MilaWang commited on
Commit
d7cf070
·
verified ·
1 Parent(s): 50c8637

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/README.md +202 -0
  2. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/adapter_config.json +29 -0
  3. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/adapter_model.safetensors +3 -0
  4. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/README.md +202 -0
  5. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/adapter_config.json +29 -0
  6. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/adapter_model.safetensors +3 -0
  7. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/optimizer.pt +3 -0
  8. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/rng_state.pth +3 -0
  9. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/scheduler.pt +3 -0
  10. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/special_tokens_map.json +24 -0
  11. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/tokenizer.json +0 -0
  12. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/tokenizer.model +3 -0
  13. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/tokenizer_config.json +0 -0
  14. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/trainer_state.json +779 -0
  15. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/training_args.bin +3 -0
  16. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/README.md +202 -0
  17. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/adapter_config.json +29 -0
  18. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/adapter_model.safetensors +3 -0
  19. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/optimizer.pt +3 -0
  20. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/rng_state.pth +3 -0
  21. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/scheduler.pt +3 -0
  22. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/special_tokens_map.json +24 -0
  23. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/tokenizer.json +0 -0
  24. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/tokenizer.model +3 -0
  25. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/tokenizer_config.json +0 -0
  26. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/trainer_state.json +969 -0
  27. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/training_args.bin +3 -0
  28. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/README.md +202 -0
  29. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/adapter_config.json +29 -0
  30. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/adapter_model.safetensors +3 -0
  31. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/optimizer.pt +3 -0
  32. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/rng_state.pth +3 -0
  33. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/scheduler.pt +3 -0
  34. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/special_tokens_map.json +24 -0
  35. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/tokenizer.json +0 -0
  36. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/tokenizer.model +3 -0
  37. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/tokenizer_config.json +0 -0
  38. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/trainer_state.json +1152 -0
  39. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/training_args.bin +3 -0
  40. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/README.md +202 -0
  41. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/adapter_config.json +29 -0
  42. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/adapter_model.safetensors +3 -0
  43. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/optimizer.pt +3 -0
  44. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/rng_state.pth +3 -0
  45. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/scheduler.pt +3 -0
  46. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/special_tokens_map.json +24 -0
  47. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/tokenizer.json +0 -0
  48. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/tokenizer.model +3 -0
  49. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/tokenizer_config.json +0 -0
  50. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/trainer_state.json +1342 -0
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b7d36cc3fa8251baf43d682f58cb1e30535f2bcec0330202bb0806e5147aff7
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa7ea09b9331de78f87cffe1c7fdfb3888b5a005db45eca311e78434210e8daa
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3823df15f9c684dfcdf97b27d420f5fe57c141f644bd86bb6446cc277a95bafe
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c17c40a313565f37a91317d6ca1a47621cb8f3350ac9637bd368ea9521c3c7e2
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:660ab54d0c298f22afda4a2655936aecd813daf93f4fc040b7d285b3684be4c0
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/trainer_state.json ADDED
@@ -0,0 +1,779 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.4771515429019928,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026",
4
+ "epoch": 4.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1026,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03898635477582846,
13
+ "grad_norm": 1.1630783081054688,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7486,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.07797270955165692,
20
+ "grad_norm": 1.3587305545806885,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.1818,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.11695906432748537,
27
+ "grad_norm": 0.9663119912147522,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.0017,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.15594541910331383,
34
+ "grad_norm": 1.0442273616790771,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.945,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.1949317738791423,
41
+ "grad_norm": 0.9459889531135559,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.7863,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.23391812865497075,
48
+ "grad_norm": 0.9623780846595764,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7287,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.2729044834307992,
55
+ "grad_norm": 0.8872420787811279,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6969,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.31189083820662766,
62
+ "grad_norm": 0.7173621654510498,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6828,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.3508771929824561,
69
+ "grad_norm": 0.7221336364746094,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.6651,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.3898635477582846,
76
+ "grad_norm": 0.7142595648765564,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.621,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.42884990253411304,
83
+ "grad_norm": 0.6138886213302612,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6601,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.4678362573099415,
90
+ "grad_norm": 0.8129922151565552,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6182,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.50682261208577,
97
+ "grad_norm": 0.8280786275863647,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6426,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.5458089668615984,
104
+ "grad_norm": 0.5899930596351624,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6125,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.5847953216374269,
111
+ "grad_norm": 0.7101946473121643,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.6444,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.6237816764132553,
118
+ "grad_norm": 0.6261710524559021,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6374,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.6627680311890838,
125
+ "grad_norm": 0.7684038877487183,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.594,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.7017543859649122,
132
+ "grad_norm": 0.581214189529419,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.5992,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.7407407407407407,
139
+ "grad_norm": 0.5658173561096191,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.6179,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.7797270955165692,
146
+ "grad_norm": 0.7603134512901306,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.6417,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.8187134502923976,
153
+ "grad_norm": 0.5359350442886353,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.5906,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.8576998050682261,
160
+ "grad_norm": 0.7978444695472717,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.6125,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.8966861598440545,
167
+ "grad_norm": 0.5791468620300293,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.5984,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.935672514619883,
174
+ "grad_norm": 0.635198712348938,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6007,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.9746588693957114,
181
+ "grad_norm": 0.5510166883468628,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.5912,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.9980506822612085,
188
+ "eval_loss": 0.5850377678871155,
189
+ "eval_runtime": 72.8118,
190
+ "eval_samples_per_second": 5.013,
191
+ "eval_steps_per_second": 0.632,
192
+ "step": 256
193
+ },
194
+ {
195
+ "epoch": 1.01364522417154,
196
+ "grad_norm": 0.5623628497123718,
197
+ "learning_rate": 0.0002,
198
+ "loss": 0.575,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.0526315789473684,
203
+ "grad_norm": 0.6872021555900574,
204
+ "learning_rate": 0.0002,
205
+ "loss": 0.5498,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.0916179337231968,
210
+ "grad_norm": 0.5543047785758972,
211
+ "learning_rate": 0.0002,
212
+ "loss": 0.5373,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.1306042884990253,
217
+ "grad_norm": 0.498542845249176,
218
+ "learning_rate": 0.0002,
219
+ "loss": 0.5272,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.1695906432748537,
224
+ "grad_norm": 0.5940739512443542,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.5528,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 1.2085769980506822,
231
+ "grad_norm": 0.5854314565658569,
232
+ "learning_rate": 0.0002,
233
+ "loss": 0.5308,
234
+ "step": 310
235
+ },
236
+ {
237
+ "epoch": 1.2475633528265107,
238
+ "grad_norm": 0.5293670892715454,
239
+ "learning_rate": 0.0002,
240
+ "loss": 0.5452,
241
+ "step": 320
242
+ },
243
+ {
244
+ "epoch": 1.286549707602339,
245
+ "grad_norm": 0.5736058950424194,
246
+ "learning_rate": 0.0002,
247
+ "loss": 0.5451,
248
+ "step": 330
249
+ },
250
+ {
251
+ "epoch": 1.3255360623781676,
252
+ "grad_norm": 0.7912607789039612,
253
+ "learning_rate": 0.0002,
254
+ "loss": 0.5344,
255
+ "step": 340
256
+ },
257
+ {
258
+ "epoch": 1.364522417153996,
259
+ "grad_norm": 0.781843364238739,
260
+ "learning_rate": 0.0002,
261
+ "loss": 0.531,
262
+ "step": 350
263
+ },
264
+ {
265
+ "epoch": 1.4035087719298245,
266
+ "grad_norm": 0.7365643978118896,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.5396,
269
+ "step": 360
270
+ },
271
+ {
272
+ "epoch": 1.442495126705653,
273
+ "grad_norm": 0.5565363764762878,
274
+ "learning_rate": 0.0002,
275
+ "loss": 0.5363,
276
+ "step": 370
277
+ },
278
+ {
279
+ "epoch": 1.4814814814814814,
280
+ "grad_norm": 0.5427217483520508,
281
+ "learning_rate": 0.0002,
282
+ "loss": 0.5235,
283
+ "step": 380
284
+ },
285
+ {
286
+ "epoch": 1.52046783625731,
287
+ "grad_norm": 0.7150877118110657,
288
+ "learning_rate": 0.0002,
289
+ "loss": 0.5173,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 1.5594541910331383,
294
+ "grad_norm": 0.5850045084953308,
295
+ "learning_rate": 0.0002,
296
+ "loss": 0.5394,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.598440545808967,
301
+ "grad_norm": 0.5376710295677185,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.5045,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.6374269005847952,
308
+ "grad_norm": 0.6234501004219055,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.5444,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.676413255360624,
315
+ "grad_norm": 0.7774652242660522,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.5186,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.7153996101364521,
322
+ "grad_norm": 0.6821911334991455,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.5168,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 1.7543859649122808,
329
+ "grad_norm": 0.7210469841957092,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.5118,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 1.793372319688109,
336
+ "grad_norm": 0.6935250759124756,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.5499,
339
+ "step": 460
340
+ },
341
+ {
342
+ "epoch": 1.8323586744639377,
343
+ "grad_norm": 0.6940227150917053,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.516,
346
+ "step": 470
347
+ },
348
+ {
349
+ "epoch": 1.871345029239766,
350
+ "grad_norm": 0.6918772459030151,
351
+ "learning_rate": 0.0002,
352
+ "loss": 0.4839,
353
+ "step": 480
354
+ },
355
+ {
356
+ "epoch": 1.9103313840155947,
357
+ "grad_norm": 0.5278885364532471,
