MilaWang commited on
Commit
c83c354
·
verified ·
1 Parent(s): eb75d9e

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/README.md +202 -0
  2. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/adapter_config.json +29 -0
  3. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/adapter_model.safetensors +3 -0
  4. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/README.md +202 -0
  5. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/adapter_config.json +29 -0
  6. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/adapter_model.safetensors +3 -0
  7. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/optimizer.pt +3 -0
  8. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/rng_state.pth +3 -0
  9. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/scheduler.pt +3 -0
  10. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/special_tokens_map.json +24 -0
  11. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/tokenizer.json +0 -0
  12. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/tokenizer.model +3 -0
  13. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/tokenizer_config.json +0 -0
  14. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/trainer_state.json +0 -0
  15. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/training_args.bin +3 -0
  16. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/README.md +202 -0
  17. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/adapter_config.json +29 -0
  18. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/adapter_model.safetensors +3 -0
  19. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/optimizer.pt +3 -0
  20. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/rng_state.pth +3 -0
  21. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/scheduler.pt +3 -0
  22. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/special_tokens_map.json +24 -0
  23. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/tokenizer.json +0 -0
  24. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/tokenizer.model +3 -0
  25. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/tokenizer_config.json +0 -0
  26. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/trainer_state.json +930 -0
  27. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/training_args.bin +3 -0
  28. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/README.md +202 -0
  29. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/adapter_config.json +29 -0
  30. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/adapter_model.safetensors +3 -0
  31. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/optimizer.pt +3 -0
  32. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/rng_state.pth +3 -0
  33. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/scheduler.pt +3 -0
  34. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/special_tokens_map.json +24 -0
  35. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/tokenizer.json +0 -0
  36. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/tokenizer.model +3 -0
  37. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/tokenizer_config.json +0 -0
  38. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/trainer_state.json +1834 -0
  39. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/training_args.bin +3 -0
  40. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/README.md +202 -0
  41. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/adapter_config.json +29 -0
  42. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/adapter_model.safetensors +3 -0
  43. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/optimizer.pt +3 -0
  44. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/rng_state.pth +3 -0
  45. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/scheduler.pt +3 -0
  46. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/special_tokens_map.json +24 -0
  47. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/tokenizer.json +0 -0
  48. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/tokenizer.model +3 -0
  49. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/tokenizer_config.json +0 -0
  50. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/trainer_state.json +2738 -0
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9750116b7986e46425f9dc2eb64b3f4647ac087542206a59d49095dfe893fcf4
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a429a4ae9a145e381353cafffcd66ae7f1e628368d1242da011587da534d62f
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:578fb4b1138f3ac38093483593a376e53cd6b5e8808a541b8b76a8ff52da5a96
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:040be4c7f2b38b215c39fbb7d27055b97153e94d38c2ef0fc64d911d3d3c3850
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d26dad811ff813f8aac5cb50f8ecf7eaf8d48acd5c8caed89475387705c580f4
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-10232/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67c127eb44653a0272979e2cc773b017f5ff5cfc6ed92250a567d1213376a07e
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2970289e187c96d0997889a347f9a51e86f8a53f5625049e38079cbdf9a37740
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:274cd9ae246ddfa66ec752ab3eef08251047ae90f890894eb9e5dbb17fd066d9
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:886590d77dcc6a5b77286920048e6289608ea7df56d4192800352b954910e2ff
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17d3c3052408e1b0a9c679c8c5cdb53e0805ecd8446ebaac118d642a80ee82f9
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/trainer_state.json ADDED
@@ -0,0 +1,930 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.39914223551750183,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279",
4
+ "epoch": 1.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1279,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.007818608287724784,
13
+ "grad_norm": 1.1001313924789429,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7403,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.01563721657544957,
20
+ "grad_norm": 1.3678615093231201,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.1795,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.023455824863174355,
27
+ "grad_norm": 1.2362287044525146,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.0159,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.03127443315089914,
34
+ "grad_norm": 0.9754743576049805,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.9315,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.039093041438623924,
41
+ "grad_norm": 1.0572363138198853,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.8015,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.04691164972634871,
48
+ "grad_norm": 0.8838446140289307,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7264,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.054730258014073496,
55
+ "grad_norm": 0.831045389175415,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6807,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.06254886630179828,
62
+ "grad_norm": 0.721530556678772,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6731,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07036747458952307,
69
+ "grad_norm": 0.6918481588363647,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.6427,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.07818608287724785,
76
+ "grad_norm": 0.8207236528396606,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.6719,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.08600469116497264,
83
+ "grad_norm": 0.9405701756477356,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6533,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.09382329945269742,
90
+ "grad_norm": 0.7389968037605286,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6102,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.1016419077404222,
97
+ "grad_norm": 0.7102212905883789,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6561,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.10946051602814699,
104
+ "grad_norm": 0.6546808481216431,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6222,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.11727912431587177,
111
+ "grad_norm": 1.0097354650497437,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.6369,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.12509773260359655,
118
+ "grad_norm": 0.5699719786643982,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6495,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.13291634089132134,
125
+ "grad_norm": 0.6371490359306335,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.6421,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.14073494917904614,
132
+ "grad_norm": 0.8385978937149048,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.6101,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.1485535574667709,
139
+ "grad_norm": 0.6549069285392761,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.5957,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.1563721657544957,
146
+ "grad_norm": 0.5297655463218689,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.5834,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.1641907740422205,
153
+ "grad_norm": 0.6385621428489685,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.6054,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.17200938232994528,
160
+ "grad_norm": 0.6723865866661072,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.6174,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.17982799061767005,
167
+ "grad_norm": 0.6121484041213989,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.5951,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.18764659890539484,
174
+ "grad_norm": 0.619121789932251,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6046,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.19546520719311963,
181
+ "grad_norm": 0.49208253622055054,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.5764,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.2032838154808444,
188
+ "grad_norm": 0.4991285800933838,
189
+ "learning_rate": 0.0002,
190
+ "loss": 0.5679,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.2111024237685692,
195
+ "grad_norm": 0.7622858285903931,
196
+ "learning_rate": 0.0002,
197
+ "loss": 0.5777,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.21892103205629398,
202
+ "grad_norm": 0.5988286733627319,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.5504,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.22673964034401878,
209
+ "grad_norm": 0.510055661201477,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.5801,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.23455824863174354,
216
+ "grad_norm": 0.47940748929977417,
217
+ "learning_rate": 0.0002,
218
+ "loss": 0.5788,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.24237685691946834,
223
+ "grad_norm": 0.5604141354560852,
224
+ "learning_rate": 0.0002,
225
+ "loss": 0.6093,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.2501954652071931,
230
+ "grad_norm": 0.479342520236969,
231
+ "learning_rate": 0.0002,
232
+ "loss": 0.5641,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.2580140734949179,
237
+ "grad_norm": 0.5401737093925476,
238
+ "learning_rate": 0.0002,
239
+ "loss": 0.5304,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.2658326817826427,
244
+ "grad_norm": 0.5436083674430847,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.5547,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.2736512900703675,
251
+ "grad_norm": 0.6402848362922668,
252
+ "learning_rate": 0.0002,
253
+ "loss": 0.5724,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.2814698983580923,
258
+ "grad_norm": 0.4756305515766144,
259
+ "learning_rate": 0.0002,
260
+ "loss": 0.5452,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.28928850664581707,
265
+ "grad_norm": 0.5536904335021973,
266
+ "learning_rate": 0.0002,
267
+ "loss": 0.5936,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.2971071149335418,
272
+ "grad_norm": 0.6187605857849121,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.5827,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3049257232212666,
279
+ "grad_norm": 0.5297170877456665,
280
+ "learning_rate": 0.0002,
281
+ "loss": 0.5435,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.3127443315089914,
286
+ "grad_norm": 0.5808210372924805,
287
+ "learning_rate": 0.0002,
288
+ "loss": 0.583,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.3205629397967162,
293
+ "grad_norm": 0.7509300708770752,
294
+ "learning_rate": 0.0002,
295
+ "loss": 0.5587,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.328381548084441,
300
+ "grad_norm": 0.5674371719360352,
301
+ "learning_rate": 0.0002,
302
+ "loss": 0.5439,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.33620015637216577,
307
+ "grad_norm": 0.5833905339241028,
308
+ "learning_rate": 0.0002,
309
+ "loss": 0.5431,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.34401876465989056,
314
+ "grad_norm": 0.537860095500946,
315
+ "learning_rate": 0.0002,
316
+ "loss": 0.5527,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.3518373729476153,
321
+ "grad_norm": 0.5747054219245911,
322
+ "learning_rate": 0.0002,
323
+ "loss": 0.528,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.3596559812353401,
328
+ "grad_norm": 0.6268995404243469,
329
+ "learning_rate": 0.0002,
330
+ "loss": 0.5281,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.3674745895230649,
335
+ "grad_norm": 0.640737771987915,
336
+ "learning_rate": 0.0002,
337
+ "loss": 0.5394,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.3752931978107897,
342
+ "grad_norm": 0.6593332290649414,
343
+ "learning_rate": 0.0002,
344
+ "loss": 0.5488,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.3831118060985145,
349
+ "grad_norm": 0.5977872014045715,
350
+ "learning_rate": 0.0002,
351
+ "loss": 0.5384,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.39093041438623927,
356
+ "grad_norm": 0.6118639707565308,
357
+ "learning_rate": 0.0002,
358
+ "loss": 0.5154,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.39874902267396406,
363
+ "grad_norm": 1.2320106029510498,
364
+ "learning_rate": 0.0002,
365
+ "loss": 0.5481,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.4065676309616888,
370
+ "grad_norm": 0.6538275480270386,
371
+ "learning_rate": 0.0002,
372
+ "loss": 0.5225,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.4143862392494136,
377
+ "grad_norm": 0.5839771032333374,
378
+ "learning_rate": 0.0002,
379
+ "loss": 0.5322,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.4222048475371384,
384
+ "grad_norm": 0.6228310465812683,
385
+ "learning_rate": 0.0002,
386
+ "loss": 0.5075,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4300234558248632,
391
+ "grad_norm": 0.653239905834198,
392
+ "learning_rate": 0.0002,
393
+ "loss": 0.5177,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.43784206411258797,
398
+ "grad_norm": 0.6995204091072083,
399
+ "learning_rate": 0.0002,
400
+ "loss": 0.5209,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.44566067240031276,
405
+ "grad_norm": 0.5197685956954956,
406
+ "learning_rate": 0.0002,
