] --- # my_awesome_power_model_llmv2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0347 - Epoch: 599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 14.1299 | 0 | | 3.0898 | 1 | | 2.8086 | 2 | | 2.6899 | 3 | | 2.5834 | 4 | | 2.5116 | 5 | | 2.4435 | 6 | | 2.3961 | 7 | | 2.3446 | 8 | | 2.3011 | 9 | | 2.2651 | 10 | | 2.2280 | 11 | | 2.2007 | 12 | | 2.1640 | 13 | | 2.1350 | 14 | | 2.1105 | 15 | | 2.0776 | 16 | | 2.0486 | 17 | | 2.0297 | 18 | | 2.0114 | 19 | | 1.9887 | 20 | | 1.9679 | 21 | | 1.9495 | 22 | | 1.9376 | 23 | | 1.9145 | 24 | | 1.9036 | 25 | | 1.8915 | 26 | | 1.8738 | 27 | | 1.8624 | 28 | | 1.8496 | 29 | | 1.8310 | 30 | | 1.8196 | 31 | | 1.8074 | 32 | | 1.8021 | 33 | | 1.7813 | 34 | | 1.7681 | 35 | | 1.7548 | 36 | | 1.7386 | 37 | | 1.7325 | 38 | | 1.7149 | 39 | | 1.7051 | 40 | | 1.7001 | 41 | | 1.6815 | 42 | | 1.6765 | 43 | | 1.6667 | 44 | | 1.6528 | 45 | | 1.6373 | 46 | | 1.6269 | 47 | | 1.6237 | 48 | | 1.6046 | 49 | | 1.6005 | 50 | | 1.5919 | 51 | | 1.5767 | 52 | | 1.5617 | 53 | | 1.5556 | 54 | | 1.5461 | 55 | | 1.5311 | 56 | | 1.5313 | 57 | | 1.5116 | 58 | | 1.5020 | 59 | | 1.4975 | 60 | | 1.4897 | 61 | | 1.4834 | 62 | | 1.4677 | 63 | | 1.4672 | 64 | | 1.4470 | 65 | | 1.4409 | 66 | | 1.4284 | 67 | | 1.4202 | 68 | | 1.4174 | 69 | | 1.4007 | 70 | | 1.3930 | 71 | | 1.3868 | 72 | | 1.3702 | 73 | | 1.3636 | 74 | | 1.3557 | 75 | | 1.3417 | 76 | | 1.3321 | 77 | | 1.3206 | 78 | | 1.3135 | 79 | | 1.3087 | 80 | | 1.2974 | 81 | | 1.2856 | 82 | | 1.2734 | 83 | | 1.2660 | 84 | | 1.2571 | 85 | | 1.2528 | 86 | | 1.2330 | 87 | | 1.2214 | 88 | | 1.2126 | 89 | | 1.2075 | 90 | | 1.1932 | 91 | | 1.1928 | 92 | | 1.1717 | 93 | | 1.1691 | 94 | | 1.1618 | 95 | | 1.1453 | 96 | | 1.1308 | 97 | | 1.1287 | 98 | | 1.1187 | 99 | | 1.1003 | 100 | | 1.0947 | 101 | | 1.0822 | 102 | | 1.0749 | 103 | | 1.0659 | 104 | | 1.0546 | 105 | | 1.0412 | 106 | | 1.0274 | 107 | | 1.0248 | 108 | | 1.0100 | 109 | | 1.0050 | 110 | | 0.9935 | 111 | | 0.9798 | 112 | | 0.9733 | 113 | | 0.9604 | 114 | | 0.9530 | 115 | | 0.9407 | 116 | | 0.9290 | 117 | | 0.9217 | 118 | | 0.9095 | 119 | | 0.8929 | 120 | | 0.8860 | 121 | | 0.8786 | 122 | | 0.8684 | 123 | | 0.8585 | 124 | | 0.8445 | 125 | | 0.8398 | 126 | | 0.8181 | 127 | | 0.8183 | 128 | | 0.8030 | 129 | | 0.7919 | 130 | | 0.7851 | 131 | | 0.7743 | 132 | | 0.7578 | 133 | | 0.7449 | 134 | | 0.7329 | 135 | | 0.7267 | 136 | | 0.7178 | 137 | | 0.7089 | 138 | | 0.7000 | 139 | | 0.6948 | 140 | | 0.6842 | 141 | | 0.6637 | 142 | | 0.6546 | 143 | | 0.6454 | 144 | | 0.6348 | 145 | | 0.6270 | 146 | | 0.6150 | 147 | | 0.6002 | 