File size: 10,135 Bytes
e78f911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4abce2d
e78f911
 
 
 
 
4abce2d
e78f911
 
 
 
 
 
 
 
 
 
 
 
4abce2d
 
 
 
 
 
 
 
 
 
 
 
 
 
e78f911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4abce2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e78f911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
---
language:
- en
license: apache-2.0
library_name: pytorch
tags:
- text-classification
- fiction-detection
- byte-level
- cnn
datasets:
- HuggingFaceTB/cosmopedia
- BEE-spoke-data/gutenberg-en-v1-clean
- common-pile/arxiv_abstracts
- ccdv/cnn_dailymail
metrics:
- accuracy
- f1
- roc_auc
model-index:
- name: TinyByteCNN-Fiction-Classifier
  results:
  - task:
      type: text-classification
      name: Fiction vs Non-Fiction Classification
    dataset:
      name: Custom Fiction/Non-Fiction Dataset (85k samples)
      type: custom
      split: validation
    metrics:
    - type: accuracy
      value: 99.91
      name: Validation Accuracy
    - type: f1
      value: 99.91
      name: F1 Score
    - type: roc_auc
      value: 99.99
      name: ROC AUC
  - task:
      type: text-classification
      name: Curated Test Samples
    dataset:
      name: 18 Diverse Fiction/Non-Fiction Samples
      type: curated
      split: test
    metrics:
    - type: accuracy
      value: 100.0
      name: Test Accuracy
    - type: confidence_avg
      value: 96.3
      name: Average Confidence
---

# TinyByteCNN Fiction vs Non-Fiction Detector

A lightweight, byte-level CNN model for detecting fiction vs non-fiction text with 99.91% validation accuracy.

## Model Description

TinyByteCNN is a highly efficient byte-level convolutional neural network designed for binary classification of fiction vs non-fiction text. The model operates directly on UTF-8 byte sequences, eliminating the need for tokenization and making it robust to various text formats and languages.

### Architecture Highlights

- **Model Size**: 942,313 parameters (~3.6MB)
- **Input**: Raw UTF-8 bytes (max 4096 bytes β‰ˆ 512 words)
- **Architecture**: Depthwise-separable 1D CNN with Squeeze-Excitation
- **Receptive Field**: ~2.8KB covering multi-paragraph context
- **Key Features**:
  - 4 stages with progressive downsampling (32x reduction)
  - Dilated convolutions for larger receptive field
  - SE attention modules for channel recalibration
  - Global average + max pooling head

## Intended Uses & Limitations

### Intended Uses
- Automated content categorization for libraries and archives
- Fiction/non-fiction filtering for content platforms
- Educational content classification
- Writing style analysis
- Content recommendation systems

### Limitations
- **Personal narratives**: May misclassify personal journal entries and memoirs as fiction (observed ~97% fiction confidence on journal entries)
- **Mixed content**: Struggles with creative non-fiction and narrative journalism
- **Length**: Optimized for 512-4096 byte inputs; longer texts should be chunked
- **Language**: Primarily trained on English text

## Training Data

The model was trained on a diverse dataset of 85,000 samples (60k train, 15k validation, 10k test) drawn from:

### Fiction Sources (50%)
1. **Cosmopedia Stories** (HuggingFaceTB/cosmopedia)
   - Synthetic fiction stories
   - License: Apache 2.0

2. **Project Gutenberg** (BEE-spoke-data/gutenberg-en-v1-clean)
   - Classic literature
   - License: Public Domain

3. **Reddit WritingPrompts**
   - Community-generated creative writing
   - Via synthetic alternatives

### Non-Fiction Sources (50%)
1. **Cosmopedia Educational** (HuggingFaceTB/cosmopedia)
   - Textbooks, WikiHow, educational blogs
   - License: Apache 2.0

2. **Scientific Papers** (common-pile/arxiv_abstracts)
   - Academic abstracts and introductions
   - License: Various (permissive)