407
+ "loss": 0.4914,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.45347928068803756,
412
+ "grad_norm": 0.6786061525344849,
413
+ "learning_rate": 0.0002,
414
+ "loss": 0.4951,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.4612978889757623,
419
+ "grad_norm": 0.6599542498588562,
420
+ "learning_rate": 0.0002,
421
+ "loss": 0.5107,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.4691164972634871,
426
+ "grad_norm": 0.5535895228385925,
427
+ "learning_rate": 0.0002,
428
+ "loss": 0.514,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.4769351055512119,
433
+ "grad_norm": 0.667336642742157,
434
+ "learning_rate": 0.0002,
435
+ "loss": 0.5206,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.4847537138389367,
440
+ "grad_norm": 0.5404567718505859,
441
+ "learning_rate": 0.0002,
442
+ "loss": 0.4918,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.49257232212666147,
447
+ "grad_norm": 0.5316283702850342,
448
+ "learning_rate": 0.0002,
449
+ "loss": 0.501,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.5003909304143862,
454
+ "grad_norm": 0.6398797035217285,
455
+ "learning_rate": 0.0002,
456
+ "loss": 0.5026,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.508209538702111,
461
+ "grad_norm": 0.6197776794433594,
462
+ "learning_rate": 0.0002,
463
+ "loss": 0.5017,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.5160281469898358,
468
+ "grad_norm": 0.8760672807693481,
469
+ "learning_rate": 0.0002,
470
+ "loss": 0.4905,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5238467552775606,
475
+ "grad_norm": 0.7163699269294739,
476
+ "learning_rate": 0.0002,
477
+ "loss": 0.4798,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5316653635652854,
482
+ "grad_norm": 0.7599782347679138,
483
+ "learning_rate": 0.0002,
484
+ "loss": 0.4974,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5394839718530101,
489
+ "grad_norm": 0.5682359337806702,
490
+ "learning_rate": 0.0002,
491
+ "loss": 0.4942,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.547302580140735,
496
+ "grad_norm": 0.6667918562889099,
497
+ "learning_rate": 0.0002,
498
+ "loss": 0.4826,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.5551211884284597,
503
+ "grad_norm": 0.9613338112831116,
504
+ "learning_rate": 0.0002,
505
+ "loss": 0.475,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.5629397967161845,
510
+ "grad_norm": 0.5658668279647827,
511
+ "learning_rate": 0.0002,
512
+ "loss": 0.5005,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.5707584050039093,
517
+ "grad_norm": 0.7233469486236572,
518
+ "learning_rate": 0.0002,
519
+ "loss": 0.4697,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.5785770132916341,
524
+ "grad_norm": 0.5586039423942566,
525
+ "learning_rate": 0.0002,
526
+ "loss": 0.4659,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.5863956215793589,
531
+ "grad_norm": 0.8161298632621765,
532
+ "learning_rate": 0.0002,
533
+ "loss": 0.4893,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.5942142298670836,
538
+ "grad_norm": 0.7192191481590271,
539
+ "learning_rate": 0.0002,
540
+ "loss": 0.4678,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6020328381548085,
545
+ "grad_norm": 0.5711938738822937,
546
+ "learning_rate": 0.0002,
547
+ "loss": 0.4765,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.6098514464425332,
552
+ "grad_norm": 0.5471241474151611,
553
+ "learning_rate": 0.0002,
554
+ "loss": 0.4676,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.617670054730258,
559
+ "grad_norm": 0.5709220767021179,
560
+ "learning_rate": 0.0002,
561
+ "loss": 0.4628,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.6254886630179828,
566
+ "grad_norm": 0.882448673248291,
567
+ "learning_rate": 0.0002,
568
+ "loss": 0.4695,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6333072713057076,
573
+ "grad_norm": 0.5136802196502686,
574
+ "learning_rate": 0.0002,
575
+ "loss": 0.4611,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.6411258795934324,
580
+ "grad_norm": 0.6611698865890503,
581
+ "learning_rate": 0.0002,
582
+ "loss": 0.4663,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.6489444878811571,
587
+ "grad_norm": 0.7050015926361084,
588
+ "learning_rate": 0.0002,
589
+ "loss": 0.4962,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.656763096168882,
594
+ "grad_norm": 0.5757645964622498,
595
+ "learning_rate": 0.0002,
596
+ "loss": 0.4624,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.6645817044566067,
601
+ "grad_norm": 0.6651985049247742,
602
+ "learning_rate": 0.0002,
603
+ "loss": 0.4695,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.6724003127443315,
608
+ "grad_norm": 0.6121841669082642,
609
+ "learning_rate": 0.0002,
610
+ "loss": 0.4616,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.6802189210320563,
615
+ "grad_norm": 0.9026947617530823,
616
+ "learning_rate": 0.0002,
617
+ "loss": 0.4763,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.6880375293197811,
622
+ "grad_norm": 0.7725462913513184,
623
+ "learning_rate": 0.0002,
624
+ "loss": 0.4488,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.6958561376075059,
629
+ "grad_norm": 0.896050214767456,
630
+ "learning_rate": 0.0002,
631
+ "loss": 0.4334,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7036747458952306,
636
+ "grad_norm": 0.757851243019104,
637
+ "learning_rate": 0.0002,
638
+ "loss": 0.4499,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7114933541829555,
643
+ "grad_norm": 0.7172074317932129,
644
+ "learning_rate": 0.0002,
645
+ "loss": 0.4466,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.7193119624706802,
650
+ "grad_norm": 0.7364748120307922,
651
+ "learning_rate": 0.0002,
652
+ "loss": 0.4261,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.727130570758405,
657
+ "grad_norm": 0.6359867453575134,
658
+ "learning_rate": 0.0002,
659
+ "loss": 0.4531,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.7349491790461298,
664
+ "grad_norm": 0.5289077758789062,
665
+ "learning_rate": 0.0002,
666
+ "loss": 0.4464,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.7427677873338546,
671
+ "grad_norm": 0.6053950786590576,
672
+ "learning_rate": 0.0002,
673
+ "loss": 0.4525,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.7505863956215794,
678
+ "grad_norm": 0.8122503161430359,
679
+ "learning_rate": 0.0002,
680
+ "loss": 0.4568,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.7584050039093041,
685
+ "grad_norm": 0.8779653906822205,
686
+ "learning_rate": 0.0002,
687
+ "loss": 0.4304,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.766223612197029,
692
+ "grad_norm": 0.6312686204910278,
693
+ "learning_rate": 0.0002,
694
+ "loss": 0.4337,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.7740422204847537,
699
+ "grad_norm": 0.7815352082252502,
700
+ "learning_rate": 0.0002,
701
+ "loss": 0.431,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.7818608287724785,
706
+ "grad_norm": 0.8249784111976624,
707
+ "learning_rate": 0.0002,
708
+ "loss": 0.45,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.7896794370602033,
713
+ "grad_norm": 0.8731566667556763,
714
+ "learning_rate": 0.0002,
715
+ "loss": 0.4253,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.7974980453479281,
720
+ "grad_norm": 0.7336146831512451,
721
+ "learning_rate": 0.0002,
722
+ "loss": 0.4393,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8053166536356529,
727
+ "grad_norm": 0.7756309509277344,
728
+ "learning_rate": 0.0002,
729
+ "loss": 0.4175,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8131352619233776,
734
+ "grad_norm": 0.7608133554458618,
735
+ "learning_rate": 0.0002,
736
+ "loss": 0.4532,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.8209538702111024,
741
+ "grad_norm": 0.7842742800712585,
742
+ "learning_rate": 0.0002,
743
+ "loss": 0.4447,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.8287724784988272,
748
+ "grad_norm": 0.9361023902893066,
749
+ "learning_rate": 0.0002,
750
+ "loss": 0.4203,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.836591086786552,
755
+ "grad_norm": 0.8978990912437439,
756
+ "learning_rate": 0.0002,
757
+ "loss": 0.4165,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.8444096950742768,
762
+ "grad_norm": 0.7448273301124573,
763
+ "learning_rate": 0.0002,
764
+ "loss": 0.4313,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.8522283033620016,
769
+ "grad_norm": 0.9199049472808838,
770
+ "learning_rate": 0.0002,
771
+ "loss": 0.4256,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.8600469116497264,
776
+ "grad_norm": 0.7521695494651794,
777
+ "learning_rate": 0.0002,
778
+ "loss": 0.4343,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.8678655199374511,
783
+ "grad_norm": 0.7470024228096008,
784
+ "learning_rate": 0.0002,
785
+ "loss": 0.4136,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.8756841282251759,
790
+ "grad_norm": 0.5728107690811157,
791
+ "learning_rate": 0.0002,
792
+ "loss": 0.4227,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.8835027365129007,
797
+ "grad_norm": 0.8137171268463135,
798
+ "learning_rate": 0.0002,
799
+ "loss": 0.4084,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.8913213448006255,
804
+ "grad_norm": 0.7411524057388306,
805
+ "learning_rate": 0.0002,
806
+ "loss": 0.4171,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.8991399530883503,
811
+ "grad_norm": 0.705020546913147,
812
+ "learning_rate": 0.0002,
813
+ "loss": 0.4061,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.9069585613760751,
818
+ "grad_norm": 0.6366162300109863,
819
+ "learning_rate": 0.0002,
820
+ "loss": 0.4196,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.9147771696637998,
825
+ "grad_norm": 0.7566165924072266,
826
+ "learning_rate": 0.0002,
827
+ "loss": 0.45,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.9225957779515246,
832
+ "grad_norm": 0.9905046224594116,
833
+ "learning_rate": 0.0002,
834
+ "loss": 0.4195,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.9304143862392494,
839
+ "grad_norm": 0.6872445940971375,
840
+ "learning_rate": 0.0002,
841
+ "loss": 0.4212,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.9382329945269742,
846
+ "grad_norm": 0.6640546917915344,
847
+ "learning_rate": 0.0002,
848
+ "loss": 0.4151,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.946051602814699,
853
+ "grad_norm": 1.0592104196548462,
854
+ "learning_rate": 0.0002,
855
+ "loss": 0.4018,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.9538702111024238,
860
+ "grad_norm": 0.9068714380264282,
861
+ "learning_rate": 0.0002,
862
+ "loss": 0.3868,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.9616888193901486,
867
+ "grad_norm": 0.7440975308418274,
868
+ "learning_rate": 0.0002,
869
+ "loss": 0.3777,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.9695074276778733,
874
+ "grad_norm": 0.9631947875022888,
875
+ "learning_rate": 0.0002,
876
+ "loss": 0.4086,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.9773260359655981,
881
+ "grad_norm": 0.708501935005188,
882
+ "learning_rate": 0.0002,
883
+ "loss": 0.4042,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.9851446442533229,
888
+ "grad_norm": 0.664806604385376,
889
+ "learning_rate": 0.0002,
890
+ "loss": 0.3958,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.9929632525410477,
895
+ "grad_norm": 0.6895506978034973,
896
+ "learning_rate": 0.0002,
897
+ "loss": 0.3944,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 1.0,
902
+ "eval_loss": 0.39914223551750183,
903
+ "eval_runtime": 92.7363,
904
+ "eval_samples_per_second": 3.936,
905
+ "eval_steps_per_second": 0.496,
906
+ "step": 1279
907
+ }
908
+ ],
909
+ "logging_steps": 10,
910
+ "max_steps": 10232,
911
+ "num_input_tokens_seen": 0,
912
+ "num_train_epochs": 8,
913
+ "save_steps": 200,
914
+ "stateful_callbacks": {
915
+ "TrainerControl": {
916
+ "args": {
917
+ "should_epoch_stop": false,
918
+ "should_evaluate": false,
919
+ "should_log": false,
920
+ "should_save": true,
921
+ "should_training_stop": false
922
+ },
923
+ "attributes": {}
924
+ }
925
+ },
926
+ "total_flos": 5.61157754585088e+16,
927
+ "train_batch_size": 1,
928
+ "trial_name": null,
929
+ "trial_params": null
930
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-1279/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67c127eb44653a0272979e2cc773b017f5ff5cfc6ed92250a567d1213376a07e
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e05927acea8c4fd33c10364683fdbe90867e3de2b653fd130bb0ddb11ef6f181
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:010da7e613147aba1642716ac2a3a315c26e35c8c186915624ab37255cbea6c7
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70f524b7f798a165ec99fbbbd5f785ae5bc43c1ec2b1fc5c868b75f0401e3df3
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:535a1c733634b54951dcb0cda84c1e0fdf82fd1926e3a82e67a802d229840d0b
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/trainer_state.json ADDED
@@ -0,0 +1,1834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.31702762842178345,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558",
4
+ "epoch": 2.0,
5
+ "eval_steps": 10,
6
+ "global_step": 2558,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.007818608287724784,
13
+ "grad_norm": 1.1001313924789429,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7403,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.01563721657544957,
20
+ "grad_norm": 1.3678615093231201,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.1795,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.023455824863174355,
27
+ "grad_norm": 1.2362287044525146,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.0159,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.03127443315089914,
34
+ "grad_norm": 0.9754743576049805,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.9315,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.039093041438623924,
41
+ "grad_norm": 1.0572363138198853,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.8015,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.04691164972634871,
48
+ "grad_norm": 0.8838446140289307,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7264,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.054730258014073496,
55
+ "grad_norm": 0.831045389175415,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6807,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.06254886630179828,
62
+ "grad_norm": 0.721530556678772,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6731,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07036747458952307,
69
+ "grad_norm": 0.6918481588363647,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.6427,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.07818608287724785,
76
+ "grad_norm": 0.8207236528396606,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.6719,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.08600469116497264,
83
+ "grad_norm": 0.9405701756477356,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6533,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.09382329945269742,
90
+ "grad_norm": 0.7389968037605286,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6102,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.1016419077404222,