148 | | 0.5899 | 149 | | 0.5803 | 150 | | 0.5709 | 151 | | 0.5600 | 152 | | 0.5534 | 153 | | 0.5429 | 154 | | 0.5266 | 155 | | 0.5207 | 156 | | 0.5096 | 157 | | 0.4978 | 158 | | 0.4878 | 159 | | 0.4752 | 160 | | 0.4752 | 161 | | 0.4633 | 162 | | 0.4580 | 163 | | 0.4411 | 164 | | 0.4268 | 165 | | 0.4262 | 166 | | 0.4107 | 167 | | 0.4053 | 168 | | 0.3935 | 169 | | 0.4129 | 170 | | 0.3874 | 171 | | 0.3766 | 172 | | 0.3688 | 173 | | 0.3505 | 174 | | 0.3534 | 175 | | 0.3403 | 176 | | 0.3310 | 177 | | 0.3242 | 178 | | 0.3188 | 179 | | 0.3130 | 180 | | 0.3023 | 181 | | 0.2953 | 182 | | 0.2907 | 183 | | 0.2819 | 184 | | 0.2731 | 185 | | 0.2706 | 186 | | 0.2671 | 187 | | 0.2567 | 188 | | 0.2512 | 189 | | 0.2441 | 190 | | 0.2428 | 191 | | 0.2378 | 192 | | 0.2322 | 193 | | 0.2246 | 194 | | 0.2223 | 195 | | 0.2196 | 196 | | 0.2091 | 197 | | 0.2052 | 198 | | 0.2019 | 199 | | 0.2011 | 200 | | 0.1975 | 201 | | 0.1963 | 202 | | 0.1917 | 203 | | 0.1898 | 204 | | 0.1829 | 205 | | 0.1791 | 206 | | 0.1733 | 207 | | 0.1706 | 208 | | 0.1683 | 209 | | 0.1646 | 210 | | 0.1645 | 211 | | 0.1581 | 212 | | 0.1533 | 213 | | 0.1568 | 214 | | 0.1499 | 215 | | 0.1490 | 216 | | 0.1460 | 217 | | 0.1426 | 218 | | 0.1444 | 219 | | 0.1391 | 220 | | 0.1390 | 221 | | 0.1380 | 222 | | 0.1336 | 223 | | 0.1322 | 224 | | 0.1316 | 225 | | 0.1262 | 226 | | 0.1231 | 227 | | 0.1235 | 228 | | 0.1260 | 229 | | 0.1242 | 230 | | 0.1218 | 231 | | 0.1167 | 232 | | 0.1174 | 233 | | 0.1169 | 234 | | 0.1164 | 235 | | 0.1133 | 236 | | 0.1138 | 237 | | 0.1100 | 238 | | 0.1107 | 239 | | 0.1079 | 240 | | 0.1059 | 241 | | 0.1068 | 242 | | 0.1023 | 243 | | 0.1063 | 244 | | 0.1005 | 245 | | 0.1014 | 246 | | 0.1004 | 247 | | 0.0994 | 248 | | 0.1061 | 249 | | 0.1004 | 250 | | 0.0942 | 251 | | 0.0975 | 252 | | 0.0957 | 253 | | 0.0933 | 254 | | 0.0924 | 255 | | 0.0921 | 256 | | 0.0912 | 257 | | 0.0897 | 258 | | 0.0893 | 259 | | 0.0835 | 260 | | 0.0861 | 261 | | 0.0860 | 262 | | 0.0819 | 263 | | 0.0830 | 264 | | 0.0823 | 265 | | 0.0836 | 266 | | 0.0800 | 267 | | 0.0797 | 268 | | 0.0808 | 269 | | 0.0785 | 270 | | 0.0770 | 271 | | 0.0776 | 272 | | 0.0780 | 273 | | 0.0744 | 274 | | 0.0790 | 275 | | 0.0765 | 276 | | 0.0769 | 277 | | 0.0725 | 278 | | 0.0740 | 279 | | 0.0718 | 280 | | 0.0760 | 281 | | 0.0741 | 282 | | 0.0728 | 283 | | 0.0721 | 284 | | 0.0726 | 285 | | 0.0691 | 286 | | 0.0709 | 287 | | 0.0710 | 288 | | 0.0666 | 289 | | 0.0675 | 290 | | 0.0690 | 291 | | 0.0720 | 292 | | 0.0693 | 293 | | 0.0685 | 294 | | 0.0649 | 295 | | 0.0666 | 296 | | 0.0669 | 297 | | 0.0662 | 298 | | 0.0648 | 299 | | 