Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,86 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- HuggingFaceFW/fineweb-edu
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
---
|
8 |
+
|
9 |
+
30,142,848 trainable parameters.
|
10 |
+
|
11 |
+
Embedding parameters: 19,298,688
|
12 |
+
|
13 |
+
Non-embedding parameters: 10,844,160
|
14 |
+
|
15 |
+
Vocabulary size: 50,257
|
16 |
+
|
17 |
+
Total train tokens: 136,000,000
|
18 |
+
|
19 |
+
Epochs: 2
|
20 |
+
|
21 |
+
Final train Loss: 2.9811
|
22 |
+
|
23 |
+
Final test Loss: 2.7963
|
24 |
+
|
25 |
+
_________________________________________
|
26 |
+
|
27 |
+
try the following script for inference:
|
28 |
+
|
29 |
+
!pip install huggingface_hub
|
30 |
+
!pip install transformers
|
31 |
+
!pip install torch
|
32 |
+
from transformers import GPT2Tokenizer, GPT2Config, GPT2LMHeadModel
|
33 |
+
from huggingface_hub import hf_hub_download
|
34 |
+
import torch
|
35 |
+
|
36 |
+
# Name
|
37 |
+
model_name = 'Mizule/Dense-30M'
|
38 |
+
|
39 |
+
# Authenticate
|
40 |
+
token = input("Enter your Hugging Face token: ")
|
41 |
+
|
42 |
+
# Download
|
43 |
+
model_file = hf_hub_download(repo_id=f"{model_name}", filename="Dense-30M.pth", use_auth_token=token)
|
44 |
+
|
45 |
+
# Custom config
|
46 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
47 |
+
|
48 |
+
config = GPT2Config(
|
49 |
+
vocab_size=tokenizer.vocab_size,
|
50 |
+
n_positions=512,
|
51 |
+
n_ctx=512,
|
52 |
+
n_embd=384,
|
53 |
+
n_layer=6,
|
54 |
+
n_head=8
|
55 |
+
)
|
56 |
+
# Load model
|
57 |
+
model = GPT2LMHeadModel(config)
|
58 |
+
model.load_state_dict(torch.load(model_file, map_location=torch.device('cpu')))
|
59 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
+
model.to(device)
|
61 |
+
model.eval()
|
62 |
+
|
63 |
+
# Inference settings
|
64 |
+
def generate_text(prompt, max_length=128, temperature=0.2, top_k=50, top_p=0.9):
|
65 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
66 |
+
inputs = {key: value.to("cuda" if torch.cuda.is_available() else "cpu") for key, value in inputs.items()}
|
67 |
+
outputs = model.generate(
|
68 |
+
**inputs,
|
69 |
+
max_length=max_length,
|
70 |
+
temperature=temperature,
|
71 |
+
top_k=top_k,
|
72 |
+
top_p=top_p,
|
73 |
+
num_return_sequences=1,
|
74 |
+
no_repeat_ngram_size=2,
|
75 |
+
do_sample=True,
|
76 |
+
early_stopping=True
|
77 |
+
)
|
78 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
79 |
+
|
80 |
+
# Interactive loop (it's an undertrained base model, don't expect it to chat)
|
81 |
+
while True:
|
82 |
+
prompt = input("Prompt: ")
|
83 |
+
if prompt.lower() == 'exit':
|
84 |
+
break
|
85 |
+
output = generate_text(prompt)
|
86 |
+
print(f"Generated text: {output}")
|