97
+ "grad_norm": 0.7102212905883789,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6561,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.10946051602814699,
104
+ "grad_norm": 0.6546808481216431,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6222,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.11727912431587177,
111
+ "grad_norm": 1.0097354650497437,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.6369,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.12509773260359655,
118
+ "grad_norm": 0.5699719786643982,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6495,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.13291634089132134,
125
+ "grad_norm": 0.6371490359306335,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.6421,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.14073494917904614,
132
+ "grad_norm": 0.8385978937149048,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.6101,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.1485535574667709,
139
+ "grad_norm": 0.6549069285392761,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.5957,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.1563721657544957,
146
+ "grad_norm": 0.5297655463218689,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.5834,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.1641907740422205,
153
+ "grad_norm": 0.6385621428489685,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.6054,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.17200938232994528,
160
+ "grad_norm": 0.6723865866661072,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.6174,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.17982799061767005,
167
+ "grad_norm": 0.6121484041213989,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.5951,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.18764659890539484,
174
+ "grad_norm": 0.619121789932251,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6046,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.19546520719311963,
181
+ "grad_norm": 0.49208253622055054,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.5764,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.2032838154808444,
188
+ "grad_norm": 0.4991285800933838,
189
+ "learning_rate": 0.0002,
190
+ "loss": 0.5679,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.2111024237685692,
195
+ "grad_norm": 0.7622858285903931,
196
+ "learning_rate": 0.0002,
197
+ "loss": 0.5777,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.21892103205629398,
202
+ "grad_norm": 0.5988286733627319,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.5504,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.22673964034401878,
209
+ "grad_norm": 0.510055661201477,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.5801,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.23455824863174354,
216
+ "grad_norm": 0.47940748929977417,
217
+ "learning_rate": 0.0002,
218
+ "loss": 0.5788,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.24237685691946834,
223
+ "grad_norm": 0.5604141354560852,
224
+ "learning_rate": 0.0002,
225
+ "loss": 0.6093,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.2501954652071931,
230
+ "grad_norm": 0.479342520236969,
231
+ "learning_rate": 0.0002,
232
+ "loss": 0.5641,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.2580140734949179,
237
+ "grad_norm": 0.5401737093925476,
238
+ "learning_rate": 0.0002,
239
+ "loss": 0.5304,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.2658326817826427,
244
+ "grad_norm": 0.5436083674430847,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.5547,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.2736512900703675,
251
+ "grad_norm": 0.6402848362922668,
252
+ "learning_rate": 0.0002,
253
+ "loss": 0.5724,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.2814698983580923,
258
+ "grad_norm": 0.4756305515766144,
259
+ "learning_rate": 0.0002,
260
+ "loss": 0.5452,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.28928850664581707,
265
+ "grad_norm": 0.5536904335021973,
266
+ "learning_rate": 0.0002,
267
+ "loss": 0.5936,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.2971071149335418,
272
+ "grad_norm": 0.6187605857849121,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.5827,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3049257232212666,
279
+ "grad_norm": 0.5297170877456665,
280
+ "learning_rate": 0.0002,
281
+ "loss": 0.5435,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.3127443315089914,
286
+ "grad_norm": 0.5808210372924805,
287
+ "learning_rate": 0.0002,
288
+ "loss": 0.583,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.3205629397967162,
293
+ "grad_norm": 0.7509300708770752,
294
+ "learning_rate": 0.0002,
295
+ "loss": 0.5587,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.328381548084441,
300
+ "grad_norm": 0.5674371719360352,
301
+ "learning_rate": 0.0002,
302
+ "loss": 0.5439,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.33620015637216577,
307
+ "grad_norm": 0.5833905339241028,
308
+ "learning_rate": 0.0002,
309
+ "loss": 0.5431,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.34401876465989056,
314
+ "grad_norm": 0.537860095500946,
315
+ "learning_rate": 0.0002,
316
+ "loss": 0.5527,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.3518373729476153,
321
+ "grad_norm": 0.5747054219245911,
322
+ "learning_rate": 0.0002,
323
+ "loss": 0.528,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.3596559812353401,
328
+ "grad_norm": 0.6268995404243469,
329
+ "learning_rate": 0.0002,
330
+ "loss": 0.5281,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.3674745895230649,
335
+ "grad_norm": 0.640737771987915,
336
+ "learning_rate": 0.0002,
337
+ "loss": 0.5394,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.3752931978107897,
342
+ "grad_norm": 0.6593332290649414,
343
+ "learning_rate": 0.0002,
344
+ "loss": 0.5488,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.3831118060985145,
349
+ "grad_norm": 0.5977872014045715,
350
+ "learning_rate": 0.0002,
351
+ "loss": 0.5384,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.39093041438623927,
356
+ "grad_norm": 0.6118639707565308,
357
+ "learning_rate": 0.0002,
358
+ "loss": 0.5154,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.39874902267396406,
363
+ "grad_norm": 1.2320106029510498,
364
+ "learning_rate": 0.0002,
365
+ "loss": 0.5481,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.4065676309616888,
370
+ "grad_norm": 0.6538275480270386,
371
+ "learning_rate": 0.0002,
372
+ "loss": 0.5225,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.4143862392494136,
377
+ "grad_norm": 0.5839771032333374,
378
+ "learning_rate": 0.0002,
379
+ "loss": 0.5322,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.4222048475371384,
384
+ "grad_norm": 0.6228310465812683,
385
+ "learning_rate": 0.0002,
386
+ "loss": 0.5075,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4300234558248632,
391
+ "grad_norm": 0.653239905834198,
392
+ "learning_rate": 0.0002,
393
+ "loss": 0.5177,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.43784206411258797,
398
+ "grad_norm": 0.6995204091072083,
399
+ "learning_rate": 0.0002,
400
+ "loss": 0.5209,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.44566067240031276,
405
+ "grad_norm": 0.5197685956954956,
406
+ "learning_rate": 0.0002,
407
+ "loss": 0.4914,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.45347928068803756,
412
+ "grad_norm": 0.6786061525344849,
413
+ "learning_rate": 0.0002,
414
+ "loss": 0.4951,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.4612978889757623,
419
+ "grad_norm": 0.6599542498588562,
420
+ "learning_rate": 0.0002,
421
+ "loss": 0.5107,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.4691164972634871,
426
+ "grad_norm": 0.5535895228385925,
427
+ "learning_rate": 0.0002,
428
+ "loss": 0.514,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.4769351055512119,
433
+ "grad_norm": 0.667336642742157,
434
+ "learning_rate": 0.0002,
435
+ "loss": 0.5206,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.4847537138389367,
440
+ "grad_norm": 0.5404567718505859,
441
+ "learning_rate": 0.0002,
442
+ "loss": 0.4918,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.49257232212666147,
447
+ "grad_norm": 0.5316283702850342,
448
+ "learning_rate": 0.0002,
449
+ "loss": 0.501,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.5003909304143862,
454
+ "grad_norm": 0.6398797035217285,
455
+ "learning_rate": 0.0002,
456
+ "loss": 0.5026,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.508209538702111,
461
+ "grad_norm": 0.6197776794433594,
462
+ "learning_rate": 0.0002,
463
+ "loss": 0.5017,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.5160281469898358,
468
+ "grad_norm": 0.8760672807693481,
469
+ "learning_rate": 0.0002,
470
+ "loss": 0.4905,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5238467552775606,
475
+ "grad_norm": 0.7163699269294739,
476
+ "learning_rate": 0.0002,
477
+ "loss": 0.4798,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5316653635652854,
482
+ "grad_norm": 0.7599782347679138,
483
+ "learning_rate": 0.0002,
484
+ "loss": 0.4974,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5394839718530101,
489
+ "grad_norm": 0.5682359337806702,
490
+ "learning_rate": 0.0002,
491
+ "loss": 0.4942,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.547302580140735,
496
+ "grad_norm": 0.6667918562889099,
497
+ "learning_rate": 0.0002,
498
+ "loss": 0.4826,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.5551211884284597,
503
+ "grad_norm": 0.9613338112831116,
504
+ "learning_rate": 0.0002,
505
+ "loss": 0.475,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.5629397967161845,
510
+ "grad_norm": 0.5658668279647827,
511
+ "learning_rate": 0.0002,
512
+ "loss": 0.5005,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.5707584050039093,
517
+ "grad_norm": 0.7233469486236572,
518
+ "learning_rate": 0.0002,
519
+ "loss": 0.4697,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.5785770132916341,
524
+ "grad_norm": 0.5586039423942566,
525
+ "learning_rate": 0.0002,
526
+ "loss": 0.4659,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.5863956215793589,
531
+ "grad_norm": 0.8161298632621765,
532
+ "learning_rate": 0.0002,
533
+ "loss": 0.4893,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.5942142298670836,
538
+ "grad_norm": 0.7192191481590271,
539
+ "learning_rate": 0.0002,
540
+ "loss": 0.4678,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6020328381548085,
545
+ "grad_norm": 0.5711938738822937,
546
+ "learning_rate": 0.0002,
547
+ "loss": 0.4765,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.6098514464425332,
552
+ "grad_norm": 0.5471241474151611,
553
+ "learning_rate": 0.0002,
554
+ "loss": 0.4676,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.617670054730258,
559
+ "grad_norm": 0.5709220767021179,
560
+ "learning_rate": 0.0002,
561
+ "loss": 0.4628,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.6254886630179828,
566
+ "grad_norm": 0.882448673248291,
567
+ "learning_rate": 0.0002,
568
+ "loss": 0.4695,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6333072713057076,
573
+ "grad_norm": 0.5136802196502686,
574
+ "learning_rate": 0.0002,
575
+ "loss": 0.4611,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.6411258795934324,
580
+ "grad_norm": 0.6611698865890503,
581
+ "learning_rate": 0.0002,
582
+ "loss": 0.4663,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.6489444878811571,
587
+ "grad_norm": 0.7050015926361084,
588
+ "learning_rate": 0.0002,
589
+ "loss": 0.4962,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.656763096168882,
594
+ "grad_norm": 0.5757645964622498,
595
+ "learning_rate": 0.0002,
596
+ "loss": 0.4624,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.6645817044566067,
601
+ "grad_norm": 0.6651985049247742,
602
+ "learning_rate": 0.0002,
603
+ "loss": 0.4695,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.6724003127443315,
608
+ "grad_norm": 0.6121841669082642,
609
+ "learning_rate": 0.0002,
610
+ "loss": 0.4616,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.6802189210320563,
615
+ "grad_norm": 0.9026947617530823,
616
+ "learning_rate": 0.0002,
617
+ "loss": 0.4763,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.6880375293197811,
622
+ "grad_norm": 0.7725462913513184,
623
+ "learning_rate": 0.0002,
624
+ "loss": 0.4488,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.6958561376075059,
629
+ "grad_norm": 0.896050214767456,
630
+ "learning_rate": 0.0002,
631
+ "loss": 0.4334,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7036747458952306,
636
+ "grad_norm": 0.757851243019104,
637
+ "learning_rate": 0.0002,
638
+ "loss": 0.4499,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7114933541829555,
643
+ "grad_norm": 0.7172074317932129,
644
+ "learning_rate": 0.0002,
645
+ "loss": 0.4466,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.7193119624706802,
650
+ "grad_norm": 0.7364748120307922,
651
+ "learning_rate": 0.0002,
652
+ "loss": 0.4261,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.727130570758405,
657
+ "grad_norm": 0.6359867453575134,
658
+ "learning_rate": 0.0002,
659
+ "loss": 0.4531,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.7349491790461298,
664
+ "grad_norm": 0.5289077758789062,
665
+ "learning_rate": 0.0002,
666
+ "loss": 0.4464,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.7427677873338546,
671
+ "grad_norm": 0.6053950786590576,
672
+ "learning_rate": 0.0002,
673
+ "loss": 0.4525,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.7505863956215794,
678
+ "grad_norm": 0.8122503161430359,
679
+ "learning_rate": 0.0002,
680
+ "loss": 0.4568,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.7584050039093041,
685
+ "grad_norm": 0.8779653906822205,
686
+ "learning_rate": 0.0002,
687
+ "loss": 0.4304,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.766223612197029,
692
+ "grad_norm": 0.6312686204910278,
693
+ "learning_rate": 0.0002,
694
+ "loss": 0.4337,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.7740422204847537,
699
+ "grad_norm": 0.7815352082252502,
700
+ "learning_rate": 0.0002,
701
+ "loss": 0.431,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.7818608287724785,
706
+ "grad_norm": 0.8249784111976624,
707
+ "learning_rate": 0.0002,
708
+ "loss": 0.45,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.7896794370602033,
713
+ "grad_norm": 0.8731566667556763,
714
+ "learning_rate": 0.0002,
715
+ "loss": 0.4253,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.7974980453479281,
720
+ "grad_norm": 0.7336146831512451,
721
+ "learning_rate": 0.0002,
722
+ "loss": 0.4393,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8053166536356529,
727
+ "grad_norm": 0.7756309509277344,
728
+ "learning_rate": 0.0002,
729
+ "loss": 0.4175,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8131352619233776,
734
+ "grad_norm": 0.7608133554458618,
735
+ "learning_rate": 0.0002,
736
+ "loss": 0.4532,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.8209538702111024,
741
+ "grad_norm": 0.7842742800712585,
742
+ "learning_rate": 0.0002,
743
