{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bd5d4101f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bd5d4102020>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bd5d41020c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bd5d4102160>", "_build": "<function ActorCriticPolicy._build at 0x7bd5d4102200>", "forward": "<function ActorCriticPolicy.forward at 0x7bd5d41022a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bd5d4102340>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bd5d41023e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bd5d4102480>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bd5d4102520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bd5d41025c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bd5d4102660>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bd5d403eb80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737079296845400112, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqjdLye5LY/XUZXvnFtCj0WbhU8desGPAAAAAAAAAAAjUSjPVxffLqky0E6zrb0uKXQG7sW+lS5AACAPwAAgD+AsN09PvPvPkL/wj0KMaq+pTRuPR4WR70AAAAAAAAAAICmuj2Pcge6yy1muQ0vxbTszYc7szyFOAAAgD8AAIA/oNAgPuZ6jz/qQzE/vIH/vrbIEj2yVRY+AAAAAAAAAAAaDrQ9poqBP7r4Az5kpZO+5KVMPYbtHLsAAAAAAAAAAH3Wk7719xc/fgmGPo7edL7eKdq88jgSPgAAAAAAAAAA7ZKQPt0gSj8+uYI9ZZKXvgx+8j013WC8AAAAAAAAAAAAcEG+vDG0PxFjGb+pZIi+FLNLvuytir4AAAAAAAAAAIbNuL4/oXE/blovvtMij75LS1e+eN38PQAAAAAAAAAApmPKPemhD7wE9YK8DTS+PFI8gT1mUZ29AACAPwAAgD9mUyI99ooDvOKpcbyJjE094rEhPdJVMLoAAIA/AACAP3Muvj2FC/G5zqY/M3E9a64Jtwy7kyTLswAAgD8AAIA/gC5qvYWuDj57qBO9ih+jvhYVlL32ehi9AAAAAAAAAABmAo0+RKc7Pvjgar4QWWu+8gIwvQdyhr0AAAAAAAAAAEo/4D6mGhY/GAidvaEagb4HPR4+W7uOvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF9toWYWtWMAWyUTWIBjAF0lEdAkYnM2itaIXV9lChoBkdAcE/ztkWhy2gHTWwBaAhHQJGKspI+W4V1fZQoaAZHQHBprtVrAQBoB02JAWgIR0CRiry6+WWydX2UKGgGR0BxNEona37UaAdNOgFoCEdAkYtTx0+1SnV9lChoBkdALypyZKFqSGgHS/xoCEdAkYuDwx33YnV9lChoBkdAcX8qUu+RHWgHTUsBaAhHQJGM5MsYl6Z1fZQoaAZHQHHAMlC1JDpoB018AWgIR0CRjPJrcj7idX2UKGgGR0BudKsEJSiuaAdNSgFoCEdAkY1q+N96TnV9lChoBkdAbZNgeA/cFmgHTUEBaAhHQJGNZUrCm/F1fZQoaAZHQHBF+DBdld1oB02nAWgIR0CRj6etSydGdX2UKGgGR0BwysD2alUIaAdNIwFoCEdAkZAdp22Xs3V9lChoBkdAacaE1VHWjGgHTcwBaAhHQJGQp1Tzd1x1fZQoaAZHQHDYobn5i3JoB009AWgIR0CRkaEdNnGsdX2UKGgGR0Byg/9VFQVLaAdNVQFoCEdAkZK9mxt52XV9lChoBkdActUC17Y022gHTVkBaAhHQJGS5OzposZ1fZQoaAZHQHC6WszVMEloB01LAWgIR0CRlSExIre7dX2UKGgGR0BNwC2UjcEeaAdL7GgIR0CRlZU34sVddX2UKGgGR0BLYqNhmXgMaAdNAAFoCEdAkZXPTLGJenV9lChoBkdAboP2RJVbRmgHTZwBaAhHQJGWxYeT3Zh1fZQoaAZHQHFP8+V1Oj9oB01SAWgIR0CRlxRoh6jWdX2UKGgGR0Bw5FwvQF9saAdNbAFoCEdAkZdYvSMLnnV9lChoBkdAcIyu5BkZrGgHTXUBaAhHQJGXmJbdJrd1fZQoaAZHQHAXP/rB0p5oB00oAWgIR0CRl7KsMiKSdX2UKGgGR0Bvi8Gu9vjwaAdNbgFoCEdAkZgUSAYpD3V9lChoBkdAbV7HQyAQQWgHTVoBaAhHQJGYoiX6ZYx1fZQoaAZHQG5fB/iHZbpoB001AWgIR0CRmd2YfGModX2UKGgGR0ByJyrELpiaaAdNHQFoCEdAkZn/b48EFHV9lChoBkdARbFPgvUSZmgHS/loCEdAkZrCncclxHV9lChoBkdAcL7kqMFUymgHTRcBaAhHQJGeD5Lytmt1fZQoaAZHQHGI+LrHEMtoB01lAWgIR0CRnioFFDv3dX2UKGgGR0BA5LSeAd4naAdL+WgIR0CRnwMSsbNsdX2UKGgGR0BwXQjrzGxVaAdNPwFoCEdAkZ8gL3K0U3V9lChoBkdAb3gpkPMB62gHTVYBaAhHQJGgjc1wYLt1fZQoaAZHQG58cEvCdjJoB00/AWgIR0CRoPXe3x4IdX2UKGgGR0BxH9tALRa5aAdNTQFoCEdAkaErb+Lm63V9lChoBkdAb6B15jYqXmgHTdsBaAhHQJGhQ6vJRwZ1fZQoaAZHQHAEWaYu01JoB01JAWgIR0CRoZBO58SgdX2UKGgGR0BwIySB9TgmaAdNPQFoCEdAkaGOWa+ev3V9lChoBkdAblYP7N0NjWgHTSICaAhHQJGh/N5dGAl1fZQoaAZHQG7h2hqTKT1oB01CAWgIR0CRop9Ujs2OdX2UKGgGR0BLi4C6pYLcaAdL+GgIR0CRot5EMLF5dX2UKGgGR0ByPemHgxagaAdNmwFoCEdAkaSvMnqmj3V9lChoBkdAcCPZbY9PlGgHTagBaAhHQJGozFtKqXF1fZQoaAZHQHDxuYhMajxoB00ZAWgIR0CRqbxmkFfRdX2UKGgGR0BwX8R+SbH7aAdNxQFoCEdAkaoN61LJ0XV9lChoBkdAb8YM4tHx0GgHTU8BaAhHQJGrGAJ9iMJ1fZQoaAZHQDNo371qWTpoB00DAWgIR0CRrDn5BTn8dX2UKGgGR0Bv5Ui8nNPhaAdNJAFoCEdAka4DYmLLp3V9lChoBkdAbP+ZhKDkEWgHTToBaAhHQJG/XtiQT251fZQoaAZHQHF5I2jwhGJoB017AWgIR0CRv5dPLxI8dX2UKGgGR0BvRiWqtHQQaAdNVgFoCEdAkb/MlHBk7XV9lChoBkdAcogO7g88tGgHTVYBaAhHQJHAbTNMXad1fZQoaAZHQG/zrFfiPyVoB01hAWgIR0CRwIRaX8fndX2UKGgGR0BxlOZ3LV4HaAdNQQFoCEdAkcCRvFWGRHV9lChoBkdAcEf67NB4U2gHTSMBaAhHQJHArRkVerx1fZQoaAZHQG6ANsvZh8ZoB03iAWgIR0CRwcjU/fO2dX2UKGgGR0BwK+zIFNcoaAdNXwFoCEdAkcHi8BdUsHV9lChoBkdAa++yD7Ikq2gHTWQBaAhHQJHDy4qgAZN1fZQoaAZHQHA9x+KCQLhoB00+AWgIR0CRxWtNzr/sdX2UKGgGR0BvUp3gUDdQaAdNQwFoCEdAkcZyDZlFt3V9lChoBkdAb+iWszVMEmgHTTMBaAhHQJHGjMOf/WF1fZQoaAZHQHI28La24NJoB01fAWgIR0CRxyx/NJOGdX2UKGgGR0Bv5ORA8jiXaAdNOAFoCEdAkcdwl8gIQnV9lChoBkdAcJGLS/j81mgHTQkBaAhHQJHIhZ9uxbB1fZQoaAZHQG+qbIDHOr1oB006AWgIR0CRyQHWz4UOdX2UKGgGR0Bwhe3LFGXpaAdNPAFoCEdAkcpCx/ustHV9lChoBkdAbjsQWepXIWgHTV0BaAhHQJHKeJGe+VV1fZQoaAZHQHDJ2rwOOKhoB01RAWgIR0CRyy/4IrvtdX2UKGgGR0ByboID5j6OaAdNZAFoCEdAkcuNCu2ZzHV9lChoBkdAcj0In0Cih2gHTZgBaAhHQJHMngIhQnB1fZQoaAZHQGvJPkBCD29oB02zAWgIR0CRzNISDh99dX2UKGgGR0Bw/HNW2gFpaAdNYgFoCEdAkc0x1cMVlHV9lChoBkdAcaOQIldC3WgHTYMBaAhHQJHOOJm/WUd1fZQoaAZHQHCJQ9q1w5xoB00PAWgIR0CRzmyJsO5KdX2UKGgGR0BwbBKzzErHaAdNRAFoCEdAkc6NRBNVR3V9lChoBkdAcOYSDAaegGgHTU0BaAhHQJHRGpMpPRB1fZQoaAZHQHHVLQokRjBoB006AWgIR0CR0TIwM6RydX2UKGgGR0By+W6nR9gGaAdNUgFoCEdAkdFcyad+X3V9lChoBkdAb1JOxB3RomgHTUYBaAhHQJHRzbUPQOZ1fZQoaAZHQHBeJTuOS4hoB00oAWgIR0CR06sT37DVdX2UKGgGR0BwCefXf642aAdNMgFoCEdAkdPZ3kgfVHV9lChoBkdAcBU690zTF2gHTXgBaAhHQJHVJyxRl6J1fZQoaAZHQG3mU1AJLM9oB007AWgIR0CR1TLx7RfGdX2UKGgGR0BwJCNsFdLQaAdNhwFoCEdAkdU7f51vEXV9lChoBkdAbz5fBvaURmgHTToBaAhHQJHViynk1dh1fZQoaAZHP+vZU1hsqKBoB0v4aAhHQJHWMA/9pAV1fZQoaAZHQG1RohyKekJoB00qAWgIR0CR1iy3CsOodX2UKGgGR0BtidZcLSeAaAdNIAFoCEdAkdd6ur6tT3V9lChoBkdAcrKZ9uxbCGgHTWIBaAhHQJHXm4QSSNh1fZQoaAZHQGzkE92X9itoB019AWgIR0CR2XpIczZZdX2UKGgGR0Bw+pv60pmVaAdNcQFoCEdAkdrkygwoLHV9lChoBkdAcB9dBjWkJ2gHTR0BaAhHQJHbTkdV/+d1fZQoaAZHQGxO9Mj/uLJoB008AWgIR0CR3EYw7DEWdX2UKGgGR0BxSnU4JeE7aAdNQAFoCEdAkd0+eFtbcHV9lChoBkdAcdEpj+aScWgHTRwBaAhHQJHeTtRekYZ1fZQoaAZHQGzqkfDDTBtoB00lAWgIR0CR3n+98JD3dX2UKGgGR0Aws6kZaV2SaAdNBwFoCEdAkd9eXmeUZHV9lChoBkdAcV9dz4k/r2gHTQ0BaAhHQJHgkLLIPsl1fZQoaAZHQHIdveP7vXtoB001AWgIR0CR4Nk8A7xNdX2UKGgGR0ByU4U+LWI5aAdNuQFoCEdAkeGBiTdLx3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |