Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-Lunarlander-v2.zip +3 -0
- ppo-Lunarlander-v2/_stable_baselines3_version +1 -0
- ppo-Lunarlander-v2/data +95 -0
- ppo-Lunarlander-v2/policy.optimizer.pth +3 -0
- ppo-Lunarlander-v2/policy.pth +3 -0
- ppo-Lunarlander-v2/pytorch_variables.pth +3 -0
- ppo-Lunarlander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 256.70 +/- 16.45
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f44748d8820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f44748d88b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f44748d8940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f44748d89d0>", "_build": "<function ActorCriticPolicy._build at 0x7f44748d8a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f44748d8af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f44748d8b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f44748d8c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f44748d8ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f44748d8d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f44748d8dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f44748d8e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f44749529f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673781558445070797, "learning_rate": 0.0, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOGqzzkDYM+ATWJPY/zRb7kRPk85gsJPAAAAAAAAAAA8/PRvWYxnz9TdGe+ZrIcv7RY870I3cm6AAAAAAAAAACqmWe+fKZqPvvRHj5PH7i+UkMgvT4/LD0AAAAAAAAAAADwobxVkK4/xvqBvqtKwr5XCHG7asH7vQAAAAAAAAAATSxBvdRmoD+gic++Rvs4v3gZrLxOyKu9AAAAAAAAAACARLO98QhWPNbT0j0fnEy+xXlUPDveFL0AAAAAAAAAAFNCST61LBI+MeQSvhlXN750Way6Nd+lvAAAAAAAAAAAIHs5vqEpp7yYYuq6vkSKuX2HGz5O9k86AACAPwAAgD+AgBO+z/gZvKw2gb1Jcwq8CU+IPSAH5jwAAIA/AACAPyA4gT6sdl8/U9RZPr60B7/FHiE+9dh2PQAAAAAAAAAAyi2CPmwwjz7Dk7W9THy9vltKPT2vpCm9AAAAAAAAAAC6oEG+VLDdvJau3DrPjnM590RGPnLZGboAAIA/AACAP7NLOz4PqGg/cAotPucDA7+FNBE+VpNzPAAAAAAAAAAA2qiuPSz0pT7KcY48+76xvg7WJj1ihV+9AAAAAAAAAADzpvU9n+rguyeVLr0btsa9A48pvWBioL