+ "loss": 0.4447,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.8287724784988272,
748
+ "grad_norm": 0.9361023902893066,
749
+ "learning_rate": 0.0002,
750
+ "loss": 0.4203,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.836591086786552,
755
+ "grad_norm": 0.8978990912437439,
756
+ "learning_rate": 0.0002,
757
+ "loss": 0.4165,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.8444096950742768,
762
+ "grad_norm": 0.7448273301124573,
763
+ "learning_rate": 0.0002,
764
+ "loss": 0.4313,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.8522283033620016,
769
+ "grad_norm": 0.9199049472808838,
770
+ "learning_rate": 0.0002,
771
+ "loss": 0.4256,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.8600469116497264,
776
+ "grad_norm": 0.7521695494651794,
777
+ "learning_rate": 0.0002,
778
+ "loss": 0.4343,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.8678655199374511,
783
+ "grad_norm": 0.7470024228096008,
784
+ "learning_rate": 0.0002,
785
+ "loss": 0.4136,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.8756841282251759,
790
+ "grad_norm": 0.5728107690811157,
791
+ "learning_rate": 0.0002,
792
+ "loss": 0.4227,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.8835027365129007,
797
+ "grad_norm": 0.8137171268463135,
798
+ "learning_rate": 0.0002,
799
+ "loss": 0.4084,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.8913213448006255,
804
+ "grad_norm": 0.7411524057388306,
805
+ "learning_rate": 0.0002,
806
+ "loss": 0.4171,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.8991399530883503,
811
+ "grad_norm": 0.705020546913147,
812
+ "learning_rate": 0.0002,
813
+ "loss": 0.4061,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.9069585613760751,
818
+ "grad_norm": 0.6366162300109863,
819
+ "learning_rate": 0.0002,
820
+ "loss": 0.4196,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.9147771696637998,
825
+ "grad_norm": 0.7566165924072266,
826
+ "learning_rate": 0.0002,
827
+ "loss": 0.45,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.9225957779515246,
832
+ "grad_norm": 0.9905046224594116,
833
+ "learning_rate": 0.0002,
834
+ "loss": 0.4195,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.9304143862392494,
839
+ "grad_norm": 0.6872445940971375,
840
+ "learning_rate": 0.0002,
841
+ "loss": 0.4212,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.9382329945269742,
846
+ "grad_norm": 0.6640546917915344,
847
+ "learning_rate": 0.0002,
848
+ "loss": 0.4151,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.946051602814699,
853
+ "grad_norm": 1.0592104196548462,
854
+ "learning_rate": 0.0002,
855
+ "loss": 0.4018,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.9538702111024238,
860
+ "grad_norm": 0.9068714380264282,
861
+ "learning_rate": 0.0002,
862
+ "loss": 0.3868,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.9616888193901486,
867
+ "grad_norm": 0.7440975308418274,
868
+ "learning_rate": 0.0002,
869
+ "loss": 0.3777,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.9695074276778733,
874
+ "grad_norm": 0.9631947875022888,
875
+ "learning_rate": 0.0002,
876
+ "loss": 0.4086,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.9773260359655981,
881
+ "grad_norm": 0.708501935005188,
882
+ "learning_rate": 0.0002,
883
+ "loss": 0.4042,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.9851446442533229,
888
+ "grad_norm": 0.664806604385376,
889
+ "learning_rate": 0.0002,
890
+ "loss": 0.3958,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.9929632525410477,
895
+ "grad_norm": 0.6895506978034973,
896
+ "learning_rate": 0.0002,
897
+ "loss": 0.3944,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 1.0,
902
+ "eval_loss": 0.39914223551750183,
903
+ "eval_runtime": 92.7363,
904
+ "eval_samples_per_second": 3.936,
905
+ "eval_steps_per_second": 0.496,
906
+ "step": 1279
907
+ },
908
+ {
909
+ "epoch": 1.0007818608287724,
910
+ "grad_norm": 0.6349056363105774,
911
+ "learning_rate": 0.0002,
912
+ "loss": 0.3917,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.0086004691164974,
917
+ "grad_norm": 0.9110808968544006,
918
+ "learning_rate": 0.0002,
919
+ "loss": 0.3851,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.016419077404222,
924
+ "grad_norm": 0.8718474507331848,
925
+ "learning_rate": 0.0002,
926
+ "loss": 0.3743,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.0242376856919468,
931
+ "grad_norm": 0.9496098756790161,
932
+ "learning_rate": 0.0002,
933
+ "loss": 0.3735,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.0320562939796716,
938
+ "grad_norm": 0.5553750991821289,
939
+ "learning_rate": 0.0002,
940
+ "loss": 0.3688,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.0398749022673963,
945
+ "grad_norm": 0.8498914241790771,
946
+ "learning_rate": 0.0002,
947
+ "loss": 0.3701,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.0476935105551213,
952
+ "grad_norm": 0.6435985565185547,
953
+ "learning_rate": 0.0002,
954
+ "loss": 0.3739,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.055512118842846,
959
+ "grad_norm": 0.8342816233634949,
960
+ "learning_rate": 0.0002,
961
+ "loss": 0.3778,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.0633307271305708,
966
+ "grad_norm": 0.6142820715904236,
967
+ "learning_rate": 0.0002,
968
+ "loss": 0.3873,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.0711493354182955,
973
+ "grad_norm": 0.9387786984443665,
974
+ "learning_rate": 0.0002,
975
+ "loss": 0.37,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.0789679437060202,
980
+ "grad_norm": 0.8187823295593262,
981
+ "learning_rate": 0.0002,
982
+ "loss": 0.3568,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.0867865519937452,
987
+ "grad_norm": 0.7127028107643127,
988
+ "learning_rate": 0.0002,
989
+ "loss": 0.3852,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.09460516028147,
994
+ "grad_norm": 0.7990315556526184,
995
+ "learning_rate": 0.0002,
996
+ "loss": 0.3732,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.1024237685691947,
1001
+ "grad_norm": 1.0349947214126587,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 0.3764,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.1102423768569194,
1008
+ "grad_norm": 0.5400282740592957,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.3518,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.1180609851446444,
1015
+ "grad_norm": 0.9225337505340576,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 0.3661,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.125879593432369,
1022
+ "grad_norm": 0.7267957925796509,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 0.3661,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.1336982017200938,
1029
+ "grad_norm": 0.6454635858535767,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 0.3745,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.1415168100078186,
1036
+ "grad_norm": 1.0288119316101074,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 0.3675,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.1493354182955433,
1043
+ "grad_norm": 0.6535518169403076,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 0.3807,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.1571540265832683,
1050
+ "grad_norm": 0.6860265731811523,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 0.3664,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.164972634870993,
1057
+ "grad_norm": 0.9102330803871155,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 0.3679,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.1727912431587177,
1064
+ "grad_norm": 0.6989532709121704,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 0.364,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.1806098514464425,
1071
+ "grad_norm": 1.1313148736953735,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 0.3592,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.1884284597341672,
1078
+ "grad_norm": 0.6841519474983215,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 0.363,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.1962470680218922,
1085
+ "grad_norm": 0.7030880451202393,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 0.3736,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.204065676309617,
1092
+ "grad_norm": 0.6326259970664978,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 0.3665,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.2118842845973417,
1099
+ "grad_norm": 0.8820798993110657,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.3734,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.2197028928850664,
1106
+ "grad_norm": 0.8624477386474609,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 0.3581,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.2275215011727911,
1113
+ "grad_norm": 0.6675921678543091,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 0.3722,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.235340109460516,
1120
+ "grad_norm": 1.0099470615386963,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 0.3661,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.2431587177482408,
1127
+ "grad_norm": 0.8204535841941833,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 0.3674,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.2509773260359656,
1134
+ "grad_norm": 0.7338495850563049,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 0.3655,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.2587959343236903,
1141
+ "grad_norm": 0.7446017861366272,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 0.3706,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 1.266614542611415,
1148
+ "grad_norm": 0.7122478485107422,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 0.3487,
1151
+ "step": 1620
1152
+ },
1153
+ {
1154
+ "epoch": 1.27443315089914,
1155
+ "grad_norm": 0.8905506730079651,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 0.3749,
1158
+ "step": 1630
1159
+ },
1160
+ {
1161
+ "epoch": 1.2822517591868647,
1162
+ "grad_norm": 0.8287106156349182,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 0.3465,
1165
+ "step": 1640
1166
+ },
1167
+ {
1168
+ "epoch": 1.2900703674745895,
1169
+ "grad_norm": 0.6574750542640686,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 0.341,
1172
+ "step": 1650
1173
+ },
1174
+ {
1175
+ "epoch": 1.2978889757623144,
1176
+ "grad_norm": 0.6535889506340027,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 0.3467,
1179
+ "step": 1660
1180
+ },
1181
+ {
1182
+ "epoch": 1.3057075840500392,
1183
+ "grad_norm": 0.7493264675140381,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 0.3632,
1186
+ "step": 1670
1187
+ },
1188
+ {
1189
+ "epoch": 1.313526192337764,
1190
+ "grad_norm": 0.8663034439086914,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 0.3607,
1193
+ "step": 1680
1194
+ },
1195
+ {
1196
+ "epoch": 1.3213448006254886,
1197
+ "grad_norm": 0.7360671758651733,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 0.3605,
1200
+ "step": 1690
1201
+ },
1202
+ {
1203
+ "epoch": 1.3291634089132134,
1204
+ "grad_norm": 0.7367114424705505,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 0.3674,
1207
+ "step": 1700
1208
+ },
1209
+ {
1210
+ "epoch": 1.3369820172009383,
1211
+ "grad_norm": 0.8030956983566284,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 0.3593,
1214
+ "step": 1710
1215
+ },
1216
+ {
1217
+ "epoch": 1.344800625488663,
1218
+ "grad_norm": 0.9848132133483887,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 0.3536,
1221
+ "step": 1720
1222
+ },
1223
+ {
1224
+ "epoch": 1.3526192337763878,
1225
+ "grad_norm": 0.8279334306716919,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 0.3639,
1228
+ "step": 1730
1229
+ },
1230
+ {
1231
+ "epoch": 1.3604378420641126,
1232
+ "grad_norm": 0.5222904682159424,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 0.3508,
1235
+ "step": 1740
1236
+ },
1237
+ {
1238
+ "epoch": 1.3682564503518373,
1239
+ "grad_norm": 0.794312596321106,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 0.3534,
1242
+ "step": 1750
1243
+ },
1244
+ {
1245
+ "epoch": 1.3760750586395623,
1246
+ "grad_norm": 0.737553060054779,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 0.3468,
1249
+ "step": 1760
1250
+ },
1251
+ {
1252
+ "epoch": 1.383893666927287,
1253
+ "grad_norm": 0.6765537858009338,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 0.3446,
1256
+ "step": 1770
1257
+ },
1258
+ {
1259
+ "epoch": 1.3917122752150117,
1260
+ "grad_norm": 0.8873873353004456,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 0.3328,
1263
+ "step": 1780
1264
+ },
1265
+ {
1266
+ "epoch": 1.3995308835027365,
1267
+ "grad_norm": 0.8087615966796875,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 0.334,
1270
+ "step": 1790
1271
+ },
1272
+ {
1273
+ "epoch": 1.4073494917904612,
1274
+ "grad_norm": 0.7812146544456482,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 0.3482,
1277
+ "step": 1800
1278
+ },
1279
+ {
1280
+ "epoch": 1.4151681000781862,
1281
+ "grad_norm": 0.9902305006980896,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 0.3414,
1284
+ "step": 1810
1285
+ },
1286
+ {
1287
+ "epoch": 1.422986708365911,
1288
+ "grad_norm": 0.8695173263549805,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 0.3497,
1291
+ "step": 1820
1292
+ },
1293
+ {
1294
+ "epoch": 1.4308053166536356,
1295
+ "grad_norm": 0.8341027498245239,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 0.3501,
1298
+ "step": 1830
1299
+ },
1300
+ {
1301
+ "epoch": 1.4386239249413604,
1302
+ "grad_norm": 0.6223942041397095,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 0.3488,
1305
+ "step": 1840
1306
+ },
1307
+ {
1308
+ "epoch": 1.4464425332290851,
1309
+ "grad_norm": 0.8860258460044861,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 0.3474,
1312
+ "step": 1850
1313
+ },
1314
+ {
1315
+ "epoch": 1.45426114151681,
1316
+ "grad_norm": 0.802268922328949,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 0.3408,
1319
+ "step": 1860
1320
+ },
1321
+ {
1322
+ "epoch": 1.4620797498045348,
1323
+ "grad_norm": 0.6166049242019653,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 0.3453,
1326
+ "step": 1870
1327
+ },
1328
+ {
1329
+ "epoch": 1.4698983580922595,
1330
+ "grad_norm": 0.6559504270553589,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 0.3351,
1333
+ "step": 1880
1334
+ },
1335
+ {
1336
+ "epoch": 1.4777169663799843,
1337
+ "grad_norm": 0.6340335607528687,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 0.3423,
1340
+ "step": 1890
1341
+ },
1342
+ {
1343
+ "epoch": 1.485535574667709,
1344
+ "grad_norm": 0.8462929129600525,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 0.3474,
1347
+ "step": 1900
1348
+ },
1349
+ {
1350
+ "epoch": 1.493354182955434,
1351
+ "grad_norm": 0.8598943948745728,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 0.3477,
1354
+ "step": 1910
1355
+ },
1356
+ {
1357
+ "epoch": 1.5011727912431587,
1358
+ "grad_norm": 0.8200817108154297,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 0.3346,
1361
+ "step": 1920
1362
+ },
1363
+ {
1364
+ "epoch": 1.5089913995308835,
1365
+ "grad_norm": 0.6792778968811035,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 0.3432,
1368
+ "step": 1930
1369
+ },
1370
+ {
1371
+ "epoch": 1.5168100078186084,