358
+ "learning_rate": 0.0002,
359
+ "loss": 0.4906,
360
+ "step": 490
361
+ },
362
+ {
363
+ "epoch": 1.949317738791423,
364
+ "grad_norm": 0.655097246170044,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.4954,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 1.9883040935672516,
371
+ "grad_norm": 0.728690505027771,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.4981,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 2.0,
378
+ "eval_loss": 0.5312528610229492,
379
+ "eval_runtime": 67.5284,
380
+ "eval_samples_per_second": 5.405,
381
+ "eval_steps_per_second": 0.681,
382
+ "step": 513
383
+ },
384
+ {
385
+ "epoch": 2.02729044834308,
386
+ "grad_norm": 0.7993459105491638,
387
+ "learning_rate": 0.0002,
388
+ "loss": 0.473,
389
+ "step": 520
390
+ },
391
+ {
392
+ "epoch": 2.0662768031189085,
393
+ "grad_norm": 0.6997111439704895,
394
+ "learning_rate": 0.0002,
395
+ "loss": 0.4514,
396
+ "step": 530
397
+ },
398
+ {
399
+ "epoch": 2.1052631578947367,
400
+ "grad_norm": 0.9680729508399963,
401
+ "learning_rate": 0.0002,
402
+ "loss": 0.4537,
403
+ "step": 540
404
+ },
405
+ {
406
+ "epoch": 2.1442495126705654,
407
+ "grad_norm": 0.67018723487854,
408
+ "learning_rate": 0.0002,
409
+ "loss": 0.4278,
410
+ "step": 550
411
+ },
412
+ {
413
+ "epoch": 2.1832358674463936,
414
+ "grad_norm": 0.7760737538337708,
415
+ "learning_rate": 0.0002,
416
+ "loss": 0.4424,
417
+ "step": 560
418
+ },
419
+ {
420
+ "epoch": 2.2222222222222223,
421
+ "grad_norm": 1.9475411176681519,
422
+ "learning_rate": 0.0002,
423
+ "loss": 0.4554,
424
+ "step": 570
425
+ },
426
+ {
427
+ "epoch": 2.2612085769980506,
428
+ "grad_norm": 0.810126006603241,
429
+ "learning_rate": 0.0002,
430
+ "loss": 0.4321,
431
+ "step": 580
432
+ },
433
+ {
434
+ "epoch": 2.3001949317738792,
435
+ "grad_norm": 0.8697490692138672,
436
+ "learning_rate": 0.0002,
437
+ "loss": 0.4413,
438
+ "step": 590
439
+ },
440
+ {
441
+ "epoch": 2.3391812865497075,
442
+ "grad_norm": 0.5910632014274597,
443
+ "learning_rate": 0.0002,
444
+ "loss": 0.445,
445
+ "step": 600
446
+ },
447
+ {
448
+ "epoch": 2.378167641325536,
449
+ "grad_norm": 1.0113483667373657,
450
+ "learning_rate": 0.0002,
451
+ "loss": 0.43,
452
+ "step": 610
453
+ },
454
+ {
455
+ "epoch": 2.4171539961013644,
456
+ "grad_norm": 0.5548872351646423,
457
+ "learning_rate": 0.0002,
458
+ "loss": 0.4491,
459
+ "step": 620
460
+ },
461
+ {
462
+ "epoch": 2.456140350877193,
463
+ "grad_norm": 0.7542755603790283,
464
+ "learning_rate": 0.0002,
465
+ "loss": 0.4654,
466
+ "step": 630
467
+ },
468
+ {
469
+ "epoch": 2.4951267056530213,
470
+ "grad_norm": 0.6450021862983704,
471
+ "learning_rate": 0.0002,
472
+ "loss": 0.4269,
473
+ "step": 640
474
+ },
475
+ {
476
+ "epoch": 2.53411306042885,
477
+ "grad_norm": 0.8181225657463074,
478
+ "learning_rate": 0.0002,
479
+ "loss": 0.4321,
480
+ "step": 650
481
+ },
482
+ {
483
+ "epoch": 2.573099415204678,
484
+ "grad_norm": 0.8882361650466919,
485
+ "learning_rate": 0.0002,
486
+ "loss": 0.4476,
487
+ "step": 660
488
+ },
489
+ {
490
+ "epoch": 2.612085769980507,
491
+ "grad_norm": 0.9545704126358032,
492
+ "learning_rate": 0.0002,
493
+ "loss": 0.4398,
494
+ "step": 670
495
+ },
496
+ {
497
+ "epoch": 2.651072124756335,
498
+ "grad_norm": 0.633364200592041,
499
+ "learning_rate": 0.0002,
500
+ "loss": 0.4302,
501
+ "step": 680
502
+ },
503
+ {
504
+ "epoch": 2.690058479532164,
505
+ "grad_norm": 0.6909534931182861,
506
+ "learning_rate": 0.0002,
507
+ "loss": 0.4265,
508
+ "step": 690
509
+ },
510
+ {
511
+ "epoch": 2.729044834307992,
512
+ "grad_norm": 0.7342118620872498,
513
+ "learning_rate": 0.0002,
514
+ "loss": 0.4508,
515
+ "step": 700
516
+ },
517
+ {
518
+ "epoch": 2.7680311890838207,
519
+ "grad_norm": 0.6567948460578918,
520
+ "learning_rate": 0.0002,
521
+ "loss": 0.4495,
522
+ "step": 710
523
+ },
524
+ {
525
+ "epoch": 2.807017543859649,
526
+ "grad_norm": 0.81608647108078,
527
+ "learning_rate": 0.0002,
528
+ "loss": 0.4521,
529
+ "step": 720
530
+ },
531
+ {
532
+ "epoch": 2.8460038986354776,
533
+ "grad_norm": 0.7075870633125305,
534
+ "learning_rate": 0.0002,
535
+ "loss": 0.4584,
536
+ "step": 730
537
+ },
538
+ {
539
+ "epoch": 2.884990253411306,
540
+ "grad_norm": 0.5666054487228394,
541
+ "learning_rate": 0.0002,
542
+ "loss": 0.4332,
543
+ "step": 740
544
+ },
545
+ {
546
+ "epoch": 2.9239766081871346,
547
+ "grad_norm": 0.5457495450973511,
548
+ "learning_rate": 0.0002,
549
+ "loss": 0.423,
550
+ "step": 750
551
+ },
552
+ {
553
+ "epoch": 2.962962962962963,
554
+ "grad_norm": 0.8959799408912659,
555
+ "learning_rate": 0.0002,
556
+ "loss": 0.4136,
557
+ "step": 760
558
+ },
559
+ {
560
+ "epoch": 2.9980506822612085,
561
+ "eval_loss": 0.49315401911735535,
562
+ "eval_runtime": 67.9039,
563
+ "eval_samples_per_second": 5.375,
564
+ "eval_steps_per_second": 0.677,
565
+ "step": 769
566
+ },
567
+ {
568
+ "epoch": 3.0019493177387915,
569
+ "grad_norm": 0.8162972927093506,
570
+ "learning_rate": 0.0002,
571
+ "loss": 0.4332,
572
+ "step": 770
573
+ },
574
+ {
575
+ "epoch": 3.0409356725146197,
576
+ "grad_norm": 0.8814733028411865,
577
+ "learning_rate": 0.0002,
578
+ "loss": 0.3778,
579
+ "step": 780
580
+ },
581
+ {
582
+ "epoch": 3.0799220272904484,
583
+ "grad_norm": 0.6659106612205505,
584
+ "learning_rate": 0.0002,
585
+ "loss": 0.3775,
586
+ "step": 790
587
+ },
588
+ {
589
+ "epoch": 3.1189083820662766,
590
+ "grad_norm": 0.7013096213340759,
591
+ "learning_rate": 0.0002,
592
+ "loss": 0.3718,
593
+ "step": 800
594
+ },
595
+ {
596
+ "epoch": 3.1578947368421053,
597
+ "grad_norm": 0.5946340560913086,
598
+ "learning_rate": 0.0002,
599
+ "loss": 0.3799,
600
+ "step": 810
601
+ },
602
+ {
603
+ "epoch": 3.1968810916179335,
604
+ "grad_norm": 1.1263338327407837,
605
+ "learning_rate": 0.0002,
606
+ "loss": 0.3752,
607
+ "step": 820
608
+ },
609
+ {
610
+ "epoch": 3.2358674463937622,
611
+ "grad_norm": 1.028369426727295,
612
+ "learning_rate": 0.0002,
613
+ "loss": 0.3819,
614
+ "step": 830
615
+ },
616
+ {
617
+ "epoch": 3.2748538011695905,
618
+ "grad_norm": 1.1113781929016113,
619
+ "learning_rate": 0.0002,
620
+ "loss": 0.3816,
621
+ "step": 840
622
+ },
623
+ {
624
+ "epoch": 3.313840155945419,
625
+ "grad_norm": 0.7735888361930847,
626
+ "learning_rate": 0.0002,
627
+ "loss": 0.383,
628
+ "step": 850
629
+ },
630
+ {
631
+ "epoch": 3.3528265107212474,
632
+ "grad_norm": 0.8967649936676025,
633
+ "learning_rate": 0.0002,
634
+ "loss": 0.3703,
635
+ "step": 860
636
+ },
637
+ {
638
+ "epoch": 3.391812865497076,
639
+ "grad_norm": 0.7354698777198792,
640
+ "learning_rate": 0.0002,
641
+ "loss": 0.3884,
642
+ "step": 870
643
+ },
644
+ {
645
+ "epoch": 3.4307992202729043,
646
+ "grad_norm": 0.8721298575401306,
647
+ "learning_rate": 0.0002,
648
+ "loss": 0.3762,
649
+ "step": 880
650
+ },
651
+ {
652
+ "epoch": 3.469785575048733,
653
+ "grad_norm": 0.7276861667633057,
654
+ "learning_rate": 0.0002,
655
+ "loss": 0.3758,
656
+ "step": 890
657
+ },
658
+ {
659
+ "epoch": 3.5087719298245617,
660
+ "grad_norm": 0.8296075463294983,
661
+ "learning_rate": 0.0002,
662
+ "loss": 0.3866,
663
+ "step": 900
664
+ },
665
+ {
666
+ "epoch": 3.54775828460039,
667
+ "grad_norm": 0.8955655097961426,
668
+ "learning_rate": 0.0002,
669
+ "loss": 0.3909,
670
+ "step": 910
671
+ },
672
+ {
673
+ "epoch": 3.586744639376218,
674
+ "grad_norm": 0.8008049130439758,
675
+ "learning_rate": 0.0002,
676
+ "loss": 0.3882,
677
+ "step": 920
678
+ },
679
+ {
680
+ "epoch": 3.625730994152047,
681
+ "grad_norm": 0.7791480422019958,
682
+ "learning_rate": 0.0002,
683
+ "loss": 0.3837,
684
+ "step": 930
685
+ },
686
+ {
687
+ "epoch": 3.6647173489278755,
688
+ "grad_norm": 0.8780500292778015,
689
+ "learning_rate": 0.0002,
690
+ "loss": 0.3877,
691
+ "step": 940
692
+ },
693
+ {
694
+ "epoch": 3.7037037037037037,
695
+ "grad_norm": 0.8411193490028381,
696
+ "learning_rate": 0.0002,
697
+ "loss": 0.3852,
698
+ "step": 950
699
+ },
700
+ {
701
+ "epoch": 3.742690058479532,
702
+ "grad_norm": 0.7564510703086853,
703
+ "learning_rate": 0.0002,
704
+ "loss": 0.3789,
705
+ "step": 960
706
+ },
707
+ {
708
+ "epoch": 3.7816764132553606,
709
+ "grad_norm": 0.9967873692512512,
710
+ "learning_rate": 0.0002,
711
+ "loss": 0.3854,
712
+ "step": 970
713
+ },
714
+ {
715
+ "epoch": 3.8206627680311893,
716
+ "grad_norm": 1.0118954181671143,
717
+ "learning_rate": 0.0002,
718
+ "loss": 0.3664,
719
+ "step": 980
720
+ },
721
+ {
722
+ "epoch": 3.8596491228070176,
723
+ "grad_norm": 0.7355602383613586,
724
+ "learning_rate": 0.0002,
725
+ "loss": 0.367,
726
+ "step": 990
727
+ },
728
+ {
729
+ "epoch": 3.898635477582846,
730
+ "grad_norm": 0.7059919834136963,
731
+ "learning_rate": 0.0002,
732
+ "loss": 0.3802,
733
+ "step": 1000
734
+ },
735
+ {
736
+ "epoch": 3.9376218323586745,
737
+ "grad_norm": 0.6720611453056335,
738
+ "learning_rate": 0.0002,
739
+ "loss": 0.3907,
740
+ "step": 1010
741
+ },
742
+ {
743
+ "epoch": 3.976608187134503,
744
+ "grad_norm": 0.664450466632843,
745
+ "learning_rate": 0.0002,
746
+ "loss": 0.392,
747
+ "step": 1020
748
+ },
749
+ {
750
+ "epoch": 4.0,
751
+ "eval_loss": 0.4771515429019928,
752
+ "eval_runtime": 68.2605,
753
+ "eval_samples_per_second": 5.347,
754
+ "eval_steps_per_second": 0.674,
755
+ "step": 1026
756
+ }
757
+ ],
758
+ "logging_steps": 10,
759
+ "max_steps": 2048,
760
+ "num_input_tokens_seen": 0,
761
+ "num_train_epochs": 8,
762
+ "save_steps": 200,
763
+ "stateful_callbacks": {
764
+ "TrainerControl": {
765
+ "args": {
766
+ "should_epoch_stop": false,
767
+ "should_evaluate": false,
768
+ "should_log": false,
769
+ "should_save": true,
770
+ "should_training_stop": false
771
+ },
772
+ "attributes": {}
773
+ }
774
+ },
775
+ "total_flos": 4.50154696015872e+16,
776
+ "train_batch_size": 1,
777
+ "trial_name": null,
778
+ "trial_params": null
779
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1026/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5036267d1db24ac0a5932b39180f94ba0ea9b0dc9da633253ea9585ce5cdb211
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adf9b909e7d370b95857d5528e958b8a7bca0148f0302e8dc68562d7a152dd19
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c23f75f6f27994e7a94f61e92dc79de28612b0ead0bf4f0f4154d30a9eca8d49
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a269f00eb5cc597716535d40157c9a4f95803e3a5c27adef552d58f8b3adaf5b
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dcc80f22b8e67356e79d8bed6a61c05a8f305ea505dcdf6343406c795c4a4cd
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/trainer_state.json ADDED
@@ -0,0 +1,969 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.4660908877849579,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282",
4
+ "epoch": 4.9980506822612085,
5
+ "eval_steps": 10,
6
+ "global_step": 1282,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03898635477582846,
13
+ "grad_norm": 1.1630783081054688,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7486,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.07797270955165692,
20
+ "grad_norm": 1.3587305545806885,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.1818,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.11695906432748537,
27
+ "grad_norm": 0.9663119912147522,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.0017,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.15594541910331383,
34
+ "grad_norm": 1.0442273616790771,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.945,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.1949317738791423,
41
+ "grad_norm": 0.9459889531135559,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.7863,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.23391812865497075,
48
+ "grad_norm": 0.9623780846595764,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7287,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.2729044834307992,
55
+ "grad_norm": 0.8872420787811279,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6969,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.31189083820662766,
62
+ "grad_norm": 0.7173621654510498,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6828,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.3508771929824561,
69
+ "grad_norm": 0.7221336364746094,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.6651,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.3898635477582846,
76
+ "grad_norm": 0.7142595648765564,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.621,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.42884990253411304,
83
+ "grad_norm": 0.6138886213302612,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6601,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.4678362573099415,
90
+ "grad_norm": 0.8129922151565552,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6182,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.50682261208577,
97
+ "grad_norm": 0.8280786275863647,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6426,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.5458089668615984,
104
+ "grad_norm": 0.5899930596351624,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6125,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.5847953216374269,
111
+ "grad_norm": 0.7101946473121643,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.6444,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.6237816764132553,
118