4AAIA/AACAP0aGLz47FYO8EIRzOx70o7moWea9xoOdugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVSBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIT1FDhF3Y0CUhpRSlIwBbJRN6AOMAXSUR0CYMKmplz2fdX2UKGgGaAloD0MISPsfYC2ucECUhpRSlGgVS81oFkdAmDIEU9IPLHV9lChoBmgJaA9DCKbvNQTH3WxAlIaUUpRoFUvhaBZHQJgysjJMg2Z1fZQoaAZoCWgPQwgaFw6EJL1wQJSGlFKUaBVL/GgWR0CYM/2gWac7dX2UKGgGaAloD0MIq7NaYE9ucECUhpRSlGgVS9JoFkdAmDRlkxyn1nV9lChoBmgJaA9DCFzlCYSdAm9AlIaUUpRoFUvTaBZHQJg2Czt1IRR1fZQoaAZoCWgPQwi5q1eR0eNwQJSGlFKUaBVNKAFoFkdAmDf6XF98Z3V9lChoBmgJaA9DCOYhUz4EP3FAlIaUUpRoFUvMaBZHQJg4k6kqMFV1fZQoaAZoCWgPQwg+IqZEksZtQJSGlFKUaBVL4GgWR0CYOhTisGPgdX2UKGgGaAloD0MICmr4FlbwYUCUhpRSlGgVTegDaBZHQJg7OxD9fkZ1fZQoaAZoCWgPQwhVE0Tdh8ViQJSGlFKUaBVN6ANoFkdAmDuJu2qkunV9lChoBmgJaA9DCNTWiGCc3HFAlIaUUpRoFUvUaBZHQJg70nLJSzh1fZQoaAZoCWgPQwgfgNQmjvpwQJSGlFKUaBVNcwFoFkdAmDwtF4LThHV9lChoBmgJaA9DCCLfpdSlnnBAlIaUUpRoFU0iAWgWR0CYPEk5p8F7dX2UKGgGaAloD0MInUtxVdkccUCUhpRSlGgVTQABaBZHQJg81WcSXdF1fZQoaAZoCWgPQwgjZvZ5DIxvQJSGlFKUaBVL52gWR0CYPg1UlzEKdX2UKGgGaAloD0MI3C3JAbtmZUCUhpRSlGgVTegDaBZHQJg+wQWepXJ1fZQoaAZoCWgPQwjXwcHeRGxmQJSGlFKUaBVN6ANoFkdAmD7lqFh5PnV9lChoBmgJaA9DCLVOXI7XhWFAlIaUUpRoFU3oA2gWR0CYPvAfuCwsdX2UKGgGaAloD0MIC5jArTsXcUCUhpRSlGgVTQMBaBZHQJhAda5f+jx1fZQoaAZoCWgPQwj0bcFSXUlxQJSGlFKUaBVL2mgWR0CYQJWfbsWwdX2UKGgGaAloD0MIK/htiPFtckCUhpRSlGgVS9RoFkdAmEDHY6GQCHV9lChoBmgJaA9DCGUaTS7GuXFAlIaUUpRoFU1yAWgWR0CYQjMURFqjdX2UKGgGaAloD0MI9dpsrMSJcECUhpRSlGgVS+JoFkdAmELeSW7e23V9lChoBmgJaA9DCIPCoEyje3JAlIaUUpRoFUvmaBZHQJhDOGj9GZx1fZQoaAZoCWgPQwj75v7qMW5wQJSGlFKUaBVL5WgWR0CYQ8JRwZO0dX2UKGgGaAloD0MInBiSk0ntcECUhpRSlGgVS/poFkdAmEUCzXz19XV9lChoBmgJaA9DCM6njlVKlnJAlIaUUpRoFU0QAWgWR0CYRRlZHNHIdX2UKGgGaAloD0MIRdREn88vckCUhpRSlGgVTUABaBZHQJhFHbj94u91fZQoaAZoCWgPQwgoDMo0GppxQJSGlFKUaBVL52gWR0CYRXdIXj2jdX2UKGgGaAloD0MIOul946vZckCUhpRSlGgVTSkBaBZHQJhFmw+t8u11fZQoaAZoCWgPQwgeGavNv59wQJSGlFKUaBVL7GgWR0CYRj49ovi+dX2UKGgGaAloD0MIqmG/J1YfcECUhpRSlGgVS/JoFkdAmEaLmdRR/HV9lChoBmgJaA9DCHwqpz2lAHFAlIaUUpRoFUvbaBZHQJhHJyfcvdx1fZQoaAZoCWgPQwiT/fM04AxyQJSGlFKUaBVL2mgWR0CYR0OIInjRdX2UKGgGaAloD0MIw4AlV/GPcECUhpRSlGgVS+ZoFkdAmEfPuogmq3V9lChoBmgJaA9DCDPd66Q+sXFAlIaUUpRoFU0sAWgWR0CYSE0jC53DdX2UKGgGaAloD0MI7rWg98ZpYECUhpRSlGgVTegDaBZHQJhJ5VsDW9V1fZQoaAZoCWgPQwi/8EqS55puQJSGlFKUaBVLz2gWR0CYSiqzqrzYdX2UKGgGaAloD0MI7dgIxOt1cECUhpRSlGgVTRIBaBZHQJhKnZh8Yyh1fZQoaAZoCWgPQwgR4V8EDQ9xQJSGlFKUaBVL8mgWR0CYTCXD3ueCdX2UKGgGaAloD0MIkNlZ9M5bb0CUhpRSlGgVS/NoFkdAmExEFr2xp3V9lChoBmgJaA9DCCulZ3pJ63BAlIaUUpRoFUv/aBZHQJhMpsnAqNJ1fZQoaAZoCWgPQwh+j/rrlVFxQJSGlFKUaBVNTQFoFkdAmEzsOTaCc3V9lChoBmgJaA9DCDBoIQGjBnBAlIaUUpRoFU0BAWgWR0CYTQ9w3o9tdX2UKGgGaAloD0MIPj+MEB4MbkCUhpRSlGgVS99oFkdAmE0W3WnTAnV9lChoBmgJaA9DCKn5KvmYS3FAlIaUUpRoFUvNaBZHQJhNwqd6LO11fZQoaAZoCWgPQwjpLLMIBX9yQJSGlFKUaBVL+mgWR0CYTnE2YOUddX2UKGgGaAloD0MIWoRiK+gbcUCUhpRSlGgVS+5oFkdAmFIJXyRSxnV9lChoBmgJaA9DCOENaVRgY29AlIaUUpRoFUvcaBZHQJhTkaBI4ER1fZQoaAZoCWgPQwhZ/KawUvxwQJSGlFKUaBVNLQFoFkdAmFOQOz6acHV9lChoBmgJaA9DCCbD8XzGE3FAlIaUUpRoFUvqaBZHQJhVO+36Q/51fZQoaAZoCWgPQwgWGLK61XVtQJSGlFKUaBVL7mgWR0CYVZs+V1OkdX2UKGgGaAloD0MI3/5cNKQdcECUhpRSlGgVS+BoFkdAmFYeieumrXV9lChoBmgJaA9DCC/dJAZB/nBAlIaUUpRoFU0fAWgWR0CYVpSm65G0dX2UKGgGaAloD0MIWoC21WzscECUhpRSlGgVTRQBaBZHQJhWpYOlO451fZQoaAZoCWgPQwh07QvoRYNwQJSGlFKUaBVNCAJoFkdAmFedbs4T9XV9lChoBmgJaA9DCGRccXHUL29AlIaUUpRoFU3MAWgWR0CYV/09hZyNdX2UKGgGaAloD0MIV3xD4XOvcECUhpRSlGgVTTkBaBZHQJhYmDL8rI51fZQoaAZoCWgPQwjEfHkBNlByQJSGlFKUaBVNDgFoFkdAmFjJ7w8W9HV9lChoBmgJaA9DCH2SO2yin3BAlIaUUpRoFUvcaBZHQJhap3mmtQt1fZQoaAZoCWgPQwgLQnkfR3lyQJSGlFKUaBVNFgFoFkdAmF6RQFcIJXV9lChoBmgJaA9DCCdok8On8HJAlIaUUpRoFUvSaBZHQJhesjzI3it1fZQoaAZoCWgPQwjIemr11WRyQJSGlFKUaBVNAgFoFkdAmGBvcvduYXV9lChoBmgJaA9DCHeGqS11+25AlIaUUpRoFUvhaBZHQJhhI5NoJzF1fZQoaAZoCWgPQwjpnnWNFvpuQJSGlFKUaBVL62gWR0CYYS+ajN6gdX2UKGgGaAloD0MIRnwnZj2BbkCUhpRSlGgVTR8BaBZHQJhhSA9V3ll1fZQoaAZoCWgPQwjNy2H3nS1xQJSGlFKUaBVNEQFoFkdAmGG3hn8KonV9lChoBmgJaA9DCO86G/IP53BAlIaUUpRoFUv2aBZHQJhis2tMfzV1fZQoaAZoCWgPQwjBVDNrKSByQJSGlFKUaBVNAgFoFkdAmGNjcqOLi3V9lChoBmgJaA9DCGSWPQlsom9AlIaUUpRoFUvoaBZHQJhkf+DOC5F1fZQoaAZoCWgPQwh/g/bqYxhhQJSGlFKUaBVN6ANoFkdAmGeAhnrY5HV9lChoBmgJaA9DCAyuuaO/83FAlIaUUpRoFUviaBZHQJhogsQNCqp1fZQoaAZoCWgPQwgG2h1SjGpxQJSGlFKUaBVL8mgWR0CYaRvJRwZPdX2UKGgGaAloD0MIkdCWc6mucECUhpRSlGgVS9toFkdAmGqm3Sa3JHV9lChoBmgJaA9DCAtGJXUCWF1AlIaUUpRoFU3oA2gWR0CYas9itq59dX2UKGgGaAloD0MIu0VgrO9zb0CUhpRSlGgVS9xoFkdAmGsdlmOENHV9lChoBmgJaA9DCB0AcVevy29AlIaUUpRoFUv6aBZHQJhrM50bLlp1fZQoaAZoCWgPQwg+srlqHv1tQJSGlFKUaBVL8mgWR0CYa2sDGLk0dX2UKGgGaAloD0MIcCcR4R9ockCUhpRSlGgVS+ZoFkdAmGxHNcGC7XV9lChoBmgJaA9DCNfZkH/mDGVAlIaUUpRoFU3oA2gWR0CYbLmzjWCmdX2UKGgGaAloD0MIAfkSKjgZckCUhpRSlGgVTRkBaBZHQJhsyg/Tspp1fZQoaAZoCWgPQwhxHeOKiyFxQJSGlFKUaBVL9WgWR0CYbktvn8sMdX2UKGgGaAloD0MId9mvO10bYUCUhpRSlGgVTegDaBZHQJhwAcghbGF1fZQoaAZoCWgPQwgfLc4Y5gxxQJSGlFKUaBVNBQFoFkdAmHFcE7nxKHV9lChoBmgJaA9DCPG5E+y//29AlIaUUpRoFUvvaBZHQJhx5BHCoCN1fZQoaAZoCWgPQwjH1ciuNPhuQJSGlFKUaBVL4WgWR0CYcqc1fmcOdX2UKGgGaAloD0MIr3yW50FSb0CUhpRSlGgVTRwBaBZHQJhzK0LMLWt1fZQoaAZoCWgPQwgf1hu1QiNxQJSGlFKUaBVNDAFoFkdAmHRy1y/9HnV9lChoBmgJaA9DCJuPa0PFdm5AlIaUUpRoFUvgaBZHQJh06S1Vo6F1fZQoaAZoCWgPQwhs6GZ/oPtvQJSGlFKUaBVL72gWR0CYdPQSi/O/dX2UKGgGaAloD0MIIorJG+CBcECUhpRSlGgVS+5oFkdAmHVfEGZ/kXV9lChoBmgJaA9DCI/8wcCzrHFAlIaUUpRoFU0sAWgWR0CYdeqQiiZfdX2UKGgGaAloD0MIt7bwvNTIbkCUhpRSlGgVTTIBaBZHQJh2cX+ERJ51fZQoaAZoCWgPQwiSzVXznLtvQJSGlFKUaBVL3GgWR0CYdm+5OJtSdX2UKGgGaAloD0MI+WpHcc6zcECUhpRSlGgVTWkBaBZHQJh4DXtjTa11fZQoaAZoCWgPQwiDGOjaV1pwQJSGlFKUaBVLxGgWR0CYeG97ngYQdX2UKGgGaAloD0MIq1/pfHitckCUhpRSlGgVS/VoFkdAmHjWnfl6q3V9lChoBmgJaA9DCNEhcCQQwXBAlIaUUpRoFUvQaBZHQJh5++nIhhZ1fZQoaAZoCWgPQwgVV5V9F4VxQJSGlFKUaBVL6GgWR0CYeiDBdld1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHjxpcHl0aG9uLWlucHV0LTYtNWFiZTE0Mjk0MjhlPpSMCDxsYW1iZGE+lEsNQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-Lunarlander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95ce9a251fa6028df5ce2a4ce587cb1001b18a2f740b375237cc5e9c9a230a73
|
3 |
+
size 147144
|