1372
+ "grad_norm": 1.1566815376281738,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 0.3442,
1375
+ "step": 1940
1376
+ },
1377
+ {
1378
+ "epoch": 1.524628616106333,
1379
+ "grad_norm": 0.6438336372375488,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 0.3395,
1382
+ "step": 1950
1383
+ },
1384
+ {
1385
+ "epoch": 1.532447224394058,
1386
+ "grad_norm": 0.7384976148605347,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 0.3343,
1389
+ "step": 1960
1390
+ },
1391
+ {
1392
+ "epoch": 1.5402658326817826,
1393
+ "grad_norm": 0.7964138388633728,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 0.3361,
1396
+ "step": 1970
1397
+ },
1398
+ {
1399
+ "epoch": 1.5480844409695074,
1400
+ "grad_norm": 0.6302239894866943,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 0.3455,
1403
+ "step": 1980
1404
+ },
1405
+ {
1406
+ "epoch": 1.5559030492572323,
1407
+ "grad_norm": 1.2721625566482544,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 0.3546,
1410
+ "step": 1990
1411
+ },
1412
+ {
1413
+ "epoch": 1.5637216575449568,
1414
+ "grad_norm": 0.7145891189575195,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 0.3357,
1417
+ "step": 2000
1418
+ },
1419
+ {
1420
+ "epoch": 1.5715402658326818,
1421
+ "grad_norm": 1.206936240196228,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 0.3373,
1424
+ "step": 2010
1425
+ },
1426
+ {
1427
+ "epoch": 1.5793588741204065,
1428
+ "grad_norm": 0.6214511394500732,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 0.3384,
1431
+ "step": 2020
1432
+ },
1433
+ {
1434
+ "epoch": 1.5871774824081313,
1435
+ "grad_norm": 0.8027235269546509,
1436
+ "learning_rate": 0.0002,
1437
+ "loss": 0.3289,
1438
+ "step": 2030
1439
+ },
1440
+ {
1441
+ "epoch": 1.5949960906958562,
1442
+ "grad_norm": 1.201087236404419,
1443
+ "learning_rate": 0.0002,
1444
+ "loss": 0.3332,
1445
+ "step": 2040
1446
+ },
1447
+ {
1448
+ "epoch": 1.602814698983581,
1449
+ "grad_norm": 0.7836553454399109,
1450
+ "learning_rate": 0.0002,
1451
+ "loss": 0.3391,
1452
+ "step": 2050
1453
+ },
1454
+ {
1455
+ "epoch": 1.6106333072713057,
1456
+ "grad_norm": 0.7517825961112976,
1457
+ "learning_rate": 0.0002,
1458
+ "loss": 0.3299,
1459
+ "step": 2060
1460
+ },
1461
+ {
1462
+ "epoch": 1.6184519155590305,
1463
+ "grad_norm": 0.7465781569480896,
1464
+ "learning_rate": 0.0002,
1465
+ "loss": 0.3363,
1466
+ "step": 2070
1467
+ },
1468
+ {
1469
+ "epoch": 1.6262705238467552,
1470
+ "grad_norm": 0.5759570002555847,
1471
+ "learning_rate": 0.0002,
1472
+ "loss": 0.3463,
1473
+ "step": 2080
1474
+ },
1475
+ {
1476
+ "epoch": 1.6340891321344801,
1477
+ "grad_norm": 1.1590553522109985,
1478
+ "learning_rate": 0.0002,
1479
+ "loss": 0.3182,
1480
+ "step": 2090
1481
+ },
1482
+ {
1483
+ "epoch": 1.6419077404222049,
1484
+ "grad_norm": 0.5870680212974548,
1485
+ "learning_rate": 0.0002,
1486
+ "loss": 0.3329,
1487
+ "step": 2100
1488
+ },
1489
+ {
1490
+ "epoch": 1.6497263487099296,
1491
+ "grad_norm": 0.7370626330375671,
1492
+ "learning_rate": 0.0002,
1493
+ "loss": 0.3276,
1494
+ "step": 2110
1495
+ },
1496
+ {
1497
+ "epoch": 1.6575449569976546,
1498
+ "grad_norm": 0.8450182676315308,
1499
+ "learning_rate": 0.0002,
1500
+ "loss": 0.3335,
1501
+ "step": 2120
1502
+ },
1503
+ {
1504
+ "epoch": 1.665363565285379,
1505
+ "grad_norm": 0.7234358191490173,
1506
+ "learning_rate": 0.0002,
1507
+ "loss": 0.3282,
1508
+ "step": 2130
1509
+ },
1510
+ {
1511
+ "epoch": 1.673182173573104,
1512
+ "grad_norm": 0.6153436303138733,
1513
+ "learning_rate": 0.0002,
1514
+ "loss": 0.329,
1515
+ "step": 2140
1516
+ },
1517
+ {
1518
+ "epoch": 1.6810007818608288,
1519
+ "grad_norm": 0.5760449171066284,
1520
+ "learning_rate": 0.0002,
1521
+ "loss": 0.346,
1522
+ "step": 2150
1523
+ },
1524
+ {
1525
+ "epoch": 1.6888193901485535,
1526
+ "grad_norm": 0.6206227540969849,
1527
+ "learning_rate": 0.0002,
1528
+ "loss": 0.3367,
1529
+ "step": 2160
1530
+ },
1531
+ {
1532
+ "epoch": 1.6966379984362785,
1533
+ "grad_norm": 0.9404999613761902,
1534
+ "learning_rate": 0.0002,
1535
+ "loss": 0.3281,
1536
+ "step": 2170
1537
+ },
1538
+ {
1539
+ "epoch": 1.704456606724003,
1540
+ "grad_norm": 0.8661916851997375,
1541
+ "learning_rate": 0.0002,
1542
+ "loss": 0.3217,
1543
+ "step": 2180
1544
+ },
1545
+ {
1546
+ "epoch": 1.712275215011728,
1547
+ "grad_norm": 0.7642818093299866,
1548
+ "learning_rate": 0.0002,
1549
+ "loss": 0.3271,
1550
+ "step": 2190
1551
+ },
1552
+ {
1553
+ "epoch": 1.7200938232994527,
1554
+ "grad_norm": 0.6853117942810059,
1555
+ "learning_rate": 0.0002,
1556
+ "loss": 0.3258,
1557
+ "step": 2200
1558
+ },
1559
+ {
1560
+ "epoch": 1.7279124315871774,
1561
+ "grad_norm": 0.7656819820404053,
1562
+ "learning_rate": 0.0002,
1563
+ "loss": 0.3282,
1564
+ "step": 2210
1565
+ },
1566
+ {
1567
+ "epoch": 1.7357310398749024,
1568
+ "grad_norm": 0.7168070077896118,
1569
+ "learning_rate": 0.0002,
1570
+ "loss": 0.3201,
1571
+ "step": 2220
1572
+ },
1573
+ {
1574
+ "epoch": 1.743549648162627,
1575
+ "grad_norm": 1.0413419008255005,
1576
+ "learning_rate": 0.0002,
1577
+ "loss": 0.3315,
1578
+ "step": 2230
1579
+ },
1580
+ {
1581
+ "epoch": 1.7513682564503519,
1582
+ "grad_norm": 0.5912154912948608,
1583
+ "learning_rate": 0.0002,
1584
+ "loss": 0.3232,
1585
+ "step": 2240
1586
+ },
1587
+ {
1588
+ "epoch": 1.7591868647380766,
1589
+ "grad_norm": 0.7030780911445618,
1590
+ "learning_rate": 0.0002,
1591
+ "loss": 0.3233,
1592
+ "step": 2250
1593
+ },
1594
+ {
1595
+ "epoch": 1.7670054730258014,
1596
+ "grad_norm": 1.0184153318405151,
1597
+ "learning_rate": 0.0002,
1598
+ "loss": 0.3256,
1599
+ "step": 2260
1600
+ },
1601
+ {
1602
+ "epoch": 1.7748240813135263,
1603
+ "grad_norm": 0.7198194265365601,
1604
+ "learning_rate": 0.0002,
1605
+ "loss": 0.3241,
1606
+ "step": 2270
1607
+ },
1608
+ {
1609
+ "epoch": 1.7826426896012508,
1610
+ "grad_norm": 1.065075159072876,
1611
+ "learning_rate": 0.0002,
1612
+ "loss": 0.3234,
1613
+ "step": 2280
1614
+ },
1615
+ {
1616
+ "epoch": 1.7904612978889758,
1617
+ "grad_norm": 0.8209517598152161,
1618
+ "learning_rate": 0.0002,
1619
+ "loss": 0.3193,
1620
+ "step": 2290
1621
+ },
1622
+ {
1623
+ "epoch": 1.7982799061767005,
1624
+ "grad_norm": 0.7711963653564453,
1625
+ "learning_rate": 0.0002,
1626
+ "loss": 0.3324,
1627
+ "step": 2300
1628
+ },
1629
+ {
1630
+ "epoch": 1.8060985144644253,
1631
+ "grad_norm": 0.7440765500068665,
1632
+ "learning_rate": 0.0002,
1633
+ "loss": 0.319,
1634
+ "step": 2310
1635
+ },
1636
+ {
1637
+ "epoch": 1.8139171227521502,
1638
+ "grad_norm": 0.7835466265678406,
1639
+ "learning_rate": 0.0002,
1640
+ "loss": 0.3163,
1641
+ "step": 2320
1642
+ },
1643
+ {
1644
+ "epoch": 1.8217357310398747,
1645
+ "grad_norm": 0.6313241720199585,
1646
+ "learning_rate": 0.0002,
1647
+ "loss": 0.3239,
1648
+ "step": 2330
1649
+ },
1650
+ {
1651
+ "epoch": 1.8295543393275997,
1652
+ "grad_norm": 0.778071403503418,
1653
+ "learning_rate": 0.0002,
1654
+ "loss": 0.3313,
1655
+ "step": 2340
1656
+ },
1657
+ {
1658
+ "epoch": 1.8373729476153244,
1659
+ "grad_norm": 0.7656646966934204,
1660
+ "learning_rate": 0.0002,
1661
+ "loss": 0.3312,
1662
+ "step": 2350
1663
+ },
1664
+ {
1665
+ "epoch": 1.8451915559030492,
1666
+ "grad_norm": 0.7445554733276367,
1667
+ "learning_rate": 0.0002,
1668
+ "loss": 0.312,
1669
+ "step": 2360
1670
+ },
1671
+ {
1672
+ "epoch": 1.8530101641907741,
1673
+ "grad_norm": 0.6325365304946899,
1674
+ "learning_rate": 0.0002,
1675
+ "loss": 0.3237,
1676
+ "step": 2370
1677
+ },
1678
+ {
1679
+ "epoch": 1.8608287724784989,
1680
+ "grad_norm": 0.8103552460670471,
1681
+ "learning_rate": 0.0002,
1682
+ "loss": 0.3229,
1683
+ "step": 2380
1684
+ },
1685
+ {
1686
+ "epoch": 1.8686473807662236,
1687
+ "grad_norm": 0.9312598705291748,
1688
+ "learning_rate": 0.0002,
1689
+ "loss": 0.3215,
1690
+ "step": 2390
1691
+ },
1692
+ {
1693
+ "epoch": 1.8764659890539483,
1694
+ "grad_norm": 0.848996639251709,
1695
+ "learning_rate": 0.0002,
1696
+ "loss": 0.3124,
1697
+ "step": 2400
1698
+ },
1699
+ {
1700
+ "epoch": 1.884284597341673,
1701
+ "grad_norm": 0.8568035364151001,
1702
+ "learning_rate": 0.0002,
1703
+ "loss": 0.3268,
1704
+ "step": 2410
1705
+ },
1706
+ {
1707
+ "epoch": 1.892103205629398,
1708
+ "grad_norm": 1.1042375564575195,
1709
+ "learning_rate": 0.0002,
1710
+ "loss": 0.3317,
1711
+ "step": 2420
1712
+ },
1713
+ {
1714
+ "epoch": 1.8999218139171228,
1715
+ "grad_norm": 0.7110097408294678,
1716
+ "learning_rate": 0.0002,
1717
+ "loss": 0.3152,
1718
+ "step": 2430
1719
+ },
1720
+ {
1721
+ "epoch": 1.9077404222048475,
1722
+ "grad_norm": 0.7363375425338745,
1723
+ "learning_rate": 0.0002,
1724
+ "loss": 0.317,
1725
+ "step": 2440
1726
+ },
1727
+ {
1728
+ "epoch": 1.9155590304925725,
1729
+ "grad_norm": 0.7423311471939087,
1730
+ "learning_rate": 0.0002,
1731
+ "loss": 0.331,
1732
+ "step": 2450
1733
+ },
1734
+ {
1735
+ "epoch": 1.923377638780297,
1736
+ "grad_norm": 0.8554385900497437,
1737
+ "learning_rate": 0.0002,
1738
+ "loss": 0.3138,
1739
+ "step": 2460
1740
+ },
1741
+ {
1742
+ "epoch": 1.931196247068022,
1743
+ "grad_norm": 0.7054983377456665,
1744
+ "learning_rate": 0.0002,
1745
+ "loss": 0.3147,
1746
+ "step": 2470
1747
+ },
1748
+ {
1749
+ "epoch": 1.9390148553557467,
1750
+ "grad_norm": 0.7259753942489624,
1751
+ "learning_rate": 0.0002,
1752
+ "loss": 0.3126,
1753
+ "step": 2480
1754
+ },
1755
+ {
1756
+ "epoch": 1.9468334636434714,
1757
+ "grad_norm": 0.649142861366272,
1758
+ "learning_rate": 0.0002,
1759
+ "loss": 0.311,
1760
+ "step": 2490
1761
+ },
1762
+ {
1763
+ "epoch": 1.9546520719311964,
1764
+ "grad_norm": 0.6006044745445251,
1765
+ "learning_rate": 0.0002,
1766
+ "loss": 0.3223,
1767
+ "step": 2500
1768
+ },
1769
+ {
1770
+ "epoch": 1.962470680218921,
1771
+ "grad_norm": 0.7815561294555664,
1772
+ "learning_rate": 0.0002,
1773
+ "loss": 0.3105,
1774
+ "step": 2510
1775
+ },
1776
+ {
1777
+ "epoch": 1.9702892885066459,
1778
+ "grad_norm": 0.689166247844696,
1779
+ "learning_rate": 0.0002,
1780
+ "loss": 0.3242,
1781
+ "step": 2520
1782
+ },
1783
+ {
1784
+ "epoch": 1.9781078967943706,
1785
+ "grad_norm": 0.6812887787818909,
1786
+ "learning_rate": 0.0002,
1787
+ "loss": 0.307,
1788
+ "step": 2530
1789
+ },
1790
+ {
1791
+ "epoch": 1.9859265050820953,
1792
+ "grad_norm": 0.6528962254524231,
1793
+ "learning_rate": 0.0002,
1794
+ "loss": 0.3041,
1795
+ "step": 2540
1796
+ },
1797
+ {
1798
+ "epoch": 1.9937451133698203,
1799
+ "grad_norm": 0.6528279185295105,
1800
+ "learning_rate": 0.0002,
1801
+ "loss": 0.3057,
1802
+ "step": 2550
1803
+ },
1804
+ {
1805
+ "epoch": 2.0,
1806
+ "eval_loss": 0.31702762842178345,
1807
+ "eval_runtime": 63.9344,
1808
+ "eval_samples_per_second": 5.709,
1809
+ "eval_steps_per_second": 0.719,
1810
+ "step": 2558
1811
+ }
1812
+ ],
1813
+ "logging_steps": 10,
1814
+ "max_steps": 10232,
1815
+ "num_input_tokens_seen": 0,
1816
+ "num_train_epochs": 8,
1817
+ "save_steps": 200,
1818
+ "stateful_callbacks": {
1819
+ "TrainerControl": {
1820
+ "args": {
1821
+ "should_epoch_stop": false,
1822
+ "should_evaluate": false,
1823
+ "should_log": false,
1824
+ "should_save": true,
1825
+ "should_training_stop": false
1826
+ },
1827
+ "attributes": {}
1828
+ }
1829
+ },
1830
+ "total_flos": 1.122315509170176e+17,
1831
+ "train_batch_size": 1,
1832
+ "trial_name": null,
1833
+ "trial_params": null
1834
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-2558/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67c127eb44653a0272979e2cc773b017f5ff5cfc6ed92250a567d1213376a07e
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da5110b6986fc5929fc14c3771dd6175702da1783011d311c253245ff559e7f8
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7081acbcf0ae0de163f62065eef1b99e394cb3a4912b9fe61dde70f9bf9dd611
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2bac602a8f1359dbb4b1f8fb442e1a0dc7f199c9b15ab1747fd7878aea5cb82
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ead7494958be91625f3069f4e4ab40c4e3dc78c8f017201fa4799ac4e999e4f
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837/trainer_state.json ADDED
@@ -0,0 +1,2738 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.2826317846775055,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-1.0-num-21570-sd-1/checkpoint-3837",
4
+ "epoch": 3.0,
5
+ "eval_steps": 10,
6
+ "global_step": 3837,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.007818608287724784,
13
+ "grad_norm": 1.1001313924789429,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7403,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.01563721657544957,
20
+ "grad_norm": 1.3678615093231201,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.1795,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.023455824863174355,
27
+ "grad_norm": 1.2362287044525146,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.0159,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.03127443315089914,
34
+ "grad_norm": 0.9754743576049805,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.9315,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.039093041438623924,
41
+ "grad_norm": 1.0572363138198853,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.8015,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.04691164972634871,
48
+ "grad_norm": 0.8838446140289307,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7264,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.054730258014073496,
55
+ "grad_norm": 0.831045389175415,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6807,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.06254886630179828,
62
+ "grad_norm": 0.721530556678772,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6731,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07036747458952307,
69
+ "grad_norm": 0.6918481588363647,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.6427,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.07818608287724785,
76
+ "grad_norm": 0.8207236528396606,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.6719,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.08600469116497264,
83
+ "grad_norm": 0.9405701756477356,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6533,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.09382329945269742,
90
+ "grad_norm": 0.7389968037605286,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6102,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.1016419077404222,
97
+ "grad_norm": 0.7102212905883789,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6561,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.10946051602814699,
104
+ "grad_norm": 0.6546808481216431,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6222,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.11727912431587177,
111
+ "grad_norm": 1.0097354650497437,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.6369,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.12509773260359655,
118
+ "grad_norm": 0.5699719786643982,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6495,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.13291634089132134,
125
+ "grad_norm": 0.6371490359306335,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.6421,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.14073494917904614,