3. **News Articles** (ccdv/cnn_dailymail)
   - CNN and Daily Mail articles
   - License: Apache 2.0

## Training Procedure

### Preprocessing
- Unicode NFC normalization
- Whitespace normalization (max 2 consecutive spaces)
- UTF-8 byte encoding
- Padding/truncation to 4096 bytes

### Training Hyperparameters
- **Optimizer**: AdamW (lr=3e-3, betas=(0.9, 0.98), weight_decay=0.01)
- **Schedule**: Cosine decay with 5% warmup
- **Batch Size**: 32
- **Epochs**: 10
- **Label Smoothing**: 0.05
- **Gradient Clipping**: 1.0
- **Device**: Apple M-series (MPS)

## Evaluation Results

### Validation Set (15,000 samples)
| Metric | Value |
|--------|-------|
| Accuracy | 99.91% |
| F1 Score | 0.9991 |
| ROC AUC | 0.9999 |
| Loss | 0.1194 |

### Detailed Test Results on 18 Curated Samples

The model achieved **100% accuracy** across all categories, but shows interesting confidence patterns:

| Category | Sample Title/Type | True Label | Predicted | Confidence | Analysis |
|----------|------------------|------------|-----------|------------|----------|
| **FICTION - General** | | | | | |
| Literary | Lighthouse Keeper Storm | Fiction | Fiction | **79.8%** | ⚠️ **Lowest confidence** - realistic setting |
| Sci-Fi | Time Travel Bedroom | Fiction | Fiction | 97.2% | βœ… Clear fantastical elements |
| Mystery | Detective Rose Case | Fiction | Fiction | 97.3% | βœ… Strong narrative structure |
| **FICTION - Children's** | | | | | |
| Animal Tale | Benny's Carrot Problem | Fiction | Fiction | 97.1% | βœ… Clear storytelling markers |
| Fantasy | Princess Luna's Paintings | Fiction | Fiction | 97.3% | βœ… Magical elements detected |
| Magical | Tommy's Dream Sprites | Fiction | Fiction | **96.0%** | ⚠️ Lower confidence - whimsical tone |
| **FICTION - Fantasy** | | | | | |
| Epic Fantasy | Shadowgate & Void Lords | Fiction | Fiction | 97.4% | βœ… High fantasy vocabulary |
| Magic System | Moonlight Weaver Elara | Fiction | Fiction | 96.8% | βœ… Complex world-building |
| Urban Fantasy | Dragon Memory Markets | Fiction | Fiction | 97.3% | βœ… Supernatural commerce |
| **NON-FICTION - Academic** | | | | | |
| Biology | Photosynthesis Process | Non-Fiction | Non-Fiction | 97.8% | βœ… Technical terminology |
| Mathematics | Calculus Theorem | Non-Fiction | Non-Fiction | 97.8% | βœ… Mathematical concepts |
| Economics | Market Equilibrium | Non-Fiction | Non-Fiction | 97.9% | βœ… Economic theory |
| **NON-FICTION - News** | | | | | |
| Financial | Federal Reserve Decision | Non-Fiction | Non-Fiction | 97.8% | βœ… Factual reporting style |
| Local Gov | Homeless Crisis Plan | Non-Fiction | Non-Fiction | 97.9% | βœ… Policy announcement format |
| Science | Exoplanet Discovery | Non-Fiction | Non-Fiction | 97.9% | βœ… Research reporting |
| **NON-FICTION - Journals** | | | | | |
| Financial | Wall Street Journal Market | Non-Fiction | Non-Fiction | 97.7% | βœ… Professional journalism |
| Scientific | Nature Research Report | Non-Fiction | Non-Fiction | 97.7% | βœ… Academic publication style |
| Personal | Kyoto Travel Log | Non-Fiction | Non-Fiction | **97.5%** | ⚠️ Slightly lower - personal narrative |