0.0663 | 300 | | 0.0660 | 301 | | 0.0638 | 302 | | 0.0628 | 303 | | 0.0621 | 304 | | 0.0631 | 305 | | 0.0611 | 306 | | 0.0640 | 307 | | 0.0622 | 308 | | 0.0643 | 309 | | 0.0622 | 310 | | 0.0623 | 311 | | 0.0607 | 312 | | 0.0603 | 313 | | 0.0591 | 314 | | 0.0620 | 315 | | 0.0609 | 316 | | 0.0596 | 317 | | 0.0594 | 318 | | 0.0608 | 319 | | 0.0606 | 320 | | 0.0587 | 321 | | 0.0620 | 322 | | 0.0601 | 323 | | 0.0590 | 324 | | 0.0600 | 325 | | 0.0576 | 326 | | 0.0581 | 327 | | 0.0556 | 328 | | 0.0588 | 329 | | 0.0561 | 330 | | 0.0563 | 331 | | 0.0554 | 332 | | 0.0596 | 333 | | 0.0570 | 334 | | 0.0570 | 335 | | 0.0552 | 336 | | 0.0566 | 337 | | 0.0526 | 338 | | 0.0528 | 339 | | 0.0527 | 340 | | 0.0554 | 341 | | 0.0574 | 342 | | 0.0543 | 343 | | 0.0553 | 344 | | 0.0530 | 345 | | 0.0537 | 346 | | 0.0537 | 347 | | 0.0536 | 348 | | 0.0526 | 349 | | 0.0512 | 350 | | 0.0506 | 351 | | 0.0510 | 352 | | 0.0514 | 353 | | 0.0496 | 354 | | 0.0500 | 355 | | 0.0525 | 356 | | 0.0533 | 357 | | 0.0509 | 358 | | 0.0520 | 359 | | 0.0523 | 360 | | 0.0508 | 361 | | 0.0517 | 362 | | 0.0513 | 363 | | 0.0519 | 364 | | 0.0505 | 365 | | 0.0490 | 366 | | 0.0496 | 367 | | 0.0504 | 368 | | 0.0467 | 369 | | 0.0481 | 370 | | 0.0465 | 371 | | 0.0480 | 372 | | 0.0450 | 373 | | 0.0481 | 374 | | 0.0515 | 375 | | 0.0489 | 376 | | 0.0488 | 377 | | 0.0481 | 378 | | 0.0483 | 379 | | 0.0480 | 380 | | 0.0490 | 381 | | 0.0476 | 382 | | 0.0469 | 383 | | 0.0489 | 384 | | 0.0478 | 385 | | 0.0456 | 386 | | 0.0465 | 387 | | 0.0467 | 388 | | 0.0494 | 389 | | 0.0506 | 390 | | 0.0477 | 391 | | 0.0483 | 392 | | 0.0449 | 393 | | 0.0471 | 394 | | 0.0444 | 395 | | 0.0469 | 396 | | 0.0481 | 397 | | 0.0456 | 398 | | 0.0448 | 399 | | 0.0435 | 400 | | 0.0430 | 401 | | 0.0441 | 402 | | 0.0445 | 403 | | 0.0464 | 404 | | 0.0469 | 405 | | 0.0443 | 406 | | 0.0472 | 407 | | 0.0458 | 408 | | 0.0445 | 409 | | 0.0438 | 410 | | 0.0443 | 411 | | 0.0447 | 412 | | 0.0445 | 413 | | 0.0436 | 414 | | 0.0435 | 415 | | 0.0427 | 416 | | 0.0429 | 417 | | 0.0430 | 418 | | 0.0437 | 419 | | 0.0445 | 420 | | 0.0427 | 421 | | 0.0447 | 422 | | 0.0447 | 423 | | 0.0436 | 424 | | 0.0449 | 425 | | 0.0445 | 426 | | 0.0444 | 427 | | 0.0439 | 428 | | 0.0426 | 429 | | 0.0440 | 430 | | 0.0425 | 431 | | 0.0418 | 432 | | 0.0423 | 433 | | 0.0437 | 434 | | 0.0431 | 435 | | 0.0430 | 436 | | 0.0398 | 437 | | 0.0405 | 438 | | 0.0398 | 439 | | 0.0416 | 440 | | 0.0407 | 441 | | 0.0413 | 442 | | 0.0428 | 443 | | 0.0414 | 444 | | 0.0435 | 445 | | 0.0425 | 446 | | 0.0411 | 447 | | 0.0414 | 448 | | 0.0415 | 449 | | 0.0436 | 450 | | 0.0424 | 