132
+ "grad_norm": 0.8385978937149048,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.6101,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.1485535574667709,
139
+ "grad_norm": 0.6549069285392761,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.5957,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.1563721657544957,
146
+ "grad_norm": 0.5297655463218689,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.5834,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.1641907740422205,
153
+ "grad_norm": 0.6385621428489685,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.6054,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.17200938232994528,
160
+ "grad_norm": 0.6723865866661072,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.6174,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.17982799061767005,
167
+ "grad_norm": 0.6121484041213989,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.5951,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.18764659890539484,
174
+ "grad_norm": 0.619121789932251,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6046,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.19546520719311963,
181
+ "grad_norm": 0.49208253622055054,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.5764,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.2032838154808444,
188
+ "grad_norm": 0.4991285800933838,
189
+ "learning_rate": 0.0002,
190
+ "loss": 0.5679,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.2111024237685692,
195
+ "grad_norm": 0.7622858285903931,
196
+ "learning_rate": 0.0002,
197
+ "loss": 0.5777,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.21892103205629398,
202
+ "grad_norm": 0.5988286733627319,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.5504,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.22673964034401878,
209
+ "grad_norm": 0.510055661201477,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.5801,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.23455824863174354,
216
+ "grad_norm": 0.47940748929977417,
217
+ "learning_rate": 0.0002,
218
+ "loss": 0.5788,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.24237685691946834,
223
+ "grad_norm": 0.5604141354560852,
224
+ "learning_rate": 0.0002,
225
+ "loss": 0.6093,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.2501954652071931,
230
+ "grad_norm": 0.479342520236969,
231
+ "learning_rate": 0.0002,
232
+ "loss": 0.5641,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.2580140734949179,
237
+ "grad_norm": 0.5401737093925476,
238
+ "learning_rate": 0.0002,
239
+ "loss": 0.5304,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.2658326817826427,
244
+ "grad_norm": 0.5436083674430847,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.5547,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.2736512900703675,
251
+ "grad_norm": 0.6402848362922668,
252
+ "learning_rate": 0.0002,
253
+ "loss": 0.5724,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.2814698983580923,
258
+ "grad_norm": 0.4756305515766144,
259
+ "learning_rate": 0.0002,
260
+ "loss": 0.5452,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.28928850664581707,
265
+ "grad_norm": 0.5536904335021973,
266
+ "learning_rate": 0.0002,
267
+ "loss": 0.5936,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.2971071149335418,
272
+ "grad_norm": 0.6187605857849121,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.5827,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3049257232212666,
279
+ "grad_norm": 0.5297170877456665,
280
+ "learning_rate": 0.0002,
281
+ "loss": 0.5435,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.3127443315089914,
286
+ "grad_norm": 0.5808210372924805,
287
+ "learning_rate": 0.0002,
288
+ "loss": 0.583,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.3205629397967162,
293
+ "grad_norm": 0.7509300708770752,
294
+ "learning_rate": 0.0002,
295
+ "loss": 0.5587,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.328381548084441,
300
+ "grad_norm": 0.5674371719360352,
301
+ "learning_rate": 0.0002,
302
+ "loss": 0.5439,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.33620015637216577,
307
+ "grad_norm": 0.5833905339241028,
308
+ "learning_rate": 0.0002,
309
+ "loss": 0.5431,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.34401876465989056,
314
+ "grad_norm": 0.537860095500946,
315
+ "learning_rate": 0.0002,
316
+ "loss": 0.5527,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.3518373729476153,
321
+ "grad_norm": 0.5747054219245911,
322
+ "learning_rate": 0.0002,
323
+ "loss": 0.528,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.3596559812353401,
328
+ "grad_norm": 0.6268995404243469,
329
+ "learning_rate": 0.0002,
330
+ "loss": 0.5281,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.3674745895230649,
335
+ "grad_norm": 0.640737771987915,
336
+ "learning_rate": 0.0002,
337
+ "loss": 0.5394,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.3752931978107897,
342
+ "grad_norm": 0.6593332290649414,
343
+ "learning_rate": 0.0002,
344
+ "loss": 0.5488,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.3831118060985145,
349
+ "grad_norm": 0.5977872014045715,
350
+ "learning_rate": 0.0002,
351
+ "loss": 0.5384,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.39093041438623927,
356
+ "grad_norm": 0.6118639707565308,
357
+ "learning_rate": 0.0002,
358
+ "loss": 0.5154,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.39874902267396406,
363
+ "grad_norm": 1.2320106029510498,
364
+ "learning_rate": 0.0002,
365
+ "loss": 0.5481,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.4065676309616888,
370
+ "grad_norm": 0.6538275480270386,
371
+ "learning_rate": 0.0002,
372
+ "loss": 0.5225,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.4143862392494136,
377
+ "grad_norm": 0.5839771032333374,
378
+ "learning_rate": 0.0002,
379
+ "loss": 0.5322,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.4222048475371384,
384
+ "grad_norm": 0.6228310465812683,
385
+ "learning_rate": 0.0002,
386
+ "loss": 0.5075,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4300234558248632,
391
+ "grad_norm": 0.653239905834198,
392
+ "learning_rate": 0.0002,
393
+ "loss": 0.5177,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.43784206411258797,
398
+ "grad_norm": 0.6995204091072083,
399
+ "learning_rate": 0.0002,
400
+ "loss": 0.5209,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.44566067240031276,
405
+ "grad_norm": 0.5197685956954956,
406
+ "learning_rate": 0.0002,
407
+ "loss": 0.4914,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.45347928068803756,
412
+ "grad_norm": 0.6786061525344849,
413
+ "learning_rate": 0.0002,
414
+ "loss": 0.4951,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.4612978889757623,
419
+ "grad_norm": 0.6599542498588562,
420
+ "learning_rate": 0.0002,
421
+ "loss": 0.5107,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.4691164972634871,
426
+ "grad_norm": 0.5535895228385925,
427
+ "learning_rate": 0.0002,
428
+ "loss": 0.514,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.4769351055512119,
433
+ "grad_norm": 0.667336642742157,
434
+ "learning_rate": 0.0002,
435
+ "loss": 0.5206,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.4847537138389367,
440
+ "grad_norm": 0.5404567718505859,
441
+ "learning_rate": 0.0002,
442
+ "loss": 0.4918,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.49257232212666147,
447
+ "grad_norm": 0.5316283702850342,
448
+ "learning_rate": 0.0002,
449
+ "loss": 0.501,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.5003909304143862,
454
+ "grad_norm": 0.6398797035217285,
455
+ "learning_rate": 0.0002,
456
+ "loss": 0.5026,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.508209538702111,
461
+ "grad_norm": 0.6197776794433594,
462
+ "learning_rate": 0.0002,
463
+ "loss": 0.5017,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.5160281469898358,
468
+ "grad_norm": 0.8760672807693481,
469
+ "learning_rate": 0.0002,
470
+ "loss": 0.4905,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5238467552775606,
475
+ "grad_norm": 0.7163699269294739,
476
+ "learning_rate": 0.0002,
477
+ "loss": 0.4798,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5316653635652854,
482
+ "grad_norm": 0.7599782347679138,
483
+ "learning_rate": 0.0002,
484
+ "loss": 0.4974,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5394839718530101,
489
+ "grad_norm": 0.5682359337806702,
490
+ "learning_rate": 0.0002,
491
+ "loss": 0.4942,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.547302580140735,
496
+ "grad_norm": 0.6667918562889099,
497
+ "learning_rate": 0.0002,
498
+ "loss": 0.4826,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.5551211884284597,
503
+ "grad_norm": 0.9613338112831116,
504
+ "learning_rate": 0.0002,
505
+ "loss": 0.475,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.5629397967161845,
510
+ "grad_norm": 0.5658668279647827,
511
+ "learning_rate": 0.0002,
512
+ "loss": 0.5005,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.5707584050039093,
517
+ "grad_norm": 0.7233469486236572,
518
+ "learning_rate": 0.0002,
519
+ "loss": 0.4697,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.5785770132916341,
524
+ "grad_norm": 0.5586039423942566,
525
+ "learning_rate": 0.0002,
526
+ "loss": 0.4659,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.5863956215793589,
531
+ "grad_norm": 0.8161298632621765,
532
+ "learning_rate": 0.0002,
533
+ "loss": 0.4893,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.5942142298670836,
538
+ "grad_norm": 0.7192191481590271,
539
+ "learning_rate": 0.0002,
540
+ "loss": 0.4678,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6020328381548085,
545
+ "grad_norm": 0.5711938738822937,
546
+ "learning_rate": 0.0002,
547
+ "loss": 0.4765,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.6098514464425332,
552
+ "grad_norm": 0.5471241474151611,
553
+ "learning_rate": 0.0002,
554
+ "loss": 0.4676,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.617670054730258,
559
+ "grad_norm": 0.5709220767021179,
560
+ "learning_rate": 0.0002,
561
+ "loss": 0.4628,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.6254886630179828,
566
+ "grad_norm": 0.882448673248291,
567
+ "learning_rate": 0.0002,
568
+ "loss": 0.4695,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6333072713057076,
573
+ "grad_norm": 0.5136802196502686,
574
+ "learning_rate": 0.0002,
575
+ "loss": 0.4611,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.6411258795934324,
580
+ "grad_norm": 0.6611698865890503,
581
+ "learning_rate": 0.0002,
582
+ "loss": 0.4663,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.6489444878811571,
587
+ "grad_norm": 0.7050015926361084,
588
+ "learning_rate": 0.0002,
589
+ "loss": 0.4962,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.656763096168882,
594
+ "grad_norm": 0.5757645964622498,
595
+ "learning_rate": 0.0002,
596
+ "loss": 0.4624,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.6645817044566067,
601
+ "grad_norm": 0.6651985049247742,
602
+ "learning_rate": 0.0002,
603
+ "loss": 0.4695,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.6724003127443315,
608
+ "grad_norm": 0.6121841669082642,
609
+ "learning_rate": 0.0002,
610
+ "loss": 0.4616,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.6802189210320563,
615
+ "grad_norm": 0.9026947617530823,
616
+ "learning_rate": 0.0002,
617
+ "loss": 0.4763,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.6880375293197811,
622
+ "grad_norm": 0.7725462913513184,
623
+ "learning_rate": 0.0002,
624
+ "loss": 0.4488,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.6958561376075059,
629
+ "grad_norm": 0.896050214767456,
630
+ "learning_rate": 0.0002,
631
+ "loss": 0.4334,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7036747458952306,
636
+ "grad_norm": 0.757851243019104,
637
+ "learning_rate": 0.0002,
638
+ "loss": 0.4499,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7114933541829555,
643
+ "grad_norm": 0.7172074317932129,
644
+ "learning_rate": 0.0002,
645
+ "loss": 0.4466,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.7193119624706802,
650
+ "grad_norm": 0.7364748120307922,
651
+ "learning_rate": 0.0002,
652
+ "loss": 0.4261,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.727130570758405,
657
+ "grad_norm": 0.6359867453575134,
658
+ "learning_rate": 0.0002,
659
+ "loss": 0.4531,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.7349491790461298,
664
+ "grad_norm": 0.5289077758789062,
665
+ "learning_rate": 0.0002,
666
+ "loss": 0.4464,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.7427677873338546,
671
+ "grad_norm": 0.6053950786590576,
672
+ "learning_rate": 0.0002,
673
+ "loss": 0.4525,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.7505863956215794,
678
+ "grad_norm": 0.8122503161430359,
679
+ "learning_rate": 0.0002,
680
+ "loss": 0.4568,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.7584050039093041,
685
+ "grad_norm": 0.8779653906822205,
686
+ "learning_rate": 0.0002,
687
+ "loss": 0.4304,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.766223612197029,
692
+ "grad_norm": 0.6312686204910278,
693
+ "learning_rate": 0.0002,
694
+ "loss": 0.4337,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.7740422204847537,
699
+ "grad_norm": 0.7815352082252502,
700
+ "learning_rate": 0.0002,
701
+ "loss": 0.431,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.7818608287724785,
706
+ "grad_norm": 0.8249784111976624,
707
+ "learning_rate": 0.0002,
708
+ "loss": 0.45,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.7896794370602033,
713
+ "grad_norm": 0.8731566667556763,
714
+ "learning_rate": 0.0002,
715
+ "loss": 0.4253,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.7974980453479281,
720
+ "grad_norm": 0.7336146831512451,
721
+ "learning_rate": 0.0002,
722
+ "loss": 0.4393,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8053166536356529,
727
+ "grad_norm": 0.7756309509277344,
728
+ "learning_rate": 0.0002,
729
+ "loss": 0.4175,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8131352619233776,
734
+ "grad_norm": 0.7608133554458618,
735
+ "learning_rate": 0.0002,
736
+ "loss": 0.4532,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.8209538702111024,
741
+ "grad_norm": 0.7842742800712585,
742
+ "learning_rate": 0.0002,
743
+ "loss": 0.4447,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.8287724784988272,
748
+ "grad_norm": 0.9361023902893066,
749
+ "learning_rate": 0.0002,
750
+ "loss": 0.4203,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.836591086786552,
755
+ "grad_norm": 0.8978990912437439,
756
+ "learning_rate": 0.0002,
757
+ "loss": 0.4165,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.8444096950742768,
762
+ "grad_norm": 0.7448273301124573,
763
+ "learning_rate": 0.0002,
764
+ "loss": 0.4313,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.8522283033620016,
769
+ "grad_norm": 0.9199049472808838,
770
+ "learning_rate": 0.0002,
771
+ "loss": 0.4256,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.8600469116497264,
776
+ "grad_norm": 0.7521695494651794,
777
+ "learning_rate": 0.0002,
778
+ "loss": 0.4343,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.8678655199374511,