+ "grad_norm": 0.6261710524559021,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6374,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.6627680311890838,
125
+ "grad_norm": 0.7684038877487183,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.594,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.7017543859649122,
132
+ "grad_norm": 0.581214189529419,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.5992,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.7407407407407407,
139
+ "grad_norm": 0.5658173561096191,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.6179,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.7797270955165692,
146
+ "grad_norm": 0.7603134512901306,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.6417,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.8187134502923976,
153
+ "grad_norm": 0.5359350442886353,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.5906,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.8576998050682261,
160
+ "grad_norm": 0.7978444695472717,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.6125,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.8966861598440545,
167
+ "grad_norm": 0.5791468620300293,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.5984,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.935672514619883,
174
+ "grad_norm": 0.635198712348938,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6007,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.9746588693957114,
181
+ "grad_norm": 0.5510166883468628,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.5912,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.9980506822612085,
188
+ "eval_loss": 0.5850377678871155,
189
+ "eval_runtime": 72.8118,
190
+ "eval_samples_per_second": 5.013,
191
+ "eval_steps_per_second": 0.632,
192
+ "step": 256
193
+ },
194
+ {
195
+ "epoch": 1.01364522417154,
196
+ "grad_norm": 0.5623628497123718,
197
+ "learning_rate": 0.0002,
198
+ "loss": 0.575,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.0526315789473684,
203
+ "grad_norm": 0.6872021555900574,
204
+ "learning_rate": 0.0002,
205
+ "loss": 0.5498,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.0916179337231968,
210
+ "grad_norm": 0.5543047785758972,
211
+ "learning_rate": 0.0002,
212
+ "loss": 0.5373,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.1306042884990253,
217
+ "grad_norm": 0.498542845249176,
218
+ "learning_rate": 0.0002,
219
+ "loss": 0.5272,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.1695906432748537,
224
+ "grad_norm": 0.5940739512443542,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.5528,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 1.2085769980506822,
231
+ "grad_norm": 0.5854314565658569,
232
+ "learning_rate": 0.0002,
233
+ "loss": 0.5308,
234
+ "step": 310
235
+ },
236
+ {
237
+ "epoch": 1.2475633528265107,
238
+ "grad_norm": 0.5293670892715454,
239
+ "learning_rate": 0.0002,
240
+ "loss": 0.5452,
241
+ "step": 320
242
+ },
243
+ {
244
+ "epoch": 1.286549707602339,
245
+ "grad_norm": 0.5736058950424194,
246
+ "learning_rate": 0.0002,
247
+ "loss": 0.5451,
248
+ "step": 330
249
+ },
250
+ {
251
+ "epoch": 1.3255360623781676,
252
+ "grad_norm": 0.7912607789039612,
253
+ "learning_rate": 0.0002,
254
+ "loss": 0.5344,
255
+ "step": 340
256
+ },
257
+ {
258
+ "epoch": 1.364522417153996,
259
+ "grad_norm": 0.781843364238739,
260
+ "learning_rate": 0.0002,
261
+ "loss": 0.531,
262
+ "step": 350
263
+ },
264
+ {
265
+ "epoch": 1.4035087719298245,
266
+ "grad_norm": 0.7365643978118896,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.5396,
269
+ "step": 360
270
+ },
271
+ {
272
+ "epoch": 1.442495126705653,
273
+ "grad_norm": 0.5565363764762878,
274
+ "learning_rate": 0.0002,
275
+ "loss": 0.5363,
276
+ "step": 370
277
+ },
278
+ {
279
+ "epoch": 1.4814814814814814,
280
+ "grad_norm": 0.5427217483520508,
281
+ "learning_rate": 0.0002,
282
+ "loss": 0.5235,
283
+ "step": 380
284
+ },
285
+ {
286
+ "epoch": 1.52046783625731,
287
+ "grad_norm": 0.7150877118110657,
288
+ "learning_rate": 0.0002,
289
+ "loss": 0.5173,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 1.5594541910331383,
294
+ "grad_norm": 0.5850045084953308,
295
+ "learning_rate": 0.0002,
296
+ "loss": 0.5394,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.598440545808967,
301
+ "grad_norm": 0.5376710295677185,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.5045,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.6374269005847952,
308
+ "grad_norm": 0.6234501004219055,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.5444,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.676413255360624,
315
+ "grad_norm": 0.7774652242660522,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.5186,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.7153996101364521,
322
+ "grad_norm": 0.6821911334991455,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.5168,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 1.7543859649122808,
329
+ "grad_norm": 0.7210469841957092,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.5118,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 1.793372319688109,
336
+ "grad_norm": 0.6935250759124756,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.5499,
339
+ "step": 460
340
+ },
341
+ {
342
+ "epoch": 1.8323586744639377,
343
+ "grad_norm": 0.6940227150917053,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.516,
346
+ "step": 470
347
+ },
348
+ {
349
+ "epoch": 1.871345029239766,
350
+ "grad_norm": 0.6918772459030151,
351
+ "learning_rate": 0.0002,
352
+ "loss": 0.4839,
353
+ "step": 480
354
+ },
355
+ {
356
+ "epoch": 1.9103313840155947,
357
+ "grad_norm": 0.5278885364532471,
358
+ "learning_rate": 0.0002,
359
+ "loss": 0.4906,
360
+ "step": 490
361
+ },
362
+ {
363
+ "epoch": 1.949317738791423,
364
+ "grad_norm": 0.655097246170044,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.4954,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 1.9883040935672516,
371
+ "grad_norm": 0.728690505027771,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.4981,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 2.0,
378
+ "eval_loss": 0.5312528610229492,
379
+ "eval_runtime": 67.5284,
380
+ "eval_samples_per_second": 5.405,
381
+ "eval_steps_per_second": 0.681,
382
+ "step": 513
383
+ },
384
+ {
385
+ "epoch": 2.02729044834308,
386
+ "grad_norm": 0.7993459105491638,
387
+ "learning_rate": 0.0002,
388
+ "loss": 0.473,
389
+ "step": 520
390
+ },
391
+ {
392
+ "epoch": 2.0662768031189085,
393
+ "grad_norm": 0.6997111439704895,
394
+ "learning_rate": 0.0002,
395
+ "loss": 0.4514,
396
+ "step": 530
397
+ },
398
+ {
399
+ "epoch": 2.1052631578947367,
400
+ "grad_norm": 0.9680729508399963,
401
+ "learning_rate": 0.0002,
402
+ "loss": 0.4537,
403
+ "step": 540
404
+ },
405
+ {
406
+ "epoch": 2.1442495126705654,
407
+ "grad_norm": 0.67018723487854,
408
+ "learning_rate": 0.0002,
409
+ "loss": 0.4278,
410
+ "step": 550
411
+ },
412
+ {
413
+ "epoch": 2.1832358674463936,
414
+ "grad_norm": 0.7760737538337708,
415
+ "learning_rate": 0.0002,
416
+ "loss": 0.4424,
417
+ "step": 560
418
+ },
419
+ {
420
+ "epoch": 2.2222222222222223,
421
+ "grad_norm": 1.9475411176681519,
422
+ "learning_rate": 0.0002,
423
+ "loss": 0.4554,
424
+ "step": 570
425
+ },
426
+ {
427
+ "epoch": 2.2612085769980506,
428
+ "grad_norm": 0.810126006603241,
429
+ "learning_rate": 0.0002,
430
+ "loss": 0.4321,
431
+ "step": 580
432
+ },
433
+ {
434
+ "epoch": 2.3001949317738792,
435
+ "grad_norm": 0.8697490692138672,
436
+ "learning_rate": 0.0002,
437
+ "loss": 0.4413,
438
+ "step": 590
439
+ },
440
+ {
441
+ "epoch": 2.3391812865497075,
442
+ "grad_norm": 0.5910632014274597,
443
+ "learning_rate": 0.0002,
444
+ "loss": 0.445,
445
+ "step": 600
446
+ },
447
+ {
448
+ "epoch": 2.378167641325536,
449
+ "grad_norm": 1.0113483667373657,
450
+ "learning_rate": 0.0002,
451
+ "loss": 0.43,
452
+ "step": 610
453
+ },
454
+ {
455
+ "epoch": 2.4171539961013644,
456
+ "grad_norm": 0.5548872351646423,
457
+ "learning_rate": 0.0002,
458
+ "loss": 0.4491,
459
+ "step": 620
460
+ },
461
+ {
462
+ "epoch": 2.456140350877193,
463
+ "grad_norm": 0.7542755603790283,
464
+ "learning_rate": 0.0002,
465
+ "loss": 0.4654,
466
+ "step": 630
467
+ },
468
+ {
469
+ "epoch": 2.4951267056530213,
470
+ "grad_norm": 0.6450021862983704,
471
+ "learning_rate": 0.0002,
472
+ "loss": 0.4269,
473
+ "step": 640
474
+ },
475
+ {
476
+ "epoch": 2.53411306042885,
477
+ "grad_norm": 0.8181225657463074,
478
+ "learning_rate": 0.0002,
479
+ "loss": 0.4321,
480
+ "step": 650
481
+ },
482
+ {
483
+ "epoch": 2.573099415204678,
484
+ "grad_norm": 0.8882361650466919,
485
+ "learning_rate": 0.0002,
486
+ "loss": 0.4476,
487
+ "step": 660
488
+ },
489
+ {
490
+ "epoch": 2.612085769980507,
491
+ "grad_norm": 0.9545704126358032,
492
+ "learning_rate": 0.0002,
493
+ "loss": 0.4398,
494
+ "step": 670
495
+ },
496
+ {
497
+ "epoch": 2.651072124756335,
498
+ "grad_norm": 0.633364200592041,
499
+ "learning_rate": 0.0002,
500
+ "loss": 0.4302,
501
+ "step": 680
502
+ },
503
+ {
504
+ "epoch": 2.690058479532164,
505
+ "grad_norm": 0.6909534931182861,
506
+ "learning_rate": 0.0002,
507
+ "loss": 0.4265,
508
+ "step": 690
509
+ },
510
+ {
511
+ "epoch": 2.729044834307992,
512
+ "grad_norm": 0.7342118620872498,
513
+ "learning_rate": 0.0002,
514
+ "loss": 0.4508,
515
+ "step": 700
516
+ },
517
+ {
518
+ "epoch": 2.7680311890838207,
519
+ "grad_norm": 0.6567948460578918,
520
+ "learning_rate": 0.0002,
521
+ "loss": 0.4495,
522
+ "step": 710
523
+ },
524
+ {
525
+ "epoch": 2.807017543859649,
526
+ "grad_norm": 0.81608647108078,
527
+ "learning_rate": 0.0002,
528
+ "loss": 0.4521,
529
+ "step": 720
530
+ },
531
+ {
532
+ "epoch": 2.8460038986354776,
533
+ "grad_norm": 0.7075870633125305,
534
+ "learning_rate": 0.0002,
535
+ "loss": 0.4584,
536
+ "step": 730
537
+ },
538
+ {
539
+ "epoch": 2.884990253411306,
540
+ "grad_norm": 0.5666054487228394,
541
+ "learning_rate": 0.0002,
542
+ "loss": 0.4332,
543
+ "step": 740
544
+ },
545
+ {
546
+ "epoch": 2.9239766081871346,
547
+ "grad_norm": 0.5457495450973511,
548
+ "learning_rate": 0.0002,
549
+ "loss": 0.423,
550
+ "step": 750
551
+ },
552
+ {
553
+ "epoch": 2.962962962962963,
554
+ "grad_norm": 0.8959799408912659,
555
+ "learning_rate": 0.0002,
556
+ "loss": 0.4136,
557
+ "step": 760
558
+ },
559
+ {
560
+ "epoch": 2.9980506822612085,
561
+ "eval_loss": 0.49315401911735535,
562
+ "eval_runtime": 67.9039,
563
+ "eval_samples_per_second": 5.375,
564
+ "eval_steps_per_second": 0.677,
565
+ "step": 769
566
+ },
567
+ {
568
+ "epoch": 3.0019493177387915,
569
+ "grad_norm": 0.8162972927093506,
570
+ "learning_rate": 0.0002,
571
+ "loss": 0.4332,
572
+ "step": 770
573
+ },
574
+ {
575
+ "epoch": 3.0409356725146197,
576
+ "grad_norm": 0.8814733028411865,
577
+ "learning_rate": 0.0002,
578
+ "loss": 0.3778,
579
+ "step": 780
580
+ },
581
+ {
582
+ "epoch": 3.0799220272904484,
583
+ "grad_norm": 0.6659106612205505,
584
+ "learning_rate": 0.0002,
585
+ "loss": 0.3775,
586
+ "step": 790
587
+ },
588
+ {
589
+ "epoch": 3.1189083820662766,
590
+ "grad_norm": 0.7013096213340759,
591
+ "learning_rate": 0.0002,
592
+ "loss": 0.3718,
593
+ "step": 800
594
+ },
595
+ {
596
+ "epoch": 3.1578947368421053,
597
+ "grad_norm": 0.5946340560913086,
598
+ "learning_rate": 0.0002,
599
+ "loss": 0.3799,
600
+ "step": 810
601
+ },
602
+ {
603
+ "epoch": 3.1968810916179335,
604
+ "grad_norm": 1.1263338327407837,
605
+ "learning_rate": 0.0002,
606
+ "loss": 0.3752,
607
+ "step": 820
608
+ },
609
+ {
610
+ "epoch": 3.2358674463937622,
611
+ "grad_norm": 1.028369426727295,
612
+ "learning_rate": 0.0002,
613
+ "loss": 0.3819,
614
+ "step": 830
615
+ },
616
+ {
617
+ "epoch": 3.2748538011695905,
618
+ "grad_norm": 1.1113781929016113,
619
+ "learning_rate": 0.0002,
620
+ "loss": 0.3816,
621
+ "step": 840
622
+ },
623
+ {
624
+ "epoch": 3.313840155945419,
625
+ "grad_norm": 0.7735888361930847,
626
+ "learning_rate": 0.0002,
627
+ "loss": 0.383,
628
+ "step": 850
629
+ },
630
+ {
631
+ "epoch": 3.3528265107212474,
632
+ "grad_norm": 0.8967649936676025,
633
+ "learning_rate": 0.0002,
634
+ "loss": 0.3703,
635
+ "step": 860
636
+ },
637
+ {
638
+ "epoch": 3.391812865497076,
639
+ "grad_norm": 0.7354698777198792,
640
+ "learning_rate": 0.0002,
641
+ "loss": 0.3884,
642
+ "step": 870
643
+ },
644
+ {
645
+ "epoch": 3.4307992202729043,
646
+ "grad_norm": 0.8721298575401306,
647
+ "learning_rate": 0.0002,
648
+ "loss": 0.3762,
649
+ "step": 880
650
+ },
651
+ {
652
+ "epoch": 3.469785575048733,
653
+ "grad_norm": 0.7276861667633057,
654
+ "learning_rate": 0.0002,
655
+ "loss": 0.3758,
656
+ "step": 890
657
+ },
658
+ {
659
+ "epoch": 3.5087719298245617,
660
+ "grad_norm": 0.8296075463294983,
661
+ "learning_rate": 0.0002,
662
+ "loss": 0.3866,
663
+ "step": 900
664
+ },
665
+ {
666
+ "epoch": 3.54775828460039,
667
+ "grad_norm": 0.8955655097961426,
668
+ "learning_rate": 0.0002,
669
+ "loss": 0.3909,
670
+ "step": 910
671
+ },
672
+ {
673
+ "epoch": 3.586744639376218,
674
+ "grad_norm": 0.8008049130439758,
675
+ "learning_rate": 0.0002,
676
+ "loss": 0.3882,
677
+ "step": 920
678
+ },
679
+ {
680
+ "epoch": 3.625730994152047,
681
+ "grad_norm": 0.7791480422019958,
682
+ "learning_rate": 0.0002,
683
+ "loss": 0.3837,
684
+ "step": 930
685
+ },
686
+ {
687
+ "epoch": 3.6647173489278755,
688
+ "grad_norm": 0.8780500292778015,
689
+ "learning_rate": 0.0002,
690
+ "loss": 0.3877,
691
+ "step": 940
692
+ },
693
+ {
694
+ "epoch": 3.7037037037037037,
695
+ "grad_norm": 0.8411193490028381,
696
+ "learning_rate": 0.0002,
697
+ "loss": 0.3852,
698
+ "step": 950
699
+ },
700
+ {
701
+ "epoch": 3.742690058479532,
702
+ "grad_norm": 0.7564510703086853,
703
+ "learning_rate": 0.0002,
704
+ "loss": 0.3789,
705
+ "step": 960
706
+ },
707
+ {
708
+ "epoch": 3.7816764132553606,
709
+ "grad_norm": 0.9967873692512512,
710
+ "learning_rate": 0.0002,
711
+ "loss": 0.3854,
712
+ "step": 970
713
+ },
714
+ {
715
+ "epoch": 3.8206627680311893,
716
+ "grad_norm": 1.0118954181671143,
717
+ "learning_rate": 0.0002,
718
+ "loss": 0.3664,
719
+ "step": 980
720
+ },
721
+ {
722
+ "epoch": 3.8596491228070176,
723
+ "grad_norm": 0.7355602383613586,
724
+ "learning_rate": 0.0002,
725
+ "loss": 0.367,
726
+ "step": 990
727
+ },
728
+ {
729
+ "epoch": 3.898635477582846,
730
+ "grad_norm": 0.7059919834136963,
731
+ "learning_rate": 0.0002,
732
+ "loss": 0.3802,
733
+ "step": 1000
734
+ },
735
+ {
736
+ "epoch": 3.9376218323586745,
737
+ "grad_norm": 0.6720611453056335,
738
+ "learning_rate": 0.0002,
739
+ "loss": 0.3907,
740
+ "step": 1010
741
+ },
742
+ {
743
+ "epoch": 3.976608187134503,
744
+ "grad_norm": 0.664450466632843,
745
+ "learning_rate": 0.0002,
746
+ "loss": 0.392,
747
+ "step": 1020
748
+ },
749
+ {
750
+ "epoch": 4.0,
751
+ "eval_loss": 0.4771515429019928,
752
+ "eval_runtime": 68.2605,
753
+ "eval_samples_per_second": 5.347,
754
+ "eval_steps_per_second": 0.674,
755
+ "step": 1026
756
+ },
757
+ {
758
+ "epoch": 4.015594541910332,
759
+ "grad_norm": 0.8478823304176331,
760
+ "learning_rate": 0.0002,
761
+ "loss": 0.3554,
762
+ "step": 1030
763
+ },
764
+ {
765
+ "epoch": 4.05458089668616,
766
+ "grad_norm": 0.7147605419158936,
767
+ "learning_rate": 0.0002,
768
+ "loss": 0.3353,
769
+ "step": 1040
770
+ },
771
+ {
772
+ "epoch": 4.093567251461988,
773
+ "grad_norm": 0.8668870329856873,
774
+ "learning_rate": 0.0002,
775
+ "loss": 0.3318,
776
+ "step": 1050
777
+ },
778
+ {
779
+ "epoch": 4.132553606237817,
780
+ "grad_norm": 0.9445207715034485,
781
+ "learning_rate": 0.0002,
782
+ "loss": 0.3284,
783
+ "step": 1060
784
+ },
785
+ {
786
+ "epoch": 4.171539961013645,
787
+ "grad_norm": 0.7062109112739563,
788
+ "learning_rate": 0.0002,
789
+ "loss": 0.3453,
790
+ "step": 1070
791
+ },
792
+ {
793
+ "epoch": 4.2105263157894735,
794
+ "grad_norm": 0.8336073160171509,
795
+ "learning_rate": 0.0002,
796
+ "loss": 0.3345,
797
+ "step": 1080
798
+ },
799
+ {
800
+ "epoch": 4.249512670565302,
801
+ "grad_norm": 1.3078413009643555,
802
+ "learning_rate": 0.0002,
803
+ "loss": 0.3435,
804
+ "step": 1090
805
+ },
806
+ {
807
+ "epoch": 4.288499025341131,
808
+ "grad_norm": 0.8631044030189514,
809
+ "learning_rate": 0.0002,
810
+ "loss": 0.3443,
811
+ "step": 1100
812
+ },
813
+ {
814
+ "epoch": 4.3274853801169595,
815
+ "grad_norm": 0.7545914053916931,
816
+ "learning_rate": 0.0002,
817
+ "loss": 0.3269,
818
+ "step": 1110
819
+ },
820
+ {
821
+ "epoch": 4.366471734892787,
822
+ "grad_norm": 0.7546519637107849,
823
+ "learning_rate": 0.0002,
824
+ "loss": 0.3504,
825
+ "step": 1120
826
+ },
827
+ {
828
+ "epoch": 4.405458089668616,
829
+ "grad_norm": 0.8977745175361633,
830
+ "learning_rate": 0.0002,
831
+ "loss": 0.3419,
832
+ "step": 1130
833
+ },
834
+ {
835
+ "epoch": 4.444444444444445,
836
+ "grad_norm": 1.1983102560043335,
837
+ "learning_rate": 0.0002,
838
+ "loss": 0.3472,
839
+ "step": 1140
840
+ },
841
+ {
842
+ "epoch": 4.483430799220272,
843
+ "grad_norm": 0.9402135610580444,
844
+ "learning_rate": 0.0002,
845
+ "loss": 0.3409,
846
+ "step": 1150
847
+ },
848
+ {
849
+ "epoch": 4.522417153996101,
850
+ "grad_norm": 0.7405855655670166,
851
+ "learning_rate": 0.0002,
852
+ "loss": 0.3372,
853
+ "step": 1160
854
+ },
855
+ {
856
+ "epoch": 4.56140350877193,
857
+ "grad_norm": 0.6910150647163391,
858
+ "learning_rate": 0.0002,
859
+ "loss": 0.344,
860
+ "step": 1170
861
+ },
862
+ {
863
+ "epoch": 4.6003898635477585,
864
+ "grad_norm": 0.8426865339279175,
865
+ "learning_rate": 0.0002,
866
+ "loss": 0.3402,
867
+ "step": 1180
868
+ },
869
+ {
870
+ "epoch": 4.639376218323587,
871
+ "grad_norm": 0.6767265200614929,
872
+ "learning_rate": 0.0002,
873
+ "loss": 0.3361,
874
+ "step": 1190
875
+ },
876
+ {
877
+ "epoch": 4.678362573099415,
878
+ "grad_norm": 0.7790605425834656,
879
+ "learning_rate": 0.0002,
880
+ "loss": 0.3417,
881
+ "step": 1200
882
+ },
883
+ {
884
+ "epoch": 4.717348927875244,
885
+ "grad_norm": 0.7993232011795044,
886
+ "learning_rate": 0.0002,
887
+ "loss": 0.3513,
888
+ "step": 1210
889
+ },
890
+ {
891
+ "epoch": 4.756335282651072,
892
+ "grad_norm": 0.6861053705215454,
893
+ "learning_rate": 0.0002,
894
+ "loss": 0.346,
895
+ "step": 1220
896
+ },
897
+ {
898
+ "epoch": 4.7953216374269,
899
+ "grad_norm": 0.8599495887756348,
900
+ "learning_rate": 0.0002,
901
+ "loss": 0.3426,
902
+ "step": 1230
903
+ },
904
+ {
905
+ "epoch": 4.834307992202729,
906
+ "grad_norm": 0.8054423332214355,
907
+ "learning_rate": 0.0002,
908
+ "loss": 0.3622,
909
+ "step": 1240
910
+ },
911
+ {
912
+ "epoch": 4.8732943469785575,
913
+ "grad_norm": 0.949587881565094,
914
+ "learning_rate": 0.0002,
915
+ "loss": 0.343,
916
+ "step": 1250
917
+ },
918
+ {
919
+ "epoch": 4.912280701754386,
920
+ "grad_norm": 0.6002761125564575,
921
+ "learning_rate": 0.0002,
922
+ "loss": 0.3364,
923
+ "step": 1260
924
+ },
925
+ {
926
+ "epoch": 4.951267056530215,
927
+ "grad_norm": 0.7506934404373169,
928
+ "learning_rate": 0.0002,
929
+ "loss": 0.3417,
930
+ "step": 1270
931
+ },
932
+ {
933
+ "epoch": 4.990253411306043,
934
+ "grad_norm": 0.7621583938598633,
935
+ "learning_rate": 0.0002,
936
+ "loss": 0.3379,
937
+ "step": 1280
938
+ },
939
+ {
940
+ "epoch": 4.9980506822612085,
941
+ "eval_loss": 0.4660908877849579,
942
+ "eval_runtime": 67.4734,
943
+ "eval_samples_per_second": 5.41,
944
+ "eval_steps_per_second": 0.682,
945
+ "step": 1282
946
+ }
947
+ ],
948
+ "logging_steps": 10,
949
+ "max_steps": 2048,
950
+ "num_input_tokens_seen": 0,
951
+ "num_train_epochs": 8,
952
+ "save_steps": 200,
953
+ "stateful_callbacks": {
954
+ "TrainerControl": {
955
+ "args": {
956
+ "should_epoch_stop": false,
957
+ "should_evaluate": false,
958
+ "should_log": false,
959
+ "should_save": true,
960
+ "should_training_stop": false
961
+ },
962
+ "attributes": {}
963
+ }
964
+ },
965
+ "total_flos": 5.6269337001984e+16,
966
+ "train_batch_size": 1,
967
+ "trial_name": null,
968
+ "trial_params": null
969
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1282/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5036267d1db24ac0a5932b39180f94ba0ea9b0dc9da633253ea9585ce5cdb211
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:154bcedca29503345eb5d2d93d525a97373c13b0b7aba28564244d640f0441e6
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fee9b9f0105f85f3033570a6a522c609ec38eeb84e347c47a41e1bf232257b73
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48aef2dd101d3a7b8ca0e42ead92d01f9f6c9277ada1cc76bd04af8293dc16fe
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59f6669c0f0c03f385f5dead19a64e8e7f53ec629d66d8f0fa44f1da6682801b
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/trainer_state.json ADDED
@@ -0,0 +1,1152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.4633646011352539,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539",
4
+ "epoch": 6.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1539,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03898635477582846,
13
+ "grad_norm": 1.1630783081054688,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7486,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.07797270955165692,
20
+ "grad_norm": 1.3587305545806885,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.1818,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.11695906432748537,
27
+ "grad_norm": 0.9663119912147522,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.0017,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.15594541910331383,
34
+ "grad_norm": 1.0442273616790771,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.945,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.1949317738791423,
41
+ "grad_norm": 0.9459889531135559,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.7863,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.23391812865497075,
48
+ "grad_norm": 0.9623780846595764,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7287,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.2729044834307992,
55
+ "grad_norm": 0.8872420787811279,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6969,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.31189083820662766,
62
+ "grad_norm": 0.7173621654510498,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6828,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.3508771929824561,
69
+ "grad_norm": 0.7221336364746094,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.6651,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.3898635477582846,
76
+ "grad_norm": 0.7142595648765564,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.621,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.42884990253411304,
83
+ "grad_norm": 0.6138886213302612,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6601,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.4678362573099415,
90
+ "grad_norm": 0.8129922151565552,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6182,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.50682261208577,
97
+ "grad_norm": 0.8280786275863647,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6426,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.5458089668615984,
104
+ "grad_norm": 0.5899930596351624,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6125,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.5847953216374269,
111
+ "grad_norm": 0.7101946473121643,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.6444,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.6237816764132553,
118
+ "grad_norm": 0.6261710524559021,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6374,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.6627680311890838,
125
+ "grad_norm": 0.7684038877487183,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.594,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.7017543859649122,
132
+ "grad_norm": 0.581214189529419,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.5992,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.7407407407407407,
139
+ "grad_norm": 0.5658173561096191,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.6179,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.7797270955165692,
146
+ "grad_norm": 0.7603134512901306,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.6417,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.8187134502923976,
153
+ "grad_norm": 0.5359350442886353,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.5906,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.8576998050682261,
160
+ "grad_norm": 0.7978444695472717,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.6125,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.8966861598440545,
167
+ "grad_norm": 0.5791468620300293,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.5984,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.935672514619883,
174
+ "grad_norm": 0.635198712348938,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6007,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.9746588693957114,
181
+ "grad_norm": 0.5510166883468628,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.5912,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.9980506822612085,
188
+ "eval_loss": 0.5850377678871155,
189
+ "eval_runtime": 72.8118,
190
+ "eval_samples_per_second": 5.013,
191
+ "eval_steps_per_second": 0.632,
192
+ "step": 256
193
+ },
194
+ {
195
+ "epoch": 1.01364522417154,
196
+ "grad_norm": 0.5623628497123718,
197
+ "learning_rate": 0.0002,
198
+ "loss": 0.575,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.0526315789473684,
203
+ "grad_norm": 0.6872021555900574,
204
+ "learning_rate": 0.0002,
205
+ "loss": 0.5498,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.0916179337231968,
210
+ "grad_norm": 0.5543047785758972,
211
+ "learning_rate": 0.0002,
212
+ "loss": 0.5373,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.1306042884990253,
217
+ "grad_norm": 0.498542845249176,
218
+ "learning_rate": 0.0002,
219
+ "loss": 0.5272,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.1695906432748537,
224
+ "grad_norm": 0.5940739512443542,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.5528,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 1.2085769980506822,
231
+ "grad_norm": 0.5854314565658569,
232
+ "learning_rate": 0.0002,
233
+ "loss": 0.5308,
234
+ "step": 310
235
+ },
236
+ {
237
+ "epoch": 1.2475633528265107,
238
+ "grad_norm": 0.5293670892715454,
239
+ "learning_rate": 0.0002,
240
+ "loss": 0.5452,
241
+ "step": 320
242
+ },
243
+ {
244
+ "epoch": 1.286549707602339,
245
+ "grad_norm": 0.5736058950424194,
246
+ "learning_rate": 0.0002,
247
+ "loss": 0.5451,
248
+ "step": 330
249
+ },
250
+ {
251
+ "epoch": 1.3255360623781676,
252
+ "grad_norm": 0.7912607789039612,
253
+ "learning_rate": 0.0002,
254
+ "loss": 0.5344,
255