451 | | 0.0429 | 452 | | 0.0400 | 453 | | 0.0414 | 454 | | 0.0393 | 455 | | 0.0389 | 456 | | 0.0395 | 457 | | 0.0403 | 458 | | 0.0386 | 459 | | 0.0399 | 460 | | 0.0390 | 461 | | 0.0379 | 462 | | 0.0403 | 463 | | 0.0400 | 464 | | 0.0396 | 465 | | 0.0394 | 466 | | 0.0387 | 467 | | 0.0401 | 468 | | 0.0394 | 469 | | 0.0392 | 470 | | 0.0418 | 471 | | 0.0407 | 472 | | 0.0392 | 473 | | 0.0414 | 474 | | 0.0406 | 475 | | 0.0407 | 476 | | 0.0409 | 477 | | 0.0393 | 478 | | 0.0411 | 479 | | 0.0399 | 480 | | 0.0398 | 481 | | 0.0403 | 482 | | 0.0382 | 483 | | 0.0381 | 484 | | 0.0373 | 485 | | 0.0390 | 486 | | 0.0375 | 487 | | 0.0371 | 488 | | 0.0393 | 489 | | 0.0382 | 490 | | 0.0397 | 491 | | 0.0389 | 492 | | 0.0400 | 493 | | 0.0387 | 494 | | 0.0388 | 495 | | 0.0383 | 496 | | 0.0366 | 497 | | 0.0380 | 498 | | 0.0379 | 499 | | 0.0390 | 500 | | 0.0401 | 501 | | 0.0392 | 502 | | 0.0368 | 503 | | 0.0386 | 504 | | 0.0369 | 505 | | 0.0373 | 506 | | 0.0376 | 507 | | 0.0380 | 508 | | 0.0374 | 509 | | 0.0401 | 510 | | 0.0391 | 511 | | 0.0373 | 512 | | 0.0383 | 513 | | 0.0372 | 514 | | 0.0378 | 515 | | 0.0384 | 516 | | 0.0371 | 517 | | 0.0359 | 518 | | 0.0354 | 519 | | 0.0366 | 520 | | 0.0442 | 521 | | 0.0393 | 522 | | 0.0378 | 523 | | 0.0370 | 524 | | 0.0382 | 525 | | 0.0366 | 526 | | 0.0380 | 527 | | 0.0370 | 528 | | 0.0393 | 529 | | 0.0361 | 530 | | 0.0364 | 531 | | 0.0390 | 532 | | 0.0371 | 533 | | 0.0367 | 534 | | 0.0376 | 535 | | 0.0365 | 536 | | 0.0371 | 537 | | 0.0374 | 538 | | 0.0378 | 539 | | 0.0355 | 540 | | 0.0352 | 541 | | 0.0342 | 542 | | 0.0348 | 543 | | 0.0361 | 544 | | 0.0380 | 545 | | 0.0367 | 546 | | 0.0354 | 547 | | 0.0341 | 548 | | 0.0352 | 549 | | 0.0344 | 550 | | 0.0348 | 551 | | 0.0354 | 552 | | 0.0370 | 553 | | 0.0379 | 554 | | 0.0362 | 555 | | 0.0366 | 556 | | 0.0369 | 557 | | 0.0355 | 558 | | 0.0359 | 559 | | 0.0371 | 560 | | 0.0359 | 561 | | 0.0344 | 562 | | 0.0355 | 563 | | 0.0361 | 564 | | 0.0345 | 565 | | 0.0345 | 566 | | 0.0348 | 567 | | 0.0343 | 568 | | 0.0340 | 569 | | 0.0351 | 570 | | 0.0344 | 571 | | 0.0341 | 572 | | 0.0350 | 573 | | 0.0341 | 574 | | 0.0347 | 575 | | 0.0336 | 576 | | 0.0339 | 577 | | 0.0334 | 578 | | 0.0340 | 579 | | 0.0349 | 580 | | 0.0356 | 581 | | 0.0353 | 582 | | 0.0356 | 583 | | 0.0369 | 584 | | 0.0360 | 585 | | 0.0358 | 586 | | 0.0354 | 587 | | 0.0350 | 588 | | 0.0359 | 589 | | 0.0363 | 590 | | 0.0342 | 591 | | 0.0355 | 592 | | 0.0352 | 593 | | 0.0337 | 594 | | 0.0333 | 595 | | 0.0343 | 596 | | 0.0352 | 597 | | 0.0333 | 598 | | 0.0347 | 599 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.1