783
+ "grad_norm": 0.7470024228096008,
784
+ "learning_rate": 0.0002,
785
+ "loss": 0.4136,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.8756841282251759,
790
+ "grad_norm": 0.5728107690811157,
791
+ "learning_rate": 0.0002,
792
+ "loss": 0.4227,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.8835027365129007,
797
+ "grad_norm": 0.8137171268463135,
798
+ "learning_rate": 0.0002,
799
+ "loss": 0.4084,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.8913213448006255,
804
+ "grad_norm": 0.7411524057388306,
805
+ "learning_rate": 0.0002,
806
+ "loss": 0.4171,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.8991399530883503,
811
+ "grad_norm": 0.705020546913147,
812
+ "learning_rate": 0.0002,
813
+ "loss": 0.4061,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.9069585613760751,
818
+ "grad_norm": 0.6366162300109863,
819
+ "learning_rate": 0.0002,
820
+ "loss": 0.4196,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.9147771696637998,
825
+ "grad_norm": 0.7566165924072266,
826
+ "learning_rate": 0.0002,
827
+ "loss": 0.45,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.9225957779515246,
832
+ "grad_norm": 0.9905046224594116,
833
+ "learning_rate": 0.0002,
834
+ "loss": 0.4195,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.9304143862392494,
839
+ "grad_norm": 0.6872445940971375,
840
+ "learning_rate": 0.0002,
841
+ "loss": 0.4212,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.9382329945269742,
846
+ "grad_norm": 0.6640546917915344,
847
+ "learning_rate": 0.0002,
848
+ "loss": 0.4151,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.946051602814699,
853
+ "grad_norm": 1.0592104196548462,
854
+ "learning_rate": 0.0002,
855
+ "loss": 0.4018,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.9538702111024238,
860
+ "grad_norm": 0.9068714380264282,
861
+ "learning_rate": 0.0002,
862
+ "loss": 0.3868,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.9616888193901486,
867
+ "grad_norm": 0.7440975308418274,
868
+ "learning_rate": 0.0002,
869
+ "loss": 0.3777,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.9695074276778733,
874
+ "grad_norm": 0.9631947875022888,
875
+ "learning_rate": 0.0002,
876
+ "loss": 0.4086,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.9773260359655981,
881
+ "grad_norm": 0.708501935005188,
882
+ "learning_rate": 0.0002,
883
+ "loss": 0.4042,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.9851446442533229,
888
+ "grad_norm": 0.664806604385376,
889
+ "learning_rate": 0.0002,
890
+ "loss": 0.3958,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.9929632525410477,
895
+ "grad_norm": 0.6895506978034973,
896
+ "learning_rate": 0.0002,
897
+ "loss": 0.3944,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 1.0,
902
+ "eval_loss": 0.39914223551750183,
903
+ "eval_runtime": 92.7363,
904
+ "eval_samples_per_second": 3.936,
905
+ "eval_steps_per_second": 0.496,
906
+ "step": 1279
907
+ },
908
+ {
909
+ "epoch": 1.0007818608287724,
910
+ "grad_norm": 0.6349056363105774,
911
+ "learning_rate": 0.0002,
912
+ "loss": 0.3917,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.0086004691164974,
917
+ "grad_norm": 0.9110808968544006,
918
+ "learning_rate": 0.0002,
919
+ "loss": 0.3851,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.016419077404222,
924
+ "grad_norm": 0.8718474507331848,
925
+ "learning_rate": 0.0002,
926
+ "loss": 0.3743,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.0242376856919468,
931
+ "grad_norm": 0.9496098756790161,
932
+ "learning_rate": 0.0002,
933
+ "loss": 0.3735,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.0320562939796716,
938
+ "grad_norm": 0.5553750991821289,
939
+ "learning_rate": 0.0002,
940
+ "loss": 0.3688,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.0398749022673963,
945
+ "grad_norm": 0.8498914241790771,
946
+ "learning_rate": 0.0002,
947
+ "loss": 0.3701,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.0476935105551213,
952
+ "grad_norm": 0.6435985565185547,
953
+ "learning_rate": 0.0002,
954
+ "loss": 0.3739,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.055512118842846,
959
+ "grad_norm": 0.8342816233634949,
960
+ "learning_rate": 0.0002,
961
+ "loss": 0.3778,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.0633307271305708,
966
+ "grad_norm": 0.6142820715904236,
967
+ "learning_rate": 0.0002,
968
+ "loss": 0.3873,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.0711493354182955,
973
+ "grad_norm": 0.9387786984443665,
974
+ "learning_rate": 0.0002,
975
+ "loss": 0.37,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.0789679437060202,
980
+ "grad_norm": 0.8187823295593262,
981
+ "learning_rate": 0.0002,
982
+ "loss": 0.3568,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.0867865519937452,
987
+ "grad_norm": 0.7127028107643127,
988
+ "learning_rate": 0.0002,
989
+ "loss": 0.3852,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.09460516028147,
994
+ "grad_norm": 0.7990315556526184,
995
+ "learning_rate": 0.0002,
996
+ "loss": 0.3732,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.1024237685691947,
1001
+ "grad_norm": 1.0349947214126587,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 0.3764,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.1102423768569194,
1008
+ "grad_norm": 0.5400282740592957,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.3518,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.1180609851446444,
1015
+ "grad_norm": 0.9225337505340576,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 0.3661,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.125879593432369,
1022
+ "grad_norm": 0.7267957925796509,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 0.3661,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.1336982017200938,
1029
+ "grad_norm": 0.6454635858535767,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 0.3745,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.1415168100078186,
1036
+ "grad_norm": 1.0288119316101074,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 0.3675,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.1493354182955433,
1043
+ "grad_norm": 0.6535518169403076,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 0.3807,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.1571540265832683,
1050
+ "grad_norm": 0.6860265731811523,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 0.3664,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.164972634870993,
1057
+ "grad_norm": 0.9102330803871155,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 0.3679,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.1727912431587177,
1064
+ "grad_norm": 0.6989532709121704,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 0.364,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.1806098514464425,
1071
+ "grad_norm": 1.1313148736953735,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 0.3592,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.1884284597341672,
1078
+ "grad_norm": 0.6841519474983215,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 0.363,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.1962470680218922,
1085
+ "grad_norm": 0.7030880451202393,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 0.3736,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.204065676309617,
1092
+ "grad_norm": 0.6326259970664978,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 0.3665,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.2118842845973417,
1099
+ "grad_norm": 0.8820798993110657,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.3734,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.2197028928850664,
1106
+ "grad_norm": 0.8624477386474609,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 0.3581,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.2275215011727911,
1113
+ "grad_norm": 0.6675921678543091,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 0.3722,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.235340109460516,
1120
+ "grad_norm": 1.0099470615386963,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 0.3661,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.2431587177482408,
1127
+ "grad_norm": 0.8204535841941833,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 0.3674,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.2509773260359656,
1134
+ "grad_norm": 0.7338495850563049,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 0.3655,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.2587959343236903,
1141
+ "grad_norm": 0.7446017861366272,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 0.3706,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 1.266614542611415,
1148
+ "grad_norm": 0.7122478485107422,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 0.3487,
1151
+ "step": 1620
1152
+ },
1153
+ {
1154
+ "epoch": 1.27443315089914,
1155
+ "grad_norm": 0.8905506730079651,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 0.3749,
1158
+ "step": 1630
1159
+ },
1160
+ {
1161
+ "epoch": 1.2822517591868647,
1162
+ "grad_norm": 0.8287106156349182,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 0.3465,
1165
+ "step": 1640
1166
+ },
1167
+ {
1168
+ "epoch": 1.2900703674745895,
1169
+ "grad_norm": 0.6574750542640686,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 0.341,
1172
+ "step": 1650
1173
+ },
1174
+ {
1175
+ "epoch": 1.2978889757623144,
1176
+ "grad_norm": 0.6535889506340027,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 0.3467,
1179
+ "step": 1660
1180
+ },
1181
+ {
1182
+ "epoch": 1.3057075840500392,
1183
+ "grad_norm": 0.7493264675140381,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 0.3632,
1186
+ "step": 1670
1187
+ },
1188
+ {
1189
+ "epoch": 1.313526192337764,
1190
+ "grad_norm": 0.8663034439086914,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 0.3607,
1193
+ "step": 1680
1194
+ },
1195
+ {
1196
+ "epoch": 1.3213448006254886,
1197
+ "grad_norm": 0.7360671758651733,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 0.3605,
1200
+ "step": 1690
1201
+ },
1202
+ {
1203
+ "epoch": 1.3291634089132134,
1204
+ "grad_norm": 0.7367114424705505,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 0.3674,
1207
+ "step": 1700
1208
+ },
1209
+ {
1210
+ "epoch": 1.3369820172009383,
1211
+ "grad_norm": 0.8030956983566284,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 0.3593,
1214
+ "step": 1710
1215
+ },
1216
+ {
1217
+ "epoch": 1.344800625488663,
1218
+ "grad_norm": 0.9848132133483887,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 0.3536,
1221
+ "step": 1720
1222
+ },
1223
+ {
1224
+ "epoch": 1.3526192337763878,
1225
+ "grad_norm": 0.8279334306716919,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 0.3639,
1228
+ "step": 1730
1229
+ },
1230
+ {
1231
+ "epoch": 1.3604378420641126,
1232
+ "grad_norm": 0.5222904682159424,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 0.3508,
1235
+ "step": 1740
1236
+ },
1237
+ {
1238
+ "epoch": 1.3682564503518373,
1239
+ "grad_norm": 0.794312596321106,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 0.3534,
1242
+ "step": 1750
1243
+ },
1244
+ {
1245
+ "epoch": 1.3760750586395623,
1246
+ "grad_norm": 0.737553060054779,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 0.3468,
1249
+ "step": 1760
1250
+ },
1251
+ {
1252
+ "epoch": 1.383893666927287,
1253
+ "grad_norm": 0.6765537858009338,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 0.3446,
1256
+ "step": 1770
1257
+ },
1258
+ {
1259
+ "epoch": 1.3917122752150117,
1260
+ "grad_norm": 0.8873873353004456,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 0.3328,
1263
+ "step": 1780
1264
+ },
1265
+ {
1266
+ "epoch": 1.3995308835027365,
1267
+ "grad_norm": 0.8087615966796875,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 0.334,
1270
+ "step": 1790
1271
+ },
1272
+ {
1273
+ "epoch": 1.4073494917904612,
1274
+ "grad_norm": 0.7812146544456482,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 0.3482,
1277
+ "step": 1800
1278
+ },
1279
+ {
1280
+ "epoch": 1.4151681000781862,
1281
+ "grad_norm": 0.9902305006980896,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 0.3414,
1284
+ "step": 1810
1285
+ },
1286
+ {
1287
+ "epoch": 1.422986708365911,
1288
+ "grad_norm": 0.8695173263549805,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 0.3497,
1291
+ "step": 1820
1292
+ },
1293
+ {
1294
+ "epoch": 1.4308053166536356,
1295
+ "grad_norm": 0.8341027498245239,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 0.3501,
1298
+ "step": 1830
1299
+ },
1300
+ {
1301
+ "epoch": 1.4386239249413604,
1302
+ "grad_norm": 0.6223942041397095,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 0.3488,
1305
+ "step": 1840
1306
+ },
1307
+ {
1308
+ "epoch": 1.4464425332290851,
1309
+ "grad_norm": 0.8860258460044861,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 0.3474,
1312
+ "step": 1850
1313
+ },
1314
+ {
1315
+ "epoch": 1.45426114151681,
1316
+ "grad_norm": 0.802268922328949,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 0.3408,
1319
+ "step": 1860
1320
+ },
1321
+ {
1322
+ "epoch": 1.4620797498045348,
1323
+ "grad_norm": 0.6166049242019653,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 0.3453,
1326
+ "step": 1870
1327
+ },
1328
+ {
1329
+ "epoch": 1.4698983580922595,
1330
+ "grad_norm": 0.6559504270553589,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 0.3351,
1333
+ "step": 1880
1334
+ },
1335
+ {
1336
+ "epoch": 1.4777169663799843,
1337
+ "grad_norm": 0.6340335607528687,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 0.3423,
1340
+ "step": 1890
1341
+ },
1342
+ {
1343
+ "epoch": 1.485535574667709,
1344
+ "grad_norm": 0.8462929129600525,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 0.3474,
1347
+ "step": 1900
1348
+ },
1349
+ {
1350
+ "epoch": 1.493354182955434,
1351
+ "grad_norm": 0.8598943948745728,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 0.3477,
1354
+ "step": 1910
1355
+ },
1356
+ {
1357
+ "epoch": 1.5011727912431587,
1358
+ "grad_norm": 0.8200817108154297,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 0.3346,
1361
+ "step": 1920
1362
+ },
1363
+ {
1364
+ "epoch": 1.5089913995308835,
1365
+ "grad_norm": 0.6792778968811035,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 0.3432,
1368
+ "step": 1930
1369
+ },
1370
+ {
1371
+ "epoch": 1.5168100078186084,
1372
+ "grad_norm": 1.1566815376281738,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 0.3442,
1375
+ "step": 1940
1376
+ },
1377
+ {
1378
+ "epoch": 1.524628616106333,
1379
+ "grad_norm": 0.6438336372375488,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 0.3395,
1382
+ "step": 1950
1383
+ },
1384
+ {
1385
+ "epoch": 1.532447224394058,
1386
+ "grad_norm": 0.7384976148605347,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 0.3343,
1389
+ "step": 1960
1390
+ },
1391
+ {
1392
+ "epoch": 1.5402658326817826,
1393
+ "grad_norm": 0.7964138388633728,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 0.3361,
1396
+ "step": 1970
1397
+ },
1398
+ {
1399
+ "epoch": 1.5480844409695074,
1400
+ "grad_norm": 0.6302239894866943,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 0.3455,
1403
+ "step": 1980
1404
+ },
1405
+ {
1406