### Key Insights:
- **Weakest Performance**: Realistic literary fiction (79.8% confidence) - the lighthouse story lacks obvious fantastical elements
- **Strongest Performance**: Academic/news content (97.8-97.9% confidence) - clear technical/factual language
- **Edge Cases**: Personal narratives and whimsical children's stories show slightly lower confidence
- **Perfect Accuracy**: 18/18 samples correctly classified despite confidence variations

### Detailed Test Results

#### βœ… All 12 Samples Correctly Classified

**Fiction Samples (3/3):**
1. Lighthouse keeper narrative β†’ Fiction (79.8% conf)
2. Time travel story β†’ Fiction (97.2% conf)
3. Detective mystery β†’ Fiction (97.3% conf)

**Textbook Samples (3/3):**
1. Photosynthesis (Biology) β†’ Non-Fiction (97.8% conf)
2. Fundamental theorem (Calculus) β†’ Non-Fiction (97.8% conf)
3. Market equilibrium (Economics) β†’ Non-Fiction (97.9% conf)

**News Articles (3/3):**
1. Federal Reserve decision β†’ Non-Fiction (97.8% conf)
2. City homeless initiative β†’ Non-Fiction (97.9% conf)
3. Exoplanet discovery β†’ Non-Fiction (97.9% conf)

**Journal Articles (3/3):**
1. Wall Street Journal (Financial) β†’ Non-Fiction (97.7% conf)
2. Nature Scientific Reports β†’ Non-Fiction (97.7% conf)
3. Personal Travel Journal β†’ Non-Fiction (97.5% conf)

## How to Use

### PyTorch

```python
import torch
import numpy as np
from model import TinyByteCNN, preprocess_text

# Load model
model = TinyByteCNN.from_pretrained("username/tinybytecnn-fiction-detector")
model.eval()

# Prepare text
text = "Your text here..."
input_bytes = preprocess_text(text)  # Returns tensor of shape [1, 4096]

# Predict
with torch.no_grad():
    logits = model(input_bytes)
    probability = torch.sigmoid(logits).item()
    
    if probability > 0.5:
        print(f"Non-Fiction (confidence: {probability:.1%})")
    else:
        print(f"Fiction (confidence: {1-probability:.1%})")
```

### Batch Processing

```python
def classify_texts(texts, model, batch_size=32):
    results = []
    for i in range(0, len(texts), batch_size):
        batch = texts[i:i+batch_size]
        inputs = torch.stack([preprocess_text(t) for t in batch])
        
        with torch.no_grad():
            logits = model(inputs)
            probs = torch.sigmoid(logits)
            
        for text, prob in zip(batch, probs):
            results.append({
                'text': text[:100] + '...',
                'class': 'Non-Fiction' if prob > 0.5 else 'Fiction',
                'confidence': prob.item() if prob > 0.5 else 1-prob.item()
            })
    
    return results
```

## Training Infrastructure

- **Hardware**: Apple M-series with 8GB MPS memory limit
- **Training Time**: ~20 minutes
- **Framework**: PyTorch 2.0+

## Environmental Impact

- **Hardware Type**: Apple Silicon M-series
- **Hours used**: 0.33
- **Carbon Emitted**: Minimal (ARM-based efficiency, ~10W average)

## Citation

```bibtex
@model{tinybytecnn-fiction-2024,
  title={TinyByteCNN Fiction vs Non-Fiction Detector},
  author={Mitchell Currie},
  year={2024},
  publisher={HuggingFace},
  url={https://huggingface.co/username/tinybytecnn-fiction-detector}
}
```

## Acknowledgments

This model uses data from:
- HuggingFace Team (Cosmopedia dataset)
- Project Gutenberg
- Common Pile contributors
- CNN/Daily Mail dataset creators

## License

Apache 2.0

## Contact

For questions or issues, please open an issue on the [model repository](https://huggingface.co/username/tinybytecnn-fiction-detector).