ppo-Lunarlander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-Lunarlander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f44748d8820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f44748d88b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f44748d8940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f44748d89d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f44748d8a60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f44748d8af0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f44748d8b80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f44748d8c10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f44748d8ca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f44748d8d30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f44748d8dc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f44748d8e50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f44749529f0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673781558445070797,
|
52 |
+
"learning_rate": 0.0,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOGqzzkDYM+ATWJPY/zRb7kRPk85gsJPAAAAAAAAAAA8/PRvWYxnz9TdGe+ZrIcv7RY870I3cm6AAAAAAAAAACqmWe+fKZqPvvRHj5PH7i+UkMgvT4/LD0AAAAAAAAAAADwobxVkK4/xvqBvqtKwr5XCHG7asH7vQAAAAAAAAAATSxBvdRmoD+gic++Rvs4v3gZrLxOyKu9AAAAAAAAAACARLO98QhWPNbT0j0fnEy+xXlUPDveFL0AAAAAAAAAAFNCST61LBI+MeQSvhlXN750Way6Nd+lvAAAAAAAAAAAIHs5vqEpp7yYYuq6vkSKuX2HGz5O9k86AACAPwAAgD+AgBO+z/gZvKw2gb1Jcwq8CU+IPSAH5jwAAIA/AACAPyA4gT6sdl8/U9RZPr60B7/FHiE+9dh2PQAAAAAAAAAAyi2CPmwwjz7Dk7W9THy9vltKPT2vpCm9AAAAAAAAAAC6oEG+VLDdvJau3DrPjnM590RGPnLZGboAAIA/AACAP7NLOz4PqGg/cAotPucDA7+FNBE+VpNzPAAAAAAAAAAA2qiuPSz0pT7KcY48+76xvg7WJj1ihV+9AAAAAAAAAADzpvU9n+rguyeVLr0btsa9A48pvWBioL4AAIA/AACAP0aGLz47FYO8EIRzOx70o7moWea9xoOdugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVSBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIT1FDhF3Y0CUhpRSlIwBbJRN6AOMAXSUR0CYMKmplz2fdX2UKGgGaAloD0MISPsfYC2ucECUhpRSlGgVS81oFkdAmDIEU9IPLHV9lChoBmgJaA9DCKbvNQTH3WxAlIaUUpRoFUvhaBZHQJgysjJMg2Z1fZQoaAZoCWgPQwgaFw6EJL1wQJSGlFKUaBVL/GgWR0CYM/2gWac7dX2UKGgGaAloD0MIq7NaYE9ucECUhpRSlGgVS9JoFkdAmDRlkxyn1nV9lChoBmgJaA9DCFzlCYSdAm9AlIaUUpRoFUvTaBZHQJg2Czt1IRR1fZQoaAZoCWgPQwi5q1eR0eNwQJSGlFKUaBVNKAFoFkdAmDf6XF98Z3V9lChoBmgJaA9DCOYhUz4EP3FAlIaUUpRoFUvMaBZHQJg4k6kqMFV1fZQoaAZoCWgPQwg+IqZEksZtQJSGlFKUaBVL4GgWR0CYOhTisGPgdX2UKGgGaAloD0MICmr4FlbwYUCUhpRSlGgVTegDaBZHQJg7OxD9fkZ1fZQoaAZoCWgPQwhVE0Tdh8ViQJSGlFKUaBVN6ANoFkdAmDuJu2qkunV9lChoBmgJaA9DCNTWiGCc3HFAlIaUUpRoFUvUaBZHQJg70nLJSzh1fZQoaAZoCWgPQwgfgNQmjvpwQJSGlFKUaBVNcwFoFkdAmDwtF4LThHV9lChoBmgJaA9DCCLfpdSlnnBAlIaUUpRoFU0iAWgWR0CYPEk5p8F7dX2UKGgGaAloD0MInUtxVdkccUCUhpRSlGgVTQABaBZHQJg81WcSXdF1fZQoaAZoCWgPQwgjZvZ5DIxvQJSGlFKUaBVL52gWR0CYPg1UlzEKdX2UKGgGaAloD0MI3C3JAbtmZUCUhpRSlGgVTegDaBZHQJg+wQWepXJ1fZQoaAZoCWgPQwjXwcHeRGxmQJSGlFKUaBVN6ANoFkdAmD7lqFh5PnV9lChoBmgJaA9DCLVOXI7XhWFAlIaUUpRoFU3oA2gWR0CYPvAfuCwsdX2UKGgGaAloD0MIC5jArTsXcUCUhpRSlGgVTQMBaBZHQJhAda5f+jx1fZQoaAZoCWgPQwj0bcFSXUlxQJSGlFKUaBVL2mgWR0CYQJWfbsWwdX2UKGgGaAloD0MIK/htiPFtckCUhpRSlGgVS9RoFkdAmEDHY6GQCHV9lChoBmgJaA9DCGUaTS7GuXFAlIaUUpRoFU1yAWgWR0CYQjMURFqjdX2UKGgGaAloD0MI9dpsrMSJcECUhpRSlGgVS+JoFkdAmELeSW7e23V9lChoBmgJaA9DCIPCoEyje3JAlIaUUpRoFUvmaBZHQJhDOGj9GZx1fZQoaAZoCWgPQwj75v7qMW5wQJSGlFKUaBVL5WgWR0CYQ8JRwZO0dX2UKGgGaAloD0MInBiSk0ntcECUhpRSlGgVS/poFkdAmEUCzXz19XV9lChoBmgJaA9DCM6njlVKlnJAlIaUUpRoFU0QAWgWR0CYRRlZHNHIdX2UKGgGaAloD0MIRdREn88vckCUhpRSlGgVTUABaBZHQJhFHbj94u91fZQoaAZoCWgPQwgoDMo0GppxQJSGlFKUaBVL52gWR0CYRXdIXj2jdX2UKGgGaAloD0MIOul946vZckCUhpRSlGgVTSkBaBZHQJhFmw+t8u11fZQoaAZoCWgPQwgeGavNv59wQJSGlFKUaBVL7GgWR0CYRj49ovi+dX2UKGgGaAloD0MIqmG/J1YfcECUhpRSlGgVS/JoFkdAmEaLmdRR/HV9lChoBmgJaA9DCHwqpz2lAHFAlIaUUpRoFUvbaBZHQJhHJyfcvdx1fZQoaAZoCWgPQwiT/fM04AxyQJSGlFKUaBVL2mgWR0CYR0OIInjRdX2UKGgGaAloD0MIw4AlV/GPcECUhpRSlGgVS+ZoFkdAmEfPuogmq3V9lChoBmgJaA9DCDPd66Q+sXFAlIaUUpRoFU0sAWgWR0CYSE0jC53DdX2UKGgGaAloD0MI7rWg98ZpYECUhpRSlGgVTegDaBZHQJhJ5VsDW9V1fZQoaAZoCWgPQwi/8EqS55puQJSGlFKUaBVLz2gWR0CYSiqzqrzYdX2UKGgGaAloD0MI7dgIxOt1cECUhpRSlGgVTRIBaBZHQJhKnZh8Yyh1fZQoaAZoCWgPQwgR4V8EDQ9xQJSGlFKUaBVL8mgWR0CYTCXD3ueCdX2UKGgGaAloD0MIkNlZ9M5bb0CUhpRSlGgVS/NoFkdAmExEFr2xp3V9lChoBmgJaA9DCCulZ3pJ63BAlIaUUpRoFUv/aBZHQJhMpsnAqNJ1fZQoaAZoCWgPQwh+j/rrlVFxQJSGlFKUaBVNTQFoFkdAmEzsOTaCc3V9lChoBmgJaA9DCDBoIQGjBnBAlIaUUpRoFU0BAWgWR0CYTQ9w3o9tdX2UKGgGaAloD0MIPj+MEB4MbkCUhpRSlGgVS99oFkdAmE0W3WnTAnV9lChoBmgJaA9DCKn5KvmYS3FAlIaUUpRoFUvNaBZHQJhNwqd6LO11fZQoaAZoCWgPQwjpLLMIBX9yQJSGlFKUaBVL+mgWR0CYTnE2YOUddX2UKGgGaAloD0MIWoRiK+gbcUCUhpRSlGgVS+5oFkdAmFIJXyRSxnV9lChoBmgJaA9DCOENaVRgY29AlIaUUpRoFUvcaBZHQJhTkaBI4ER1fZQoaAZoCWgPQwhZ/KawUvxwQJSGlFKUaBVNLQFoFkdAmFOQOz6acHV9lChoBmgJaA9DCCbD8XzGE3FAlIaUUpRoFUvqaBZHQJhVO+36Q/51fZQoaAZoCWgPQwgWGLK61XVtQJSGlFKUaBVL7mgWR0CYVZs+V1OkdX2UKGgGaAloD0MI3/5cNKQdcECUhpRSlGgVS+BoFkdAmFYeieumrXV9lChoBmgJaA9DCC/dJAZB/nBAlIaUUpRoFU0fAWgWR0CYVpSm65G0dX2UKGgGaAloD0MIWoC21WzscECUhpRSlGgVTRQBaBZHQJhWpYOlO451fZQoaAZoCWgPQwh07QvoRYNwQJSGlFKUaBVNCAJoFkdAmFedbs4T9XV9lChoBmgJaA9DCGRccXHUL29AlIaUUpRoFU3MAWgWR0CYV/09hZyNdX2UKGgGaAloD0MIV3xD4XOvcECUhpRSlGgVTTkBaBZHQJhYmDL8rI51fZQoaAZoCWgPQwjEfHkBNlByQJSGlFKUaBVNDgFoFkdAmFjJ7w8W9HV9lChoBmgJaA9DCH2SO2yin3BAlIaUUpRoFUvcaBZHQJhap3mmtQt1fZQoaAZoCWgPQwgLQnkfR3lyQJSGlFKUaBVNFgFoFkdAmF6RQFcIJXV9lChoBmgJaA9DCCdok8On8HJAlIaUUpRoFUvSaBZHQJhesjzI3it1fZQoaAZoCWgPQwjIemr11WRyQJSGlFKUaBVNAgFoFkdAmGBvcvduYXV9lChoBmgJaA9DCHeGqS11+25AlIaUUpRoFUvhaBZHQJhhI5NoJzF1fZQoaAZoCWgPQwjpnnWNFvpuQJSGlFKUaBVL62gWR0CYYS+ajN6gdX2UKGgGaAloD0MIRnwnZj2BbkCUhpRSlGgVTR8BaBZHQJhhSA9V3ll1fZQoaAZoCWgPQwjNy2H3nS1xQJSGlFKUaBVNEQFoFkdAmGG3hn8KonV9lChoBmgJaA9DCO86G/IP53BAlIaUUpRoFUv2aBZHQJhis2tMfzV1fZQoaAZoCWgPQwjBVDNrKSByQJSGlFKUaBVNAgFoFkdAmGNjcqOLi3V9lChoBmgJaA9DCGSWPQlsom9AlIaUUpRoFUvoaBZHQJhkf+DOC5F1fZQoaAZoCWgPQwh/g/bqYxhhQJSGlFKUaBVN6ANoFkdAmGeAhnrY5HV9lChoBmgJaA9DCAyuuaO/83FAlIaUUpRoFUviaBZHQJhogsQNCqp1fZQoaAZoCWgPQwgG2h1SjGpxQJSGlFKUaBVL8mgWR0CYaRvJRwZPdX2UKGgGaAloD0MIkdCWc6mucECUhpRSlGgVS9toFkdAmGqm3Sa3JHV9lChoBmgJaA9DCAtGJXUCWF1AlIaUUpRoFU3oA2gWR0CYas9itq59dX2UKGgGaAloD0MIu0VgrO9zb0CUhpRSlGgVS9xoFkdAmGsdlmOENHV9lChoBmgJaA9DCB0AcVevy29AlIaUUpRoFUv6aBZHQJhrM50bLlp1fZQoaAZoCWgPQwg+srlqHv1tQJSGlFKUaBVL8mgWR0CYa2sDGLk0dX2UKGgGaAloD0MIcCcR4R9ockCUhpRSlGgVS+ZoFkdAmGxHNcGC7XV9lChoBmgJaA9DCNfZkH/mDGVAlIaUUpRoFU3oA2gWR0CYbLmzjWCmdX2UKGgGaAloD0MIAfkSKjgZckCUhpRSlGgVTRkBaBZHQJhsyg/Tspp1fZQoaAZoCWgPQwhxHeOKiyFxQJSGlFKUaBVL9WgWR0CYbktvn8sMdX2UKGgGaAloD0MId9mvO10bYUCUhpRSlGgVTegDaBZHQJhwAcghbGF1fZQoaAZoCWgPQwgfLc4Y5gxxQJSGlFKUaBVNBQFoFkdAmHFcE7nxKHV9lChoBmgJaA9DCPG5E+y//29AlIaUUpRoFUvvaBZHQJhx5BHCoCN1fZQoaAZoCWgPQwjH1ciuNPhuQJSGlFKUaBVL4WgWR0CYcqc1fmcOdX2UKGgGaAloD0MIr3yW50FSb0CUhpRSlGgVTRwBaBZHQJhzK0LMLWt1fZQoaAZoCWgPQwgf1hu1QiNxQJSGlFKUaBVNDAFoFkdAmHRy1y/9HnV9lChoBmgJaA9DCJuPa0PFdm5AlIaUUpRoFUvgaBZHQJh06S1Vo6F1fZQoaAZoCWgPQwhs6GZ/oPtvQJSGlFKUaBVL72gWR0CYdPQSi/O/dX2UKGgGaAloD0MIIorJG+CBcECUhpRSlGgVS+5oFkdAmHVfEGZ/kXV9lChoBmgJaA9DCI/8wcCzrHFAlIaUUpRoFU0sAWgWR0CYdeqQiiZfdX2UKGgGaAloD0MIt7bwvNTIbkCUhpRSlGgVTTIBaBZHQJh2cX+ERJ51fZQoaAZoCWgPQwiSzVXznLtvQJSGlFKUaBVL3GgWR0CYdm+5OJtSdX2UKGgGaAloD0MI+WpHcc6zcECUhpRSlGgVTWkBaBZHQJh4DXtjTa11fZQoaAZoCWgPQwiDGOjaV1pwQJSGlFKUaBVLxGgWR0CYeG97ngYQdX2UKGgGaAloD0MIq1/pfHitckCUhpRSlGgVS/VoFkdAmHjWnfl6q3V9lChoBmgJaA9DCNEhcCQQwXBAlIaUUpRoFUvQaBZHQJh5++nIhhZ1fZQoaAZoCWgPQwgVV5V9F4VxQJSGlFKUaBVL6GgWR0CYeiDBdld1dWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHjxpcHl0aG9uLWlucHV0LTYtNWFiZTE0Mjk0MjhlPpSMCDxsYW1iZGE+lEsNQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-Lunarlander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49e5a9de88a2781dedf21d75f16e181c5d4aeee095dff2f3d73cd959f9187d4d
|
3 |
+
size 88057
|
ppo-Lunarlander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:203bc1661dd4011cd627670420f11fbc5e6fef7ab4fe4677a0834f3be5cdc421
|
3 |
+
size 43393
|
ppo-Lunarlander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Lunarlander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (210 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.6961642409378, "std_reward": 16.446325788786517, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T21:39:13.990378"}
|