+ "epoch": 1.5559030492572323,
1407
+ "grad_norm": 1.2721625566482544,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 0.3546,
1410
+ "step": 1990
1411
+ },
1412
+ {
1413
+ "epoch": 1.5637216575449568,
1414
+ "grad_norm": 0.7145891189575195,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 0.3357,
1417
+ "step": 2000
1418
+ },
1419
+ {
1420
+ "epoch": 1.5715402658326818,
1421
+ "grad_norm": 1.206936240196228,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 0.3373,
1424
+ "step": 2010
1425
+ },
1426
+ {
1427
+ "epoch": 1.5793588741204065,
1428
+ "grad_norm": 0.6214511394500732,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 0.3384,
1431
+ "step": 2020
1432
+ },
1433
+ {
1434
+ "epoch": 1.5871774824081313,
1435
+ "grad_norm": 0.8027235269546509,
1436
+ "learning_rate": 0.0002,
1437
+ "loss": 0.3289,
1438
+ "step": 2030
1439
+ },
1440
+ {
1441
+ "epoch": 1.5949960906958562,
1442
+ "grad_norm": 1.201087236404419,
1443
+ "learning_rate": 0.0002,
1444
+ "loss": 0.3332,
1445
+ "step": 2040
1446
+ },
1447
+ {
1448
+ "epoch": 1.602814698983581,
1449
+ "grad_norm": 0.7836553454399109,
1450
+ "learning_rate": 0.0002,
1451
+ "loss": 0.3391,
1452
+ "step": 2050
1453
+ },
1454
+ {
1455
+ "epoch": 1.6106333072713057,
1456
+ "grad_norm": 0.7517825961112976,
1457
+ "learning_rate": 0.0002,
1458
+ "loss": 0.3299,
1459
+ "step": 2060
1460
+ },
1461
+ {
1462
+ "epoch": 1.6184519155590305,
1463
+ "grad_norm": 0.7465781569480896,
1464
+ "learning_rate": 0.0002,
1465
+ "loss": 0.3363,
1466
+ "step": 2070
1467
+ },
1468
+ {
1469
+ "epoch": 1.6262705238467552,
1470
+ "grad_norm": 0.5759570002555847,
1471
+ "learning_rate": 0.0002,
1472
+ "loss": 0.3463,
1473
+ "step": 2080
1474
+ },
1475
+ {
1476
+ "epoch": 1.6340891321344801,
1477
+ "grad_norm": 1.1590553522109985,
1478
+ "learning_rate": 0.0002,
1479
+ "loss": 0.3182,
1480
+ "step": 2090
1481
+ },
1482
+ {
1483
+ "epoch": 1.6419077404222049,
1484
+ "grad_norm": 0.5870680212974548,
1485
+ "learning_rate": 0.0002,
1486
+ "loss": 0.3329,
1487
+ "step": 2100
1488
+ },
1489
+ {
1490
+ "epoch": 1.6497263487099296,
1491
+ "grad_norm": 0.7370626330375671,
1492
+ "learning_rate": 0.0002,
1493
+ "loss": 0.3276,
1494
+ "step": 2110
1495
+ },
1496
+ {
1497
+ "epoch": 1.6575449569976546,
1498
+ "grad_norm": 0.8450182676315308,
1499
+ "learning_rate": 0.0002,
1500
+ "loss": 0.3335,
1501
+ "step": 2120
1502
+ },
1503
+ {
1504
+ "epoch": 1.665363565285379,
1505
+ "grad_norm": 0.7234358191490173,
1506
+ "learning_rate": 0.0002,
1507
+ "loss": 0.3282,
1508
+ "step": 2130
1509
+ },
1510
+ {
1511
+ "epoch": 1.673182173573104,
1512
+ "grad_norm": 0.6153436303138733,
1513
+ "learning_rate": 0.0002,
1514
+ "loss": 0.329,
1515
+ "step": 2140
1516
+ },
1517
+ {
1518
+ "epoch": 1.6810007818608288,
1519
+ "grad_norm": 0.5760449171066284,
1520
+ "learning_rate": 0.0002,
1521
+ "loss": 0.346,
1522
+ "step": 2150
1523
+ },
1524
+ {
1525
+ "epoch": 1.6888193901485535,
1526
+ "grad_norm": 0.6206227540969849,
1527
+ "learning_rate": 0.0002,
1528
+ "loss": 0.3367,
1529
+ "step": 2160
1530
+ },
1531
+ {
1532
+ "epoch": 1.6966379984362785,
1533
+ "grad_norm": 0.9404999613761902,
1534
+ "learning_rate": 0.0002,
1535
+ "loss": 0.3281,
1536
+ "step": 2170
1537
+ },
1538
+ {
1539
+ "epoch": 1.704456606724003,
1540
+ "grad_norm": 0.8661916851997375,
1541
+ "learning_rate": 0.0002,
1542
+ "loss": 0.3217,
1543
+ "step": 2180
1544
+ },
1545
+ {
1546
+ "epoch": 1.712275215011728,
1547
+ "grad_norm": 0.7642818093299866,
1548
+ "learning_rate": 0.0002,
1549
+ "loss": 0.3271,
1550
+ "step": 2190
1551
+ },
1552
+ {
1553
+ "epoch": 1.7200938232994527,
1554
+ "grad_norm": 0.6853117942810059,
1555
+ "learning_rate": 0.0002,
1556
+ "loss": 0.3258,
1557
+ "step": 2200
1558
+ },
1559
+ {
1560
+ "epoch": 1.7279124315871774,
1561
+ "grad_norm": 0.7656819820404053,
1562
+ "learning_rate": 0.0002,
1563
+ "loss": 0.3282,
1564
+ "step": 2210
1565
+ },
1566
+ {
1567
+ "epoch": 1.7357310398749024,
1568
+ "grad_norm": 0.7168070077896118,
1569
+ "learning_rate": 0.0002,
1570
+ "loss": 0.3201,
1571
+ "step": 2220
1572
+ },
1573
+ {
1574
+ "epoch": 1.743549648162627,
1575
+ "grad_norm": 1.0413419008255005,
1576
+ "learning_rate": 0.0002,
1577
+ "loss": 0.3315,
1578
+ "step": 2230
1579
+ },
1580
+ {
1581
+ "epoch": 1.7513682564503519,
1582
+ "grad_norm": 0.5912154912948608,
1583
+ "learning_rate": 0.0002,
1584
+ "loss": 0.3232,
1585
+ "step": 2240
1586
+ },
1587
+ {
1588
+ "epoch": 1.7591868647380766,
1589
+ "grad_norm": 0.7030780911445618,
1590
+ "learning_rate": 0.0002,
1591
+ "loss": 0.3233,
1592
+ "step": 2250
1593
+ },
1594
+ {
1595
+ "epoch": 1.7670054730258014,
1596
+ "grad_norm": 1.0184153318405151,
1597
+ "learning_rate": 0.0002,
1598
+ "loss": 0.3256,
1599
+ "step": 2260
1600
+ },
1601
+ {
1602
+ "epoch": 1.7748240813135263,
1603
+ "grad_norm": 0.7198194265365601,
1604
+ "learning_rate": 0.0002,
1605
+ "loss": 0.3241,
1606
+ "step": 2270
1607
+ },
1608
+ {
1609
+ "epoch": 1.7826426896012508,
1610
+ "grad_norm": 1.065075159072876,
1611
+ "learning_rate": 0.0002,
1612
+ "loss": 0.3234,
1613
+ "step": 2280
1614
+ },
1615
+ {
1616
+ "epoch": 1.7904612978889758,
1617
+ "grad_norm": 0.8209517598152161,
1618
+ "learning_rate": 0.0002,
1619
+ "loss": 0.3193,
1620
+ "step": 2290
1621
+ },
1622
+ {
1623
+ "epoch": 1.7982799061767005,
1624
+ "grad_norm": 0.7711963653564453,
1625
+ "learning_rate": 0.0002,
1626
+ "loss": 0.3324,
1627
+ "step": 2300
1628
+ },
1629
+ {
1630
+ "epoch": 1.8060985144644253,
1631
+ "grad_norm": 0.7440765500068665,
1632
+ "learning_rate": 0.0002,
1633
+ "loss": 0.319,
1634
+ "step": 2310
1635
+ },
1636
+ {
1637
+ "epoch": 1.8139171227521502,
1638
+ "grad_norm": 0.7835466265678406,
1639
+ "learning_rate": 0.0002,
1640
+ "loss": 0.3163,
1641
+ "step": 2320
1642
+ },
1643
+ {
1644
+ "epoch": 1.8217357310398747,
1645
+ "grad_norm": 0.6313241720199585,
1646
+ "learning_rate": 0.0002,
1647
+ "loss": 0.3239,
1648
+ "step": 2330
1649
+ },
1650
+ {
1651
+ "epoch": 1.8295543393275997,
1652
+ "grad_norm": 0.778071403503418,
1653
+ "learning_rate": 0.0002,
1654
+ "loss": 0.3313,
1655
+ "step": 2340
1656
+ },
1657
+ {
1658
+ "epoch": 1.8373729476153244,
1659
+ "grad_norm": 0.7656646966934204,
1660
+ "learning_rate": 0.0002,
1661
+ "loss": 0.3312,
1662
+ "step": 2350
1663
+ },
1664
+ {
1665
+ "epoch": 1.8451915559030492,
1666
+ "grad_norm": 0.7445554733276367,
1667
+ "learning_rate": 0.0002,
1668
+ "loss": 0.312,
1669
+ "step": 2360
1670
+ },
1671
+ {
1672
+ "epoch": 1.8530101641907741,
1673
+ "grad_norm": 0.6325365304946899,
1674
+ "learning_rate": 0.0002,
1675
+ "loss": 0.3237,
1676
+ "step": 2370
1677
+ },
1678
+ {
1679
+ "epoch": 1.8608287724784989,
1680
+ "grad_norm": 0.8103552460670471,
1681
+ "learning_rate": 0.0002,
1682
+ "loss": 0.3229,
1683
+ "step": 2380
1684
+ },
1685
+ {
1686
+ "epoch": 1.8686473807662236,
1687
+ "grad_norm": 0.9312598705291748,
1688
+ "learning_rate": 0.0002,
1689
+ "loss": 0.3215,
1690
+ "step": 2390
1691
+ },
1692
+ {
1693
+ "epoch": 1.8764659890539483,
1694
+ "grad_norm": 0.848996639251709,
1695
+ "learning_rate": 0.0002,
1696
+ "loss": 0.3124,
1697
+ "step": 2400
1698
+ },
1699
+ {
1700
+ "epoch": 1.884284597341673,
1701
+ "grad_norm": 0.8568035364151001,
1702
+ "learning_rate": 0.0002,
1703
+ "loss": 0.3268,
1704
+ "step": 2410
1705
+ },
1706
+ {
1707
+ "epoch": 1.892103205629398,
1708
+ "grad_norm": 1.1042375564575195,
1709
+ "learning_rate": 0.0002,
1710
+ "loss": 0.3317,
1711
+ "step": 2420
1712
+ },
1713
+ {
1714
+ "epoch": 1.8999218139171228,
1715
+ "grad_norm": 0.7110097408294678,
1716
+ "learning_rate": 0.0002,
1717
+ "loss": 0.3152,
1718
+ "step": 2430
1719
+ },
1720
+ {
1721
+ "epoch": 1.9077404222048475,
1722
+ "grad_norm": 0.7363375425338745,
1723
+ "learning_rate": 0.0002,
1724
+ "loss": 0.317,
1725
+ "step": 2440
1726
+ },
1727
+ {
1728
+ "epoch": 1.9155590304925725,
1729
+ "grad_norm": 0.7423311471939087,
1730
+ "learning_rate": 0.0002,
1731
+ "loss": 0.331,
1732
+ "step": 2450
1733
+ },
1734
+ {
1735
+ "epoch": 1.923377638780297,
1736
+ "grad_norm": 0.8554385900497437,
1737
+ "learning_rate": 0.0002,
1738
+ "loss": 0.3138,
1739
+ "step": 2460
1740
+ },
1741
+ {
1742
+ "epoch": 1.931196247068022,
1743
+ "grad_norm": 0.7054983377456665,
1744
+ "learning_rate": 0.0002,
1745
+ "loss": 0.3147,
1746
+ "step": 2470
1747
+ },
1748
+ {
1749
+ "epoch": 1.9390148553557467,
1750
+ "grad_norm": 0.7259753942489624,
1751
+ "learning_rate": 0.0002,
1752
+ "loss": 0.3126,
1753
+ "step": 2480
1754
+ },
1755
+ {
1756
+ "epoch": 1.9468334636434714,
1757
+ "grad_norm": 0.649142861366272,
1758
+ "learning_rate": 0.0002,
1759
+ "loss": 0.311,
1760
+ "step": 2490
1761
+ },
1762
+ {
1763
+ "epoch": 1.9546520719311964,
1764
+ "grad_norm": 0.6006044745445251,
1765
+ "learning_rate": 0.0002,
1766
+ "loss": 0.3223,
1767
+ "step": 2500
1768
+ },
1769
+ {
1770
+ "epoch": 1.962470680218921,
1771
+ "grad_norm": 0.7815561294555664,
1772
+ "learning_rate": 0.0002,
1773
+ "loss": 0.3105,
1774
+ "step": 2510
1775
+ },
1776
+ {
1777
+ "epoch": 1.9702892885066459,
1778
+ "grad_norm": 0.689166247844696,
1779
+ "learning_rate": 0.0002,
1780
+ "loss": 0.3242,
1781
+ "step": 2520
1782
+ },
1783
+ {
1784
+ "epoch": 1.9781078967943706,
1785
+ "grad_norm": 0.6812887787818909,
1786
+ "learning_rate": 0.0002,
1787
+ "loss": 0.307,
1788
+ "step": 2530
1789
+ },
1790
+ {
1791
+ "epoch": 1.9859265050820953,
1792
+ "grad_norm": 0.6528962254524231,
1793
+ "learning_rate": 0.0002,
1794
+ "loss": 0.3041,
1795
+ "step": 2540
1796
+ },
1797
+ {
1798
+ "epoch": 1.9937451133698203,
1799
+ "grad_norm": 0.6528279185295105,
1800
+ "learning_rate": 0.0002,
1801
+ "loss": 0.3057,
1802
+ "step": 2550
1803
+ },
1804
+ {
1805
+ "epoch": 2.0,
1806
+ "eval_loss": 0.31702762842178345,
1807
+ "eval_runtime": 63.9344,
1808
+ "eval_samples_per_second": 5.709,
1809
+ "eval_steps_per_second": 0.719,
1810
+ "step": 2558
1811
+ },
1812
+ {
1813
+ "epoch": 2.001563721657545,
1814
+ "grad_norm": 0.6745762228965759,
1815
+ "learning_rate": 0.0002,
1816
+ "loss": 0.3096,
1817
+ "step": 2560
1818
+ },
1819
+ {
1820
+ "epoch": 2.0093823299452698,
1821
+ "grad_norm": 0.8624046444892883,
1822
+ "learning_rate": 0.0002,
1823
+ "loss": 0.2931,
1824
+ "step": 2570
1825
+ },
1826
+ {
1827
+ "epoch": 2.0172009382329947,
1828
+ "grad_norm": 0.9315873980522156,
1829
+ "learning_rate": 0.0002,
1830
+ "loss": 0.2959,
1831
+ "step": 2580
1832
+ },
1833
+ {
1834
+ "epoch": 2.0250195465207192,
1835
+ "grad_norm": 0.7221729159355164,
1836
+ "learning_rate": 0.0002,
1837
+ "loss": 0.304,
1838
+ "step": 2590
1839
+ },
1840
+ {
1841
+ "epoch": 2.032838154808444,
1842
+ "grad_norm": 0.821427583694458,
1843
+ "learning_rate": 0.0002,
1844
+ "loss": 0.2958,
1845
+ "step": 2600
1846
+ },
1847
+ {
1848
+ "epoch": 2.0406567630961687,
1849
+ "grad_norm": 0.6174030900001526,
1850
+ "learning_rate": 0.0002,
1851
+ "loss": 0.3086,
1852
+ "step": 2610
1853
+ },
1854
+ {
1855
+ "epoch": 2.0484753713838937,
1856
+ "grad_norm": 0.670123815536499,
1857
+ "learning_rate": 0.0002,
1858
+ "loss": 0.3029,
1859
+ "step": 2620
1860
+ },
1861
+ {
1862
+ "epoch": 2.0562939796716186,
1863
+ "grad_norm": 1.0470527410507202,
1864
+ "learning_rate": 0.0002,
1865
+ "loss": 0.303,
1866
+ "step": 2630
1867
+ },
1868
+ {
1869
+ "epoch": 2.064112587959343,
1870
+ "grad_norm": 0.9624953866004944,
1871
+ "learning_rate": 0.0002,
1872
+ "loss": 0.305,
1873
+ "step": 2640
1874
+ },
1875
+ {
1876
+ "epoch": 2.071931196247068,
1877
+ "grad_norm": 0.9372404217720032,
1878
+ "learning_rate": 0.0002,
1879
+ "loss": 0.2886,
1880
+ "step": 2650
1881
+ },
1882
+ {
1883
+ "epoch": 2.0797498045347926,
1884
+ "grad_norm": 0.5635219812393188,
1885
+ "learning_rate": 0.0002,
1886
+ "loss": 0.2883,
1887
+ "step": 2660
1888
+ },
1889
+ {
1890
+ "epoch": 2.0875684128225176,
1891
+ "grad_norm": 0.7124640941619873,
1892
+ "learning_rate": 0.0002,
1893
+ "loss": 0.2889,
1894
+ "step": 2670
1895
+ },
1896
+ {
1897
+ "epoch": 2.0953870211102426,
1898
+ "grad_norm": 0.9465657472610474,
1899
+ "learning_rate": 0.0002,
1900
+ "loss": 0.3011,
1901
+ "step": 2680
1902
+ },
1903
+ {
1904
+ "epoch": 2.103205629397967,
1905
+ "grad_norm": 0.7515174150466919,
1906
+ "learning_rate": 0.0002,
1907
+ "loss": 0.3061,
1908
+ "step": 2690
1909
+ },
1910
+ {
1911
+ "epoch": 2.111024237685692,
1912
+ "grad_norm": 0.9722101092338562,
1913
+ "learning_rate": 0.0002,
1914
+ "loss": 0.2879,
1915
+ "step": 2700
1916
+ },
1917
+ {
1918
+ "epoch": 2.1188428459734165,
1919
+ "grad_norm": 0.6212092041969299,
1920
+ "learning_rate": 0.0002,
1921
+ "loss": 0.3042,
1922
+ "step": 2710
1923
+ },
1924
+ {
1925
+ "epoch": 2.1266614542611415,
1926
+ "grad_norm": 0.8257124423980713,
1927
+ "learning_rate": 0.0002,
1928
+ "loss": 0.2913,
1929
+ "step": 2720
1930
+ },
1931
+ {
1932
+ "epoch": 2.1344800625488665,
1933
+ "grad_norm": 0.555681586265564,
1934
+ "learning_rate": 0.0002,
1935
+ "loss": 0.303,
1936
+ "step": 2730
1937
+ },
1938
+ {
1939
+ "epoch": 2.142298670836591,
1940
+ "grad_norm": 0.5878972411155701,
1941
+ "learning_rate": 0.0002,
1942
+ "loss": 0.2933,
1943
+ "step": 2740
1944
+ },
1945
+ {
1946
+ "epoch": 2.150117279124316,
1947
+ "grad_norm": 0.9192131161689758,
1948
+ "learning_rate": 0.0002,
1949
+ "loss": 0.3048,
1950
+ "step": 2750
1951
+ },
1952
+ {
1953
+ "epoch": 2.1579358874120405,
1954
+ "grad_norm": 0.4973098039627075,
1955
+ "learning_rate": 0.0002,
1956
+ "loss": 0.3003,
1957
+ "step": 2760
1958
+ },
1959
+ {
1960
+ "epoch": 2.1657544956997654,
1961
+ "grad_norm": 1.0267789363861084,
1962
+ "learning_rate": 0.0002,
1963
+ "loss": 0.307,
1964
+ "step": 2770
1965
+ },
1966
+ {
1967
+ "epoch": 2.1735731039874904,
1968
+ "grad_norm": 0.6689954996109009,
1969
+ "learning_rate": 0.0002,
1970
+ "loss": 0.288,
1971
+ "step": 2780
1972
+ },
1973
+ {
1974
+ "epoch": 2.181391712275215,
1975
+ "grad_norm": 1.0326844453811646,
1976
+ "learning_rate": 0.0002,
1977
+ "loss": 0.3012,
1978
+ "step": 2790
1979
+ },
1980
+ {
1981
+ "epoch": 2.18921032056294,
1982
+ "grad_norm": 0.7656895518302917,
1983
+ "learning_rate": 0.0002,
1984
+ "loss": 0.3111,
1985
+ "step": 2800
1986
+ },
1987
+ {
1988
+ "epoch": 2.1970289288506644,
1989
+ "grad_norm": 1.0540403127670288,
1990
+ "learning_rate": 0.0002,
1991
+ "loss": 0.3017,
1992
+ "step": 2810
1993
+ },
1994
+ {
1995
+ "epoch": 2.2048475371383893,
1996
+ "grad_norm": 1.007364273071289,
1997
+ "learning_rate": 0.0002,
1998
+ "loss": 0.2959,
1999
+ "step": 2820
2000
+ },
2001
+ {
2002
+ "epoch": 2.2126661454261143,
2003
+ "grad_norm": 0.7497808337211609,
2004
+ "learning_rate": 0.0002,
2005
+ "loss": 0.3025,
2006
+ "step": 2830
2007
+ },
2008
+ {
2009
+ "epoch": 2.220484753713839,
2010
+ "grad_norm": 0.8607106804847717,
2011
+ "learning_rate": 0.0002,
2012
+ "loss": 0.3057,
2013
+ "step": 2840
2014
+ },
2015
+ {
2016
+ "epoch": 2.2283033620015638,
2017
+ "grad_norm": 0.6298855543136597,
2018
+ "learning_rate": 0.0002,
2019
+ "loss": 0.2927,
2020
+ "step": 2850
2021
+ },
2022
+ {
2023
+ "epoch": 2.2361219702892887,
2024
+ "grad_norm": 0.9291629791259766,
2025
+ "learning_rate": 0.0002,
2026
+ "loss": 0.3003,
2027
+ "step": 2860
2028
+ },
2029
+ {
2030
+ "epoch": 2.2439405785770132,
2031
+ "grad_norm": 0.