+ "step": 340
256
+ },
257
+ {
258
+ "epoch": 1.364522417153996,
259
+ "grad_norm": 0.781843364238739,
260
+ "learning_rate": 0.0002,
261
+ "loss": 0.531,
262
+ "step": 350
263
+ },
264
+ {
265
+ "epoch": 1.4035087719298245,
266
+ "grad_norm": 0.7365643978118896,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.5396,
269
+ "step": 360
270
+ },
271
+ {
272
+ "epoch": 1.442495126705653,
273
+ "grad_norm": 0.5565363764762878,
274
+ "learning_rate": 0.0002,
275
+ "loss": 0.5363,
276
+ "step": 370
277
+ },
278
+ {
279
+ "epoch": 1.4814814814814814,
280
+ "grad_norm": 0.5427217483520508,
281
+ "learning_rate": 0.0002,
282
+ "loss": 0.5235,
283
+ "step": 380
284
+ },
285
+ {
286
+ "epoch": 1.52046783625731,
287
+ "grad_norm": 0.7150877118110657,
288
+ "learning_rate": 0.0002,
289
+ "loss": 0.5173,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 1.5594541910331383,
294
+ "grad_norm": 0.5850045084953308,
295
+ "learning_rate": 0.0002,
296
+ "loss": 0.5394,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.598440545808967,
301
+ "grad_norm": 0.5376710295677185,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.5045,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.6374269005847952,
308
+ "grad_norm": 0.6234501004219055,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.5444,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.676413255360624,
315
+ "grad_norm": 0.7774652242660522,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.5186,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.7153996101364521,
322
+ "grad_norm": 0.6821911334991455,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.5168,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 1.7543859649122808,
329
+ "grad_norm": 0.7210469841957092,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.5118,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 1.793372319688109,
336
+ "grad_norm": 0.6935250759124756,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.5499,
339
+ "step": 460
340
+ },
341
+ {
342
+ "epoch": 1.8323586744639377,
343
+ "grad_norm": 0.6940227150917053,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.516,
346
+ "step": 470
347
+ },
348
+ {
349
+ "epoch": 1.871345029239766,
350
+ "grad_norm": 0.6918772459030151,
351
+ "learning_rate": 0.0002,
352
+ "loss": 0.4839,
353
+ "step": 480
354
+ },
355
+ {
356
+ "epoch": 1.9103313840155947,
357
+ "grad_norm": 0.5278885364532471,
358
+ "learning_rate": 0.0002,
359
+ "loss": 0.4906,
360
+ "step": 490
361
+ },
362
+ {
363
+ "epoch": 1.949317738791423,
364
+ "grad_norm": 0.655097246170044,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.4954,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 1.9883040935672516,
371
+ "grad_norm": 0.728690505027771,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.4981,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 2.0,
378
+ "eval_loss": 0.5312528610229492,
379
+ "eval_runtime": 67.5284,
380
+ "eval_samples_per_second": 5.405,
381
+ "eval_steps_per_second": 0.681,
382
+ "step": 513
383
+ },
384
+ {
385
+ "epoch": 2.02729044834308,
386
+ "grad_norm": 0.7993459105491638,
387
+ "learning_rate": 0.0002,
388
+ "loss": 0.473,
389
+ "step": 520
390
+ },
391
+ {
392
+ "epoch": 2.0662768031189085,
393
+ "grad_norm": 0.6997111439704895,
394
+ "learning_rate": 0.0002,
395
+ "loss": 0.4514,
396
+ "step": 530
397
+ },
398
+ {
399
+ "epoch": 2.1052631578947367,
400
+ "grad_norm": 0.9680729508399963,
401
+ "learning_rate": 0.0002,
402
+ "loss": 0.4537,
403
+ "step": 540
404
+ },
405
+ {
406
+ "epoch": 2.1442495126705654,
407
+ "grad_norm": 0.67018723487854,
408
+ "learning_rate": 0.0002,
409
+ "loss": 0.4278,
410
+ "step": 550
411
+ },
412
+ {
413
+ "epoch": 2.1832358674463936,
414
+ "grad_norm": 0.7760737538337708,
415
+ "learning_rate": 0.0002,
416
+ "loss": 0.4424,
417
+ "step": 560
418
+ },
419
+ {
420
+ "epoch": 2.2222222222222223,
421
+ "grad_norm": 1.9475411176681519,
422
+ "learning_rate": 0.0002,
423
+ "loss": 0.4554,
424
+ "step": 570
425
+ },
426
+ {
427
+ "epoch": 2.2612085769980506,
428
+ "grad_norm": 0.810126006603241,
429
+ "learning_rate": 0.0002,
430
+ "loss": 0.4321,
431
+ "step": 580
432
+ },
433
+ {
434
+ "epoch": 2.3001949317738792,
435
+ "grad_norm": 0.8697490692138672,
436
+ "learning_rate": 0.0002,
437
+ "loss": 0.4413,
438
+ "step": 590
439
+ },
440
+ {
441
+ "epoch": 2.3391812865497075,
442
+ "grad_norm": 0.5910632014274597,
443
+ "learning_rate": 0.0002,
444
+ "loss": 0.445,
445
+ "step": 600
446
+ },
447
+ {
448
+ "epoch": 2.378167641325536,
449
+ "grad_norm": 1.0113483667373657,
450
+ "learning_rate": 0.0002,
451
+ "loss": 0.43,
452
+ "step": 610
453
+ },
454
+ {
455
+ "epoch": 2.4171539961013644,
456
+ "grad_norm": 0.5548872351646423,
457
+ "learning_rate": 0.0002,
458
+ "loss": 0.4491,
459
+ "step": 620
460
+ },
461
+ {
462
+ "epoch": 2.456140350877193,
463
+ "grad_norm": 0.7542755603790283,
464
+ "learning_rate": 0.0002,
465
+ "loss": 0.4654,
466
+ "step": 630
467
+ },
468
+ {
469
+ "epoch": 2.4951267056530213,
470
+ "grad_norm": 0.6450021862983704,
471
+ "learning_rate": 0.0002,
472
+ "loss": 0.4269,
473
+ "step": 640
474
+ },
475
+ {
476
+ "epoch": 2.53411306042885,
477
+ "grad_norm": 0.8181225657463074,
478
+ "learning_rate": 0.0002,
479
+ "loss": 0.4321,
480
+ "step": 650
481
+ },
482
+ {
483
+ "epoch": 2.573099415204678,
484
+ "grad_norm": 0.8882361650466919,
485
+ "learning_rate": 0.0002,
486
+ "loss": 0.4476,
487
+ "step": 660
488
+ },
489
+ {
490
+ "epoch": 2.612085769980507,
491
+ "grad_norm": 0.9545704126358032,
492
+ "learning_rate": 0.0002,
493
+ "loss": 0.4398,
494
+ "step": 670
495
+ },
496
+ {
497
+ "epoch": 2.651072124756335,
498
+ "grad_norm": 0.633364200592041,
499
+ "learning_rate": 0.0002,
500
+ "loss": 0.4302,
501
+ "step": 680
502
+ },
503
+ {
504
+ "epoch": 2.690058479532164,
505
+ "grad_norm": 0.6909534931182861,
506
+ "learning_rate": 0.0002,
507
+ "loss": 0.4265,
508
+ "step": 690
509
+ },
510
+ {
511
+ "epoch": 2.729044834307992,
512
+ "grad_norm": 0.7342118620872498,
513
+ "learning_rate": 0.0002,
514
+ "loss": 0.4508,
515
+ "step": 700
516
+ },
517
+ {
518
+ "epoch": 2.7680311890838207,
519
+ "grad_norm": 0.6567948460578918,
520
+ "learning_rate": 0.0002,
521
+ "loss": 0.4495,
522
+ "step": 710
523
+ },
524
+ {
525
+ "epoch": 2.807017543859649,
526
+ "grad_norm": 0.81608647108078,
527
+ "learning_rate": 0.0002,
528
+ "loss": 0.4521,
529
+ "step": 720
530
+ },
531
+ {
532
+ "epoch": 2.8460038986354776,
533
+ "grad_norm": 0.7075870633125305,
534
+ "learning_rate": 0.0002,
535
+ "loss": 0.4584,
536
+ "step": 730
537
+ },
538
+ {
539
+ "epoch": 2.884990253411306,
540
+ "grad_norm": 0.5666054487228394,
541
+ "learning_rate": 0.0002,
542
+ "loss": 0.4332,
543
+ "step": 740
544
+ },
545
+ {
546
+ "epoch": 2.9239766081871346,
547
+ "grad_norm": 0.5457495450973511,
548
+ "learning_rate": 0.0002,
549
+ "loss": 0.423,
550
+ "step": 750
551
+ },
552
+ {
553
+ "epoch": 2.962962962962963,
554
+ "grad_norm": 0.8959799408912659,
555
+ "learning_rate": 0.0002,
556
+ "loss": 0.4136,
557
+ "step": 760
558
+ },
559
+ {
560
+ "epoch": 2.9980506822612085,
561
+ "eval_loss": 0.49315401911735535,
562
+ "eval_runtime": 67.9039,
563
+ "eval_samples_per_second": 5.375,
564
+ "eval_steps_per_second": 0.677,
565
+ "step": 769
566
+ },
567
+ {
568
+ "epoch": 3.0019493177387915,
569
+ "grad_norm": 0.8162972927093506,
570
+ "learning_rate": 0.0002,
571
+ "loss": 0.4332,
572
+ "step": 770
573
+ },
574
+ {
575
+ "epoch": 3.0409356725146197,
576
+ "grad_norm": 0.8814733028411865,
577
+ "learning_rate": 0.0002,
578
+ "loss": 0.3778,
579
+ "step": 780
580
+ },
581
+ {
582
+ "epoch": 3.0799220272904484,
583
+ "grad_norm": 0.6659106612205505,
584
+ "learning_rate": 0.0002,
585
+ "loss": 0.3775,
586
+ "step": 790
587
+ },
588
+ {
589
+ "epoch": 3.1189083820662766,
590
+ "grad_norm": 0.7013096213340759,
591
+ "learning_rate": 0.0002,
592
+ "loss": 0.3718,
593
+ "step": 800
594
+ },
595
+ {
596
+ "epoch": 3.1578947368421053,
597
+ "grad_norm": 0.5946340560913086,
598
+ "learning_rate": 0.0002,
599
+ "loss": 0.3799,
600
+ "step": 810
601
+ },
602
+ {
603
+ "epoch": 3.1968810916179335,
604
+ "grad_norm": 1.1263338327407837,
605
+ "learning_rate": 0.0002,
606
+ "loss": 0.3752,
607
+ "step": 820
608
+ },
609
+ {
610
+ "epoch": 3.2358674463937622,
611
+ "grad_norm": 1.028369426727295,
612
+ "learning_rate": 0.0002,
613
+ "loss": 0.3819,
614
+ "step": 830
615
+ },
616
+ {
617
+ "epoch": 3.2748538011695905,
618
+ "grad_norm": 1.1113781929016113,
619
+ "learning_rate": 0.0002,
620
+ "loss": 0.3816,
621
+ "step": 840
622
+ },
623
+ {
624
+ "epoch": 3.313840155945419,
625
+ "grad_norm": 0.7735888361930847,
626
+ "learning_rate": 0.0002,
627
+ "loss": 0.383,
628
+ "step": 850
629
+ },
630
+ {
631
+ "epoch": 3.3528265107212474,
632
+ "grad_norm": 0.8967649936676025,
633
+ "learning_rate": 0.0002,
634
+ "loss": 0.3703,
635
+ "step": 860
636
+ },
637
+ {
638
+ "epoch": 3.391812865497076,
639
+ "grad_norm": 0.7354698777198792,
640
+ "learning_rate": 0.0002,
641
+ "loss": 0.3884,
642
+ "step": 870
643
+ },
644
+ {
645
+ "epoch": 3.4307992202729043,
646
+ "grad_norm": 0.8721298575401306,
647
+ "learning_rate": 0.0002,
648
+ "loss": 0.3762,
649
+ "step": 880
650
+ },
651
+ {
652
+ "epoch": 3.469785575048733,
653
+ "grad_norm": 0.7276861667633057,
654
+ "learning_rate": 0.0002,
655
+ "loss": 0.3758,
656
+ "step": 890
657
+ },
658
+ {
659
+ "epoch": 3.5087719298245617,
660
+ "grad_norm": 0.8296075463294983,
661
+ "learning_rate": 0.0002,
662
+ "loss": 0.3866,
663
+ "step": 900
664
+ },
665
+ {
666
+ "epoch": 3.54775828460039,
667
+ "grad_norm": 0.8955655097961426,
668
+ "learning_rate": 0.0002,
669
+ "loss": 0.3909,
670
+ "step": 910
671
+ },
672
+ {
673
+ "epoch": 3.586744639376218,
674
+ "grad_norm": 0.8008049130439758,
675
+ "learning_rate": 0.0002,
676
+ "loss": 0.3882,
677
+ "step": 920
678
+ },
679
+ {
680
+ "epoch": 3.625730994152047,
681
+ "grad_norm": 0.7791480422019958,
682
+ "learning_rate": 0.0002,
683
+ "loss": 0.3837,
684
+ "step": 930
685
+ },
686
+ {
687
+ "epoch": 3.6647173489278755,
688
+ "grad_norm": 0.8780500292778015,
689
+ "learning_rate": 0.0002,
690
+ "loss": 0.3877,
691
+ "step": 940
692
+ },
693
+ {
694
+ "epoch": 3.7037037037037037,
695
+ "grad_norm": 0.8411193490028381,
696
+ "learning_rate": 0.0002,
697
+ "loss": 0.3852,
698
+ "step": 950
699
+ },
700
+ {
701
+ "epoch": 3.742690058479532,
702
+ "grad_norm": 0.7564510703086853,
703
+ "learning_rate": 0.0002,
704
+ "loss": 0.3789,
705
+ "step": 960
706
+ },
707
+ {
708
+ "epoch": 3.7816764132553606,
709
+ "grad_norm": 0.9967873692512512,
710
+ "learning_rate": 0.0002,
711
+ "loss": 0.3854,
712
+ "step": 970
713
+ },
714
+ {
715
+ "epoch": 3.8206627680311893,
716
+ "grad_norm": 1.0118954181671143,
717
+ "learning_rate": 0.0002,
718
+ "loss": 0.3664,
719
+ "step": 980
720
+ },
721
+ {
722
+ "epoch": 3.8596491228070176,
723
+ "grad_norm": 0.7355602383613586,
724
+ "learning_rate": 0.0002,
725
+ "loss": 0.367,
726
+ "step": 990
727
+ },
728
+ {
729
+ "epoch": 3.898635477582846,
730
+ "grad_norm": 0.7059919834136963,
731
+ "learning_rate": 0.0002,
732
+ "loss": 0.3802,
733
+ "step": 1000
734
+ },
735
+ {
736
+ "epoch": 3.9376218323586745,
737
+ "grad_norm": 0.6720611453056335,
738
+ "learning_rate": 0.0002,
739
+ "loss": 0.3907,
740
+ "step": 1010
741
+ },
742
+ {
743
+ "epoch": 3.976608187134503,
744
+ "grad_norm": 0.664450466632843,
745
+ "learning_rate": 0.0002,
746
+ "loss": 0.392,
747
+ "step": 1020
748
+ },
749
+ {
750
+ "epoch": 4.0,
751
+ "eval_loss": 0.4771515429019928,
752
+ "eval_runtime": 68.2605,
753
+ "eval_samples_per_second": 5.347,
754
+ "eval_steps_per_second": 0.674,
755
+ "step": 1026
756
+ },
757
+ {
758
+ "epoch": 4.015594541910332,
759
+ "grad_norm": 0.8478823304176331,
760
+ "learning_rate": 0.0002,
761
+ "loss": 0.3554,
762
+ "step": 1030
763
+ },
764
+ {
765
+ "epoch": 4.05458089668616,
766
+ "grad_norm": 0.7147605419158936,
767
+ "learning_rate": 0.0002,
768
+ "loss": 0.3353,
769
+ "step": 1040
770
+ },
771
+ {
772
+ "epoch": 4.093567251461988,
773
+ "grad_norm": 0.8668870329856873,
774
+ "learning_rate": 0.0002,
775
+ "loss": 0.3318,
776
+ "step": 1050
777
+ },
778
+ {
779
+ "epoch": 4.132553606237817,
780
+ "grad_norm": 0.9445207715034485,
781
+ "learning_rate": 0.0002,
782
+ "loss": 0.3284,
783
+ "step": 1060
784
+ },
785
+ {
786
+ "epoch": 4.171539961013645,
787
+ "grad_norm": 0.7062109112739563,
788
+ "learning_rate": 0.0002,
789
+ "loss": 0.3453,
790
+ "step": 1070
791
+ },
792
+ {
793
+ "epoch": 4.2105263157894735,
794
+ "grad_norm": 0.8336073160171509,
795
+ "learning_rate": 0.0002,
796
+ "loss": 0.3345,
797
+ "step": 1080
798
+ },
799
+ {
800
+ "epoch": 4.249512670565302,
801
+ "grad_norm": 1.3078413009643555,
802
+ "learning_rate": 0.0002,
803
+ "loss": 0.3435,
804
+ "step": 1090
805
+ },
806
+ {
807
+ "epoch": 4.288499025341131,
808
+ "grad_norm": 0.8631044030189514,
809
+ "learning_rate": 0.0002,
810
+ "loss": 0.3443,
811
+ "step": 1100
812
+ },
813
+ {
814
+ "epoch": 4.3274853801169595,
815
+ "grad_norm": 0.7545914053916931,
816
+ "learning_rate": 0.0002,
817
+ "loss": 0.3269,
818
+ "step": 1110
819
+ },
820
+ {
821
+ "epoch": 4.366471734892787,
822
+ "grad_norm": 0.7546519637107849,
823
+ "learning_rate": 0.0002,
824
+ "loss": 0.3504,
825
+ "step": 1120
826
+ },
827
+ {
828
+ "epoch": 4.405458089668616,
829
+ "grad_norm": 0.8977745175361633,
830
+ "learning_rate": 0.0002,
831
+ "loss": 0.3419,
832
+ "step": 1130
833
+ },
834
+ {
835
+ "epoch": 4.444444444444445,
836
+ "grad_norm": 1.1983102560043335,
837
+ "learning_rate": 0.0002,
838
+ "loss": 0.3472,
839
+ "step": 1140
840
+ },
841
+ {
842
+ "epoch": 4.483430799220272,
843
+ "grad_norm": 0.9402135610580444,
844
+ "learning_rate": 0.0002,
845
+ "loss": 0.3409,
846
+ "step": 1150
847
+ },
848
+ {
849
+ "epoch": 4.522417153996101,
850
+ "grad_norm": 0.7405855655670166,
851
+ "learning_rate": 0.0002,
852
+ "loss": 0.3372,
853
+ "step": 1160
854
+ },
855
+ {
856
+ "epoch": 4.56140350877193,
857
+ "grad_norm": 0.6910150647163391,
858
+ "learning_rate": 0.0002,
859
+ "loss": 0.344,
860
+ "step": 1170
861
+ },
862
+ {
863
+ "epoch": 4.6003898635477585,
864
+ "grad_norm": 0.8426865339279175,
865
+ "learning_rate": 0.0002,
866
+ "loss": 0.3402,
867
+ "step": 1180
868
+ },
869
+ {
870
+ "epoch": 4.639376218323587,
871
+ "grad_norm": 0.6767265200614929,
872
+ "learning_rate": 0.0002,
873
+ "loss": 0.3361,
874
+ "step": 1190
875
+ },
876
+ {
877
+ "epoch": 4.678362573099415,
878
+ "grad_norm": 0.7790605425834656,
879
+ "learning_rate": 0.0002,
880
+ "loss": 0.3417,
881
+ "step": 1200
882
+ },
883
+ {
884
+ "epoch": 4.717348927875244,
885
+ "grad_norm": 0.7993232011795044,
886
+ "learning_rate": 0.0002,
887
+ "loss": 0.3513,
888
+ "step": 1210
889
+ },
890
+ {
891
+ "epoch": 4.756335282651072,
892
+ "grad_norm": 0.6861053705215454,
893
+ "learning_rate": 0.0002,
894
+ "loss": 0.346,
895
+ "step": 1220
896
+ },
897
+ {
898
+ "epoch": 4.7953216374269,
899
+ "grad_norm": 0.8599495887756348,
900
+ "learning_rate": 0.0002,
901
+ "loss": 0.3426,
902
+ "step": 1230
903
+ },
904
+ {
905
+ "epoch": 4.834307992202729,
906
+ "grad_norm": 0.8054423332214355,
907
+ "learning_rate": 0.0002,
908
+ "loss": 0.3622,
909
+ "step": 1240
910
+ },
911
+ {
912
+ "epoch": 4.8732943469785575,
913
+ "grad_norm": 0.949587881565094,
914
+ "learning_rate": 0.0002,
915
+ "loss": 0.343,
916
+ "step": 1250
917
+ },
918
+ {
919
+ "epoch": 4.912280701754386,
920
+ "grad_norm": 0.6002761125564575,
921
+ "learning_rate": 0.0002,
922
+ "loss": 0.3364,
923
+ "step": 1260
924
+ },
925
+ {
926
+ "epoch": 4.951267056530215,
927
+ "grad_norm": 0.7506934404373169,
928
+ "learning_rate": 0.0002,
929
+ "loss": 0.3417,
930
+ "step": 1270
931
+ },
932
+ {
933
+ "epoch": 4.990253411306043,
934
+ "grad_norm": 0.7621583938598633,
935
+ "learning_rate": 0.0002,
936
+ "loss": 0.3379,
937
+ "step": 1280
938
+ },
939
+ {
940
+ "epoch": 4.9980506822612085,
941
+ "eval_loss": 0.4660908877849579,
942
+ "eval_runtime": 67.4734,
943
+ "eval_samples_per_second": 5.41,
944
+ "eval_steps_per_second": 0.682,
945
+ "step": 1282
946
+ },
947
+ {
948
+ "epoch": 5.029239766081871,
949
+ "grad_norm": 0.6844434142112732,
950
+ "learning_rate": 0.0002,
951
+ "loss": 0.3272,
952
+ "step": 1290
953
+ },
954
+ {
955
+ "epoch": 5.0682261208577,
956
+ "grad_norm": 0.8217318058013916,
957
+ "learning_rate": 0.0002,
958
+ "loss": 0.3092,
959
+ "step": 1300
960
+ },
961
+ {
962
+ "epoch": 5.107212475633529,
963
+ "grad_norm": 1.0060460567474365,
964
+ "learning_rate": 0.0002,
965
+ "loss": 0.3131,
966
+ "step": 1310
967
+ },
968
+ {
969
+ "epoch": 5.146198830409356,
970
+ "grad_norm": 0.7044107913970947,
971
+ "learning_rate": 0.0002,
972
+ "loss": 0.31,
973
+ "step": 1320
974
+ },
975
+ {
976
+ "epoch": 5.185185185185185,
977
+ "grad_norm": 0.9584488868713379,
978
+ "learning_rate": 0.0002,
979
+ "loss": 0.3179,
980
+ "step": 1330
981
+ },
982
+ {
983
+ "epoch": 5.224171539961014,
984
+ "grad_norm": 0.9667648077011108,
985
+ "learning_rate": 0.0002,
986
+ "loss": 0.3138,
987
+ "step": 1340
988
+ },
989
+ {
990
+ "epoch": 5.2631578947368425,
991
+ "grad_norm": 0.938228189945221,
992
+ "learning_rate": 0.0002,
993
+ "loss": 0.3076,
994
+ "step": 1350
995
+ },
996
+ {
997
+ "epoch": 5.30214424951267,
998
+ "grad_norm": 0.7234814167022705,
999
+ "learning_rate": 0.0002,
1000
+ "loss": 0.2999,
1001
+ "step": 1360
1002
+ },
1003
+ {
1004
+ "epoch": 5.341130604288499,
1005
+ "grad_norm": 0.9198869466781616,
1006
+ "learning_rate": 0.0002,
1007
+ "loss": 0.3112,
1008
+ "step": 1370
1009
+ },
1010
+ {
1011
+ "epoch": 5.380116959064328,
1012
+ "grad_norm": 0.6611506342887878,
1013
+ "learning_rate": 0.0002,
1014
+ "loss": 0.3131,
1015
+ "step": 1380
1016
+ },
1017
+ {
1018
+ "epoch": 5.419103313840156,
1019
+ "grad_norm": 0.7446638345718384,
1020
+ "learning_rate": 0.0002,
1021
+ "loss": 0.3133,
1022
+ "step": 1390
1023
+ },
1024
+ {
1025
+ "epoch": 5.458089668615984,
1026
+ "grad_norm": 1.050093412399292,
1027
+ "learning_rate": 0.0002,
1028
+ "loss": 0.3213,
1029
+ "step": 1400
1030
+ },
1031
+ {
1032
+ "epoch": 5.497076023391813,
1033
+ "grad_norm": 0.7504354119300842,
1034
+ "learning_rate": 0.0002,
1035
+ "loss": 0.3156,
1036
+ "step": 1410
1037
+ },
1038
+ {
1039
+ "epoch": 5.5360623781676415,
1040
+ "grad_norm": 0.6047531962394714,
1041
+ "learning_rate": 0.0002,
1042
+ "loss": 0.3172,
1043
+ "step": 1420
1044
+ },
1045
+ {
1046
+ "epoch": 5.57504873294347,
1047
+ "grad_norm": 0.835421085357666,
1048
+ "learning_rate": 0.0002,
1049
+ "loss": 0.3118,
1050
+ "step": 1430
1051
+ },
1052
+ {
1053
+ "epoch": 5.614035087719298,
1054
+ "grad_norm": 0.8842822313308716,
1055
+ "learning_rate": 0.0002,
1056
+ "loss": 0.3183,
1057
+ "step": 1440
1058
+ },
1059
+ {
1060
+ "epoch": 5.653021442495127,
1061
+ "grad_norm": 0.782640814781189,
1062
+ "learning_rate": 0.0002,
1063
+ "loss": 0.3107,
1064
+ "step": 1450
1065
+ },
1066
+ {
1067
+ "epoch": 5.692007797270955,
1068
+ "grad_norm": 0.7722012996673584,
1069
+ "learning_rate": 0.0002,
1070
+ "loss": 0.3157,
1071
+ "step": 1460
1072
+ },
1073
+ {
1074
+ "epoch": 5.730994152046784,
1075
+ "grad_norm": 0.7458067536354065,
1076
+ "learning_rate": 0.0002,
1077
+ "loss": 0.3168,
1078
+ "step": 1470
1079
+ },
1080
+ {
1081
+ "epoch": 5.769980506822612,
1082
+ "grad_norm": 0.7182063460350037,
1083
+ "learning_rate": 0.0002,
1084
+ "loss": 0.3219,
1085
+ "step": 1480
1086
+ },
1087
+ {
1088
+ "epoch": 5.8089668615984404,
1089
+ "grad_norm": 1.0041741132736206,
1090
+ "learning_rate": 0.0002,
1091
+ "loss": 0.3152,
1092
+ "step": 1490
1093
+ },
1094
+ {
1095
+ "epoch": 5.847953216374269,
1096
+ "grad_norm": 0.894087016582489,
1097
+ "learning_rate": 0.0002,
1098
+ "loss": 0.3148,
1099
+ "step": 1500
1100
+ },
1101
+ {
1102
+ "epoch": 5.886939571150098,
1103
+ "grad_norm": 1.177829384803772,
1104
+ "learning_rate": 0.0002,
1105
+ "loss": 0.3073,
1106
+ "step": 1510
1107
+ },
1108
+ {
1109
+ "epoch": 5.925925925925926,
1110
+ "grad_norm": 1.2548596858978271,
1111
+ "learning_rate": 0.0002,
1112
+ "loss": 0.3088,
1113
+ "step": 1520
1114
+ },
1115
+ {
1116
+ "epoch": 5.964912280701754,
1117
+ "grad_norm": 0.9875953197479248,
1118
+ "learning_rate": 0.0002,
1119
+ "loss": 0.3107,
1120
+ "step": 1530
1121
+ },
1122
+ {
1123
+ "epoch": 6.0,
1124
+ "eval_loss": 0.4633646011352539,
1125
+ "eval_runtime": 67.64,
1126
+ "eval_samples_per_second": 5.396,
1127
+ "eval_steps_per_second": 0.68,
1128
+ "step": 1539
1129
+ }
1130
+ ],
1131
+ "logging_steps": 10,
1132
+ "max_steps": 2048,
1133
+ "num_input_tokens_seen": 0,
1134
+ "num_train_epochs": 8,
1135
+ "save_steps": 200,
1136
+ "stateful_callbacks": {
1137
+ "TrainerControl": {
1138
+ "args": {
1139
+ "should_epoch_stop": false,
1140
+ "should_evaluate": false,
1141
+ "should_log": false,
1142
+ "should_save": true,
1143
+ "should_training_stop": false
1144
+ },
1145
+ "attributes": {}
1146
+ }
1147
+ },
1148
+ "total_flos": 6.75232044023808e+16,
1149
+ "train_batch_size": 1,
1150
+ "trial_name": null,
1151
+ "trial_params": null
1152
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1539/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5036267d1db24ac0a5932b39180f94ba0ea9b0dc9da633253ea9585ce5cdb211
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b7d36cc3fa8251baf43d682f58cb1e30535f2bcec0330202bb0806e5147aff7
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc6a068cddea287a2c67a7749e2e90466fea0f8c63aff24d1361334216edf97b
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e08fa5259b71ec7681cbaddccc5d44eb83bf84113ae14b9b08b3bbba9ea61638
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc5eddd3ffbc863ad0ba139936cdc56c0591e61c0ab81d7445efbc74ba0c8f5a
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795/trainer_state.json ADDED
@@ -0,0 +1,1342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.4561765789985657,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1795",
4
+ "epoch": 6.9980506822612085,
5
+ "eval_steps": 10,
6
+ "global_step": 1795,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03898635477582846,
13
+ "grad_norm": 1.1630783081054688,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7486,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.07797270955165692,
20
+ "grad_norm": 1.3587305545806885,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.1818,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.11695906432748537,
27
+ "grad_norm": 0.9663119912147522,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.0017,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.15594541910331383,
34
+ "grad_norm": 1.0442273616790771,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.945,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.1949317738791423,
41
+ "grad_norm": 0.9459889531135559,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.7863,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.23391812865497075,
48
+ "grad_norm": 0.9623780846595764,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7287,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.2729044834307992,
55
+ "grad_norm": 0.8872420787811279,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6969,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.31189083820662766,
62
+ "grad_norm": 0.7173621654510498,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6828,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.3508771929824561,
69
+ "grad_norm": 0.7221336364746094,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.6651,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.3898635477582846,
76
+ "grad_norm": 0.7142595648765564,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.621,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.42884990253411304,
83
+ "grad_norm": 0.6138886213302612,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6601,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.4678362573099415,
90
+ "grad_norm": 0.8129922151565552,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6182,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.50682261208577,
97
+ "grad_norm": 0.8280786275863647,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6426,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.5458089668615984,
104
+ "grad_norm": 0.5899930596351624,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6125,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.5847953216374269,
111
+ "grad_norm": 0.7101946473121643,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.6444,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.6237816764132553,
118
+ "grad_norm": 0.6261710524559021,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6374,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.6627680311890838,
125
+ "grad_norm": 0.7684038877487183,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.594,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.7017543859649122,
132
+ "grad_norm": 0.581214189529419,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.5992,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.7407407407407407,
139
+ "grad_norm": 0.5658173561096191,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.6179,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.7797270955165692,
146
+ "grad_norm": 0.7603134512901306,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.6417,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.8187134502923976,
153
+ "grad_norm": 0.5359350442886353,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.5906,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.8576998050682261,
160
+ "grad_norm": 0.7978444695472717,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.6125,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.8966861598440545,
167
+ "grad_norm": 0.5791468620300293,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.5984,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.935672514619883,
174
+ "grad_norm": 0.635198712348938,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6007,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.9746588693957114,
181
+ "grad_norm": 0.5510166883468628,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.5912,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.9980506822612085,
188
+ "eval_loss": 0.5850377678871155,
189
+ "eval_runtime": 72.8118,
190
+ "eval_samples_per_second": 5.013,
191
+ "eval_steps_per_second": 0.632,
192
+ "step": 256
193
+ },
194
+ {
195
+ "epoch": 1.01364522417154,
196
+ "grad_norm": 0.5623628497123718,
197
+ "learning_rate": 0.0002,
198
+ "loss": 0.575,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.0526315789473684,
203
+ "grad_norm": 0.6872021555900574,
204
+ "learning_rate": 0.0002,
205
+ "loss": 0.5498,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.0916179337231968,
210
+ "grad_norm": 0.5543047785758972,
211
+ "learning_rate": 0.0002,
212
+ "loss": 0.5373,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.1306042884990253,
217
+ "grad_norm": 0.498542845249176,
218
+ "learning_rate": 0.0002,
219
+ "loss": 0.5272,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.1695906432748537,
224
+ "grad_norm": 0.5940739512443542,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.5528,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 1.2085769980506822,
231
+ "grad_norm": 0.5854314565658569,
232
+ "learning_rate": 0.0002,
233
+ "loss": 0.5308,
234
+ "step": 310
235
+ },
236
+ {
237
+ "epoch": 1.2475633528265107,
238
+ "grad_norm": 0.5293670892715454,
239
+ "learning_rate": 0.0002,
240
+ "loss": 0.5452,
241
+ "step": 320
242
+ },
243
+ {
244
+ "epoch": 1.286549707602339,
245
+ "grad_norm": 0.5736058950424194,
246
+ "learning_rate": 0.0002,
247
+ "loss": 0.5451,
248
+ "step": 330
249
+ },
250
+ {
251
+ "epoch": 1.3255360623781676,
252
+ "grad_norm": 0.7912607789039612,
253
+ "learning_rate": 0.0002,
254
+ "loss": 0.5344,
255
+ "step": 340
256
+ },
257
+ {
258
+ "epoch": 1.364522417153996,
259
+ "grad_norm": 0.781843364238739,
260
+ "learning_rate": 0.0002,
261
+ "loss": 0.531,
262
+ "step": 350
263
+ },
264
+ {
265
+ "epoch": 1.4035087719298245,
266
+ "grad_norm": 0.7365643978118896,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.5396,
269
+ "step": 360
270
+ },
271
+ {
272
+ "epoch": 1.442495126705653,
273
+ "grad_norm": 0.5565363764762878,
274
+ "learning_rate": 0.0002,
275
+ "loss": 0.5363,
276
+ "step": 370
277
+ },
278
+ {
279
+ "epoch": 1.4814814814814814,
280
+ "grad_norm": 0.5427217483520508,
281
+ "learning_rate": 0.0002,
282
+ "loss": 0.5235,
283
+ "step": 380
284
+ },
285
+ {
286
+ "epoch": 1.52046783625731,
287
+ "grad_norm": 0.7150877118110657,
288
+ "learning_rate": 0.0002,
289
+ "loss": 0.5173,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 1.5594541910331383,
294
+ "grad_norm": 0.5850045084953308,
295
+ "learning_rate": 0.0002,
296
+ "loss": 0.5394,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.598440545808967,
301
+ "grad_norm": 0.5376710295677185,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.5045,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.6374269005847952,
308
+ "grad_norm": 0.6234501004219055,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.5444,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.676413255360624,
315
+ "grad_norm": 0.7774652242660522,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.5186,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.7153996101364521,
322
+ "grad_norm": 0.6821911334991455,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.5168,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 1.7543859649122808,
329
+ "grad_norm": 0.7210469841957092,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.5118,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 1.793372319688109,
336
+ "grad_norm": 0.6935250759124756,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.5499,
339
+ "step": 460
340
+ },
341
+ {
342
+ "epoch": 1.8323586744639377,
343
+ "grad_norm": 0.6940227150917053,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.516,
346
+ "step": 470
347
+ },
348
+ {
349
+ "epoch": 1.871345029239766,
350
+ "grad_norm": 0.6918772459030151,
351
+ "learning_rate": 0.0002,
352
+ "loss": 0.4839,
353
+ "step": 480
354
+ },
355
+ {
356
+ "epoch": 1.9103313840155947,
357
+ "grad_norm": 0.5278885364532471,
358
+ "learning_rate": 0.0002,
359
+ "loss": 0.4906,
360
+ "step": 490
361
+ },
362
+ {
363
+ "epoch": 1.949317738791423,
364
+ "grad_norm": 0.655097246170044,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.4954,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 1.9883040935672516,
371
+ "grad_norm": 0.728690505027771,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.4981,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 2.0,
378
+ "eval_loss": 0.5312528610229492,
379
+ "eval_runtime": 67.5284,
380
+ "eval_samples_per_second": 5.405,
381
+ "eval_steps_per_second": 0.681,
382
+ "step": 513
383
+ },
384
+ {
385
+ "epoch": 2.02729044834308,
386
+ "grad_norm": 0.7993459105491638,
387
+ "learning_rate": 0.0002,
388
+ "loss": 0.473,
389
+ "step": 520
390
+ },
391
+ {
392
+ "epoch": 2.0662768031189085,
393
+ "grad_norm": 0.6997111439704895,
394
+ "learning_rate": 0.0002,
395
+ "loss": 0.4514,
396
+ "step": 530
397
+ },
398
+ {
399
+ "epoch": 2.1052631578947367,
400
+ "grad_norm": 0.9680729508399963,
401
+ "learning_rate": 0.0002,
402
+ "loss": 0.4537,
403
+ "step": 540
404
+ },
405
+ {
406
+ "epoch": 2.1442495126705654,
407
+ "grad_norm": 0.67018723487854,
408
+ "learning_rate": 0.0002,
409
+ "loss": 0.4278,
410
+ "step": 550
411
+ },
412
+ {
413
+ "epoch": 2.1832358674463936,
414
+ "grad_norm": 0.7760737538337708,
415
+ "learning_rate": 0.0002,
416
+ "loss": 0.4424,
417
+ "step": 560
418
+ },
419
+ {
420
+ "epoch": 2.2222222222222223,
421
+ "grad_norm": 1.9475411176681519,
422
+ "learning_rate": 0.0002,
423
+ "loss": 0.4554,
424
+ "step": 570
425
+ },
426
+ {
427
+ "epoch": 2.2612085769980506,
428
+ "grad_norm": 0.810126006603241,
429
+ "learning_rate": 0.0002,
430
+ "loss": 0.4321,
431
+ "step": 580
432
+ },
433
+ {
434
+ "epoch": 2.3001949317738792,
435
+ "grad_norm": 0.8697490692138672,
436
+ "learning_rate": 0.0002,
437
+ "loss": 0.4413,
438
+ "step": 590
439
+ },
440
+ {
441
+ "epoch": 2.3391812865497075,
442
+ "grad_norm": 0.5910632014274597,
443
+ "learning_rate": 0.0002,
444
+ "loss": 0.445,
445
+ "step": 600
446
+ },
447
+ {
448
+ "epoch": 2.378167641325536,
449
+ "grad_norm": 1.0113483667373657,
450
+ "learning_rate": 0.0002,
451
+ "loss": 0.43,
452
+ "step": 610
453
+ },
454
+ {
455
+ "epoch": 2.4171539961013644,
456
+ "grad_norm": 0.5548872351646423,
457
+ "learning_rate": 0.0002,
458
+ "loss": 0.4491,
459
+ "step": 620
460
+ },
461
+ {
462
+ "epoch": 2.456140350877193,
463
+ "grad_norm": 0.7542755603790283,
464
+ "learning_rate": 0.0002,
465
+ "loss": 0.4654,
466
+ "step": 630
467
+ },
468
+ {
469
+ "epoch": 2.4951267056530213,
470
+ "grad_norm": 0.6450021862983704,
471
+ "learning_rate": 0.0002,
472
+ "loss": 0.4269,
473
+ "step": 640
474
+ },
475
+ {
476
+ "epoch": 2.53411306042885,
477
+ "grad_norm": 0.8181225657463074,
478
+ "learning_rate": 0.0002,
479
+ "loss": 0.4321,
480
+ "step": 650
481
+ },
482
+ {
483
+ "epoch": 2.573099415204678,
484
+ "grad_norm": 0.8882361650466919,
485
+ "learning_rate": 0.0002,
486
+ "loss": 0.4476,
487
+ "step": 660
488
+ },
489
+ {
490
+ "epoch": 2.612085769980507,
491
+ "grad_norm": 0.9545704126358032,
492
+ "learning_rate": 0.0002,
493
+ "loss": 0.4398,
494
+ "step": 670
495
+ },
496
+ {
497
+ "epoch": 2.651072124756335,
498
+ "grad_norm": 0.633364200592041,
499
+ "learning_rate": 0.0002,
500
+ "loss": 0.4302,
501
+ "step": 680
502
+ },
503
+ {
504
+ "epoch": 2.690058479532164,
505
+ "grad_norm": 0.6909534931182861,
506
+ "learning_rate": 0.0002,
507
+ "loss": 0.4265,
508
+ "step": 690
509
+ },
510
+ {
511
+ "epoch": 2.729044834307992,
512
+ "grad_norm": 0.7342118620872498,
513
+ "learning_rate": 0.0002,
514
+ "loss": 0.4508,
515
+ "step": 700
516
+ },
517
+ {
518
+ "epoch": 2.7680311890838207,
519
+ "grad_norm": 0.6567948460578918,
520
+ "learning_rate": 0.0002,
521
+ "loss": 0.4495,
522
+ "step": 710
523
+ },
524
+ {
525
+ "epoch": 2.807017543859649,
526
+ "grad_norm": 0.81608647108078,
527
+ "learning_rate": 0.0002,
528
+ "loss": 0.4521,
529
+ "step": 720
530
+ },
531
+ {
532
+ "epoch": 2.8460038986354776,
533
+ "grad_norm": 0.7075870633125305,
534
+ "learning_rate": 0.0002,
535
+ "loss": 0.4584,
536
+ "step": 730
537
+ },
538
+ {
539
+ "epoch": 2.884990253411306,
540
+ "grad_norm": 0.5666054487228394,
541
+ "learning_rate": 0.0002,
542
+ "loss": 0.4332,
543
+ "step": 740
544
+ },
545
+ {
546
+ "epoch": 2.9239766081871346,
547
+ "grad_norm": 0.5457495450973511,
548
+ "learning_rate": 0.0002,
549
+ "loss": 0.423,
550
+ "step": 750
551
+ },
552
+ {
553
+ "epoch": 2.962962962962963,
554
+ "grad_norm": 0.8959799408912659,
555
+ "learning_rate": 0.0002,
556
+ "loss": 0.4136,
557
+ "step": 760
558
+ },
559
+ {
560
+ "epoch": 2.9980506822612085,
561
+ "eval_loss": 0.49315401911735535,
562
+ "eval_runtime": 67.9039,
563
+ "eval_samples_per_second": 5.375,
564
+ "eval_steps_per_second": 0.677,
565
+ "step": 769
566
+ },
567
+ {
568
+ "epoch": 3.0019493177387915,
569
+ "grad_norm": 0.8162972927093506,
570
+ "learning_rate": 0.0002,
571
+ "loss": 0.4332,
572
+ "step": 770
573
+ },
574
+ {
575
+ "epoch": 3.0409356725146197,
576
+ "grad_norm": 0.8814733028411865,
577
+ "learning_rate": 0.0002,
578
+ "loss": 0.3778,
579
+ "step": 780
580
+ },
581
+ {
582
+ "epoch": 3.0799220272904484,
583
+ "grad_norm": 0.6659106612205505,
584
+ "learning_rate": 0.0002,
585
+ "loss": 0.3775,
586
+ "step": 790
587
+ },
588
+ {
589
+ "epoch": 3.1189083820662766,
590
+ "grad_norm": 0.7013096213340759,
591
+ "learning_rate": 0.0002,
592
+ "loss": 0.3718,
593
+ "step": 800
594
+ },
595
+ {
596
+ "epoch": 3.1578947368421053,
597
+ "grad_norm": 0.5946340560913086,
598
+ "learning_rate": 0.0002,
599
+ "loss": 0.3799,
600
+ "step": 810
601
+ },
602
+ {
603
+ "epoch": 3.1968810916179335,
604
+ "grad_norm": 1.1263338327407837,
605
+ "learning_rate": 0.0002,
606
+ "loss": 0.3752,
607
+ "step": 820
608
+ },
609
+ {
610
+ "epoch": 3.2358674463937622,
611
+ "grad_norm": 1.028369426727295,
612
+ "learning_rate": 0.0002,
613
+ "loss": 0.3819,
614
+ "step": 830
615
+ },
616
+ {
617
+ "epoch": 3.2748538011695905,
618
+ "grad_norm": 1.1113781929016113,
619
+ "learning_rate": 0.0002,
620
+ "loss": 0.3816,
621
+ "step": 840
622
+ },
623
+ {
624
+ "epoch": 3.313840155945419,
625
+ "grad_norm": 0.7735888361930847,
626
+ "learning_rate": 0.0002,
627
+ "loss": 0.383,
628
+ "step": 850
629
+ },
630
+ {
631
+ "epoch": 3.3528265107212474,
632
+ "grad_norm": 0.8967649936676025,
633
+ "learning_rate": 0.0002,
634
+ "loss": 0.3703,
635
+ "step": 860
636
+ },
637
+ {
638
+ "epoch": 3.391812865497076,
639
+ "grad_norm": 0.7354698777198792,
640
+ "learning_rate": 0.0002,
641
+ "loss": 0.3884,
642
+ "step": 870
643
+ },
644
+ {
645
+ "epoch": 3.4307992202729043,
646
+ "grad_norm": 0.8721298575401306,
647
+ "learning_rate": 0.0002,
648
+ "loss": 0.3762,
649
+ "step": 880
650
+ },
651
+ {
652
+ "epoch": 3.469785575048733,
653
+ "grad_norm": 0.7276861667633057,
654
+ "learning_rate": 0.0002,
655
+ "loss": 0.3758,
656
+ "step": 890
657
+ },
658
+ {
659
+ "epoch": 3.5087719298245617,
660
+ "grad_norm": 0.8296075463294983,
661
+ "learning_rate": 0.0002,
662
+ "loss": 0.3866,
663
+ "step": 900
664
+ },
665
+ {
666
+ "epoch": 3.54775828460039,
667
+ "grad_norm": 0.8955655097961426,
668
+ "learning_rate": 0.0002,
669
+ "loss": 0.3909,
670
+ "step": 910
671
+ },
672
+ {
673
+ "epoch": 3.586744639376218,
674
+ "grad_norm": 0.8008049130439758,
675
+ "learning_rate": 0.0002,
676
+ "loss": 0.3882,
677
+ "step": 920
678
+ },
679
+ {
680
+ "epoch": 3.625730994152047,
681
+ "grad_norm": 0.7791480422019958,
682
+ "learning_rate": 0.0002,
683
+ "loss": 0.3837,
684
+ "step": 930
685
+ },
686
+ {
687
+ "epoch": 3.6647173489278755,
688
+ "grad_norm": 0.8780500292778015,
689
+ "learning_rate": 0.0002,
690
+ "loss": 0.3877,
691
+ "step": 940
692
+ },
693
+ {
694
+ "epoch": 3.7037037037037037,
695
+ "grad_norm": 0.8411193490028381,
696
+ "learning_rate": 0.0002,
697
+ "loss": 0.3852,
698
+ "step": 950
699
+ },
700
+ {
701
+ "epoch": 3.742690058479532,
702
+ "grad_norm": 0.7564510703086853,
703
+ "learning_rate": 0.0002,
704
+ "loss": 0.3789,
705
+ "step": 960
706
+ },
707
+ {
708
+ "epoch": 3.7816764132553606,
709
+ "grad_norm": 0.9967873692512512,
710
+ "learning_rate": 0.0002,
711
+ "loss": 0.3854,
712
+ "step": 970
713
+ },
714
+ {
715
+ "epoch": 3.8206627680311893,
716
+ "grad_norm": 1.0118954181671143,
717
+ "learning_rate": 0.0002,
718
+ "loss": 0.3664,
719
+ "step": 980
720
+ },
721
+ {
722
+ "epoch": 3.8596491228070176,
723
+ "grad_norm": 0.7355602383613586,
724
+ "learning_rate": 0.0002,
725
+ "loss": 0.367,
726
+ "step": 990
727
+ },
728
+ {
729
+ "epoch": 3.898635477582846,
730
+ "grad_norm": 0.7059919834136963,
731
+ "learning_rate": 0.0002,
732
+ "loss": 0.3802,
733
+ "step": 1000
734
+ },
735
+ {
736
+ "epoch": 3.9376218323586745,
737
+ "grad_norm": 0.6720611453056335,
738
+ "learning_rate": 0.0002,
739
+ "loss": 0.3907,
740
+ "step": 1010
741
+ },
742
+ {
743
+ "epoch": 3.976608187134503,
744
+ "grad_norm": 0.664450466632843,
745
+ "learning_rate": 0.0002,
746
+ "loss": 0.392,
747
+ "step": 1020
748
+ },
749
+ {
750
+ "epoch": 4.0,
751
+ "eval_loss": 0.4771515429019928,
752
+ "eval_runtime": 68.2605,
753
+ "eval_samples_per_second": 5.347,
754
+ "eval_steps_per_second": 0.674,
755
+ "step": 1026
756
+ },
757
+ {
758
+ "epoch": 4.015594541910332,
759
+ "grad_norm": 0.8478823304176331,
760
+ "learning_rate": 0.0002,
761
+ "loss": 0.3554,
762
+ "step": 1030
763
+ },
764
+ {
765
+ "epoch": 4.05458089668616,
766
+ "grad_norm": 0.7147605419158936,
767
+ "learning_rate": 0.0002,
768
+ "loss": 0.3353,
769
+ "step": 1040
770
+ },
771
+ {
772
+ "epoch": 4.093567251461988,
773
+ "grad_norm": 0.8668870329856873,
774
+ "learning_rate": 0.0002,
775
+ "loss": 0.3318,
776
+ "step": 1050
777
+ },
778
+ {
779
+ "epoch": 4.132553606237817,
780
+ "grad_norm": 0.9445207715034485,
781
+ "learning_rate": 0.0002,
782
+ "loss": 0.3284,
783
+ "step": 1060
784
+ },
785
+ {
786
+ "epoch": 4.171539961013645,
787
+ "grad_norm": 0.7062109112739563,
788
+ "learning_rate": 0.0002,
789
+ "loss": 0.3453,
790
+ "step": 1070
791
+ },
792
+ {
793
+ "epoch": 4.2105263157894735,
794
+ "grad_norm": 0.8336073160171509,
795
+ "learning_rate": 0.0002,
796
+ "loss": 0.3345,
797
+ "step": 1080
798
+ },
799
+ {
800
+ "epoch": 4.249512670565302,
801
+ "grad_norm": 1.3078413009643555,
802
+ "learning_rate": 0.0002,
803
+ "loss": 0.3435,
804
+ "step": 1090
805
+ },
806
+ {
807
+ "epoch": 4.288499025341131,
808
+ "grad_norm": 0.8631044030189514,
809
+ "learning_rate": 0.0002,
810
+ "loss": 0.3443,
811
+ "step": 1100
812
+ },
813
+ {
814
+ "epoch": 4.3274853801169595,
815
+ "grad_norm": 0.7545914053916931,
816
+ "learning_rate": 0.0002,
817
+ "loss": 0.3269,
818
+ "step": 1110
819
+ },
820
+ {
821
+ "epoch": 4.366471734892787,
822
+ "grad_norm": 0.7546519637107849,
823
+ "learning_rate": 0.0002,
824
+ "loss": 0.3504,
825
+ "step": 1120
826
+ },
827
+ {
828
+ "epoch": 4.405458089668616,
829
+ "grad_norm": 0.8977745175361633,
830
+ "learning_rate": 0.0002,
831
+ "loss": 0.3419,
832
+ "step": 1130
833
+ },
834
+ {
835
+ "epoch": 4.444444444444445,
836
+ "grad_norm": 1.1983102560043335,
837
+ "learning_rate": 0.0002,
838
+ "loss": 0.3472,
839
+ "step": 1140
840
+ },
841
+ {
842
+ "epoch": 4.483430799220272,
843
+ "grad_norm": 0.9402135610580444,
844
+ "learning_rate": 0.0002,
845
+ "loss": 0.3409,
846
+ "step": 1150
847
+ },
848
+ {
849
+ "epoch": 4.522417153996101,
850
+ "grad_norm": 0.7405855655670166,
851
+ "learning_rate": 0.0002,
852
+ "loss": 0.3372,
853
+ "step": 1160
854
+ },
855
+ {
856
+ "epoch": 4.56140350877193,
857
+ "grad_norm": 0.6910150647163391,
858
+ "learning_rate": 0.0002,
859
+ "loss": 0.344,
860
+ "step": 1170
861
+ },
862
+ {
863
+ "epoch": 4.6003898635477585,
864
+ "grad_norm": 0.8426865339279175,
865
+ "learning_rate": 0.0002,
866
+ "loss": 0.3402,
867
+ "step": 1180
868
+ },
869
+ {
870
+ "epoch": 4.639376218323587,
871
+ "grad_norm": 0.6767265200614929,
872
+ "learning_rate": 0.0002,
873
+ "loss": 0.3361,
874
+ "step": 1190
875
+ },
876
+ {
877
+ "epoch": 4.678362573099415,
878
+ "grad_norm": 0.7790605425834656,
879
+ "learning_rate": 0.0002,
880
+ "loss": 0.3417,
881
+ "step": 1200
882
+ },
883
+ {
884
+ "epoch": 4.717348927875244,
885
+ "grad_norm": 0.7993232011795044,
886
+ "learning_rate": 0.0002,
887
+ "loss": 0.3513,
888
+ "step": 1210
889
+ },
890
+ {
891
+ "epoch": 4.756335282651072,
892
+ "grad_norm": 0.6861053705215454,
893
+ "learning_rate": 0.0002,
894
+ "loss": 0.346,
895
+ "step": 1220
896
+ },
897
+ {
898
+ "epoch": 4.7953216374269,
899
+ "grad_norm": 0.8599495887756348,
900
+ "learning_rate": 0.0002,
901
+ "loss": 0.3426,
902
+ "step": 1230
903
+ },
904
+ {
905
+ "epoch": 4.834307992202729,
906
+ "grad_norm": 0.8054423332214355,
907
+ "learning_rate": 0.0002,
908
+ "loss": 0.3622,
909
+ "step": 1240
910
+ },
911
+ {
912
+ "epoch": 4.8732943469785575,
913
+ "grad_norm": 0.949587881565094,
914
+ "learning_rate": 0.0002,
915
+ "loss": 0.343,
916
+ "step": 1250
917
+ },
918
+ {
919
+ "epoch": 4.912280701754386,
920
+ "grad_norm": 0.6002761125564575,
921
+ "learning_rate": 0.0002,
922
+ "loss": 0.3364,
923
+ "step": 1260
924
+ },
925
+ {
926
+ "epoch": 4.951267056530215,
927
+ "grad_norm": 0.7506934404373169,
928
+ "learning_rate": 0.0002,
929
+ "loss": 0.3417,
930
+ "step": 1270
931
+ },
932
+ {
933
+ "epoch": 4.990253411306043,
934
+ "grad_norm": 0.7621583938598633,
935
+ "learning_rate": 0.0002,
936
+ "loss": 0.3379,
937
+ "step": 1280
938
+ },
939
+ {
940
+ "epoch": 4.9980506822612085,
941
+ "eval_loss": 0.4660908877849579,
942
+ "eval_runtime": 67.4734,
943
+ "eval_samples_per_second": 5.41,
944
+ "eval_steps_per_second": 0.682,
945
+ "step": 1282
946
+ },
947
+ {
948
+ "epoch": 5.029239766081871,
949
+ "grad_norm": 0.6844434142112732,
950
+ "learning_rate": 0.0002,
951
+ "loss": 0.3272,
952
+ "step": 1290
953
+ },
954
+ {
955
+ "epoch": 5.0682261208577,
956
+ "grad_norm": 0.8217318058013916,
957
+ "learning_rate": 0.0002,
958
+ "loss": 0.3092,
959
+ "step": 1300
960
+ },
961
+ {
962
+ "epoch": 5.107212475633529,
963
+ "grad_norm": 1.0060460567474365,
964
+ "learning_rate": 0.0002,
965
+ "loss": 0.3131,
966
+ "step": 1310
967
+ },
968
+ {
969
+ "epoch": 5.146198830409356,
970
+ "grad_norm": 0.7044107913970947,
971
+ "learning_rate": 0.0002,
972
+ "loss": 0.31,
973
+ "step": 1320
974
+ },
975
+ {
976
+ "epoch": 5.185185185185185,
977
+ "grad_norm": 0.9584488868713379,
978
+ "learning_rate": 0.0002,
979
+ "loss": 0.3179,
980
+ "step": 1330
981
+ },
982
+ {
983
+ "epoch": 5.224171539961014,
984
+ "grad_norm": 0.9667648077011108,
985
+ "learning_rate": 0.0002,
986
+ "loss": 0.3138,
987
+ "step": 1340
988
+ },
989
+ {
990
+ "epoch": 5.2631578947368425,
991
+ "grad_norm": 0.938228189945221,
992
+ "learning_rate": 0.0002,
993
+ "loss": 0.3076,
994
+ "step": 1350
995
+ },
996
+ {
997
+ "epoch": 5.30214424951267,
998
+ "grad_norm": 0.7234814167022705,
999
+ "learning_rate": 0.0002,
1000
+ "loss": 0.2999,
1001
+ "step": 1360
1002
+ },
1003
+ {
1004
+ "epoch": 5.341130604288499,
1005
+ "grad_norm": 0.9198869466781616,
1006
+ "learning_rate": 0.0002,
1007
+ "loss": 0.3112,
1008
+ "step": 1370
1009
+ },
1010
+ {
1011
+ "epoch": 5.380116959064328,
1012
+ "grad_norm": 0.6611506342887878,
1013
+ "learning_rate": 0.0002,
1014
+ "loss": 0.3131,
1015
+ "step": 1380
1016
+ },
1017
+ {
1018
+ "epoch": 5.419103313840156,
1019
+ "grad_norm": 0.7446638345718384,
1020
+ "learning_rate": 0.0002,
1021
+ "loss": 0.3133,
1022
+ "step": 1390
1023
+ },
1024
+ {
1025
+ "epoch": 5.458089668615984,
1026
+ "grad_norm": 1.050093412399292,
1027
+ "learning_rate": 0.0002,
1028
+ "loss": 0.3213,
1029
+ "step": 1400
1030
+ },
1031
+ {
1032
+ "epoch": 5.497076023391813,
1033
+ "grad_norm": 0.7504354119300842,
1034
+ "learning_rate": 0.0002,
1035
+ "loss": 0.3156,
1036
+ "step": 1410
1037
+ },
1038
+ {
1039
+ "epoch": 5.5360623781676415,
1040
+ "grad_norm": 0.6047531962394714,
1041
+ "learning_rate": 0.0002,
1042
+ "loss": 0.3172,
1043
+ "step": 1420
1044
+ },
1045
+ {
1046
+ "epoch": 5.57504873294347,
1047
+ "grad_norm": 0.835421085357666,
1048
+ "learning_rate": 0.0002,
1049
+ "loss": 0.3118,
1050
+ "step": 1430
1051
+ },
1052
+ {
1053
+ "epoch": 5.614035087719298,
1054
+ "grad_norm": 0.8842822313308716,
1055
+ "learning_rate": 0.0002,
1056
+ "loss": 0.3183,
1057
+ "step": 1440
1058
+ },
1059
+ {
1060
+ "epoch": 5.653021442495127,
1061
+ "grad_norm": 0.782640814781189,
1062
+ "learning_rate": 0.0002,
1063
+ "loss": 0.3107,
1064
+ "step": 1450
1065
+ },
1066
+ {
1067
+ "epoch": 5.692007797270955,
1068
+ "grad_norm": 0.7722012996673584,
1069
+ "learning_rate": 0.0002,
1070
+ "loss": 0.3157,
1071
+ "step": 1460
1072
+ },
1073
+ {
1074
+ "epoch": 5.730994152046784,
1075
+ "grad_norm": 0.7458067536354065,
1076
+ "learning_rate": 0.0002,
1077
+ "loss": 0.3168,
1078
+ "step": 1470
1079
+ },
1080
+ {
1081
+ "epoch": 5.769980506822612,
1082
+ "grad_norm": 0.7182063460350037,
1083
+ "learning_rate": 0.0002,
1084
+ "loss": 0.3219,
1085
+ "step": 1480
1086
+ },
1087
+ {
1088
+ "epoch": 5.8089668615984404,
1089
+ "grad_norm": 1.0041741132736206,
1090
+ "learning_rate": 0.0002,
1091
+ "loss": 0.3152,
1092
+ "step": 1490
1093
+ },
1094
+ {
1095
+ "epoch": 5.847953216374269,
1096
+ "grad_norm": 0.894087016582489,
1097
+ "learning_rate": 0.0002,
1098
+ "loss": 0.3148,
1099
+ "step": 1500
1100
+ },
1101
+ {
1102
+ "epoch": 5.886939571150098,
1103
+ "grad_norm": 1.177829384803772,
1104
+ "learning_rate": 0.0002,
1105
+ "loss": 0.3073,
1106
+ "step": 1510
1107
+ },
1108
+ {
1109
+ "epoch": 5.925925925925926,
1110
+ "grad_norm": 1.2548596858978271,
1111
+ "learning_rate": 0.0002,
1112
+ "loss": 0.3088,
1113
+ "step": 1520
1114
+ },
1115
+ {
1116
+ "epoch": 5.964912280701754,
1117
+ "grad_norm": 0.9875953197479248,
1118
+ "learning_rate": 0.0002,
1119
+ "loss": 0.3107,
1120
+ "step": 1530
1121
+ },
1122
+ {
1123
+ "epoch": 6.0,
1124
+ "eval_loss": 0.4633646011352539,
1125
+ "eval_runtime": 67.64,
1126
+ "eval_samples_per_second": 5.396,
1127
+ "eval_steps_per_second": 0.68,
1128
+ "step": 1539
1129
+ },
1130
+ {
1131
+ "epoch": 6.003898635477583,
1132
+ "grad_norm": 0.7251299619674683,
1133
+ "learning_rate": 0.0002,
1134
+ "loss": 0.3155,
1135
+ "step": 1540
1136
+ },
1137
+ {
1138
+ "epoch": 6.042884990253412,
1139
+ "grad_norm": 0.7206684947013855,
1140
+ "learning_rate": 0.0002,
1141
+ "loss": 0.2645,
1142
+ "step": 1550
1143
+ },
1144
+ {
1145
+ "epoch": 6.081871345029239,
1146
+ "grad_norm": 0.727130651473999,
1147
+ "learning_rate": 0.0002,
1148
+ "loss": 0.2863,
1149
+ "step": 1560
1150
+ },
1151
+ {
1152
+ "epoch": 6.120857699805068,
1153
+ "grad_norm": 0.8526223301887512,
1154
+ "learning_rate": 0.0002,
1155
+ "loss": 0.2945,
1156
+ "step": 1570
1157
+ },
1158
+ {
1159
+ "epoch": 6.159844054580897,
1160
+ "grad_norm": 0.9564275741577148,
1161
+ "learning_rate": 0.0002,
1162
+ "loss": 0.2774,
1163
+ "step": 1580
1164
+ },
1165
+ {
1166
+ "epoch": 6.1988304093567255,
1167
+ "grad_norm": 0.6997653245925903,
1168
+ "learning_rate": 0.0002,
1169
+ "loss": 0.2802,
1170
+ "step": 1590
1171
+ },
1172
+ {
1173
+ "epoch": 6.237816764132553,
1174
+ "grad_norm": 0.549583911895752,
1175
+ "learning_rate": 0.0002,
1176
+ "loss": 0.2911,
1177
+ "step": 1600
1178
+ },
1179
+ {
1180
+ "epoch": 6.276803118908382,
1181
+ "grad_norm": 0.9782546758651733,
1182
+ "learning_rate": 0.0002,
1183
+ "loss": 0.2855,
1184
+ "step": 1610
1185
+ },
1186
+ {
1187
+ "epoch": 6.315789473684211,
1188
+ "grad_norm": 1.0026962757110596,
1189
+ "learning_rate": 0.0002,
1190
+ "loss": 0.2971,
1191
+ "step": 1620
1192
+ },
1193
+ {
1194
+ "epoch": 6.354775828460039,
1195
+ "grad_norm": 0.9684990048408508,
1196
+ "learning_rate": 0.0002,
1197
+ "loss": 0.2933,
1198
+ "step": 1630
1199
+ },
1200
+ {
1201
+ "epoch": 6.393762183235867,
1202
+ "grad_norm": 0.7317994832992554,
1203
+ "learning_rate": 0.0002,
1204
+ "loss": 0.2918,
1205
+ "step": 1640
1206
+ },
1207
+ {
1208
+ "epoch": 6.432748538011696,
1209
+ "grad_norm": 0.8299538493156433,
1210
+ "learning_rate": 0.0002,
1211
+ "loss": 0.2946,
1212
+ "step": 1650
1213
+ },
1214
+ {
1215
+ "epoch": 6.4717348927875245,
1216
+ "grad_norm": 0.8719546794891357,
1217
+ "learning_rate": 0.0002,
1218
+ "loss": 0.2909,
1219
+ "step": 1660
1220
+ },
1221
+ {
1222
+ "epoch": 6.510721247563353,
1223
+ "grad_norm": 0.7498378753662109,
1224
+ "learning_rate": 0.0002,
1225
+ "loss": 0.2826,
1226
+ "step": 1670
1227
+ },
1228
+ {
1229
+ "epoch": 6.549707602339181,
1230
+ "grad_norm": 0.8273977041244507,
1231
+ "learning_rate": 0.0002,
1232
+ "loss": 0.2827,
1233
+ "step": 1680
1234
+ },
1235
+ {
1236
+ "epoch": 6.58869395711501,
1237
+ "grad_norm": 0.6725714802742004,
1238
+ "learning_rate": 0.0002,
1239
+ "loss": 0.2913,
1240
+ "step": 1690
1241
+ },
1242
+ {
1243
+ "epoch": 6.627680311890838,
1244
+ "grad_norm": 0.752943217754364,
1245
+ "learning_rate": 0.0002,
1246
+ "loss": 0.2879,
1247
+ "step": 1700
1248
+ },
1249
+ {
1250
+ "epoch": 6.666666666666667,
1251
+ "grad_norm": 0.8002777099609375,
1252
+ "learning_rate": 0.0002,
1253
+ "loss": 0.3006,
1254
+ "step": 1710
1255
+ },
1256
+ {
1257
+ "epoch": 6.705653021442495,
1258
+ "grad_norm": 0.5702647566795349,
1259
+ "learning_rate": 0.0002,
1260
+ "loss": 0.2934,
1261
+ "step": 1720
1262
+ },
1263
+ {
1264
+ "epoch": 6.744639376218323,
1265
+ "grad_norm": 1.0377178192138672,
1266
+ "learning_rate": 0.0002,
1267
+ "loss": 0.3001,
1268
+ "step": 1730
1269
+ },
1270
+ {
1271
+ "epoch": 6.783625730994152,
1272
+ "grad_norm": 0.9070322513580322,
1273
+ "learning_rate": 0.0002,
1274
+ "loss": 0.2958,
1275
+ "step": 1740
1276
+ },
1277
+ {
1278
+ "epoch": 6.822612085769981,
1279
+ "grad_norm": 0.8154694437980652,
1280
+ "learning_rate": 0.0002,
1281
+ "loss": 0.2935,
1282
+ "step": 1750
1283
+ },
1284
+ {
1285
+ "epoch": 6.861598440545809,
1286
+ "grad_norm": 1.035827875137329,
1287
+ "learning_rate": 0.0002,
1288
+ "loss": 0.3025,
1289
+ "step": 1760
1290
+ },
1291
+ {
1292
+ "epoch": 6.900584795321637,
1293
+ "grad_norm": 0.6619474291801453,
1294
+ "learning_rate": 0.0002,
1295
+ "loss": 0.3071,
1296
+ "step": 1770
1297
+ },
1298
+ {
1299
+ "epoch": 6.939571150097466,
1300
+ "grad_norm": 1.0016711950302124,
1301
+ "learning_rate": 0.0002,
1302
+ "loss": 0.3001,
1303
+ "step": 1780
1304
+ },
1305
+ {
1306
+ "epoch": 6.978557504873295,
1307
+ "grad_norm": 1.1134511232376099,
1308
+ "learning_rate": 0.0002,
1309
+ "loss": 0.2833,
1310
+ "step": 1790
1311
+ },
1312
+ {
1313
+ "epoch": 6.9980506822612085,
1314
+ "eval_loss": 0.4561765789985657,
1315
+ "eval_runtime": 67.345,
1316
+ "eval_samples_per_second": 5.42,
1317
+ "eval_steps_per_second": 0.683,
1318
+ "step": 1795
1319
+ }
1320
+ ],
1321
+ "logging_steps": 10,
1322
+ "max_steps": 2048,
1323
+ "num_input_tokens_seen": 0,
1324
+ "num_train_epochs": 8,
1325
+ "save_steps": 200,
1326
+ "stateful_callbacks": {
1327
+ "TrainerControl": {
1328
+ "args": {
1329
+ "should_epoch_stop": false,
1330
+ "should_evaluate": false,
1331
+ "should_log": false,
1332
+ "should_save": true,
1333
+ "should_training_stop": false
1334
+ },
1335
+ "attributes": {}
1336
+ }
1337
+ },
1338
+ "total_flos": 7.87770718027776e+16,
1339
+ "train_batch_size": 1,
1340
+ "trial_name": null,
1341
+ "trial_params": null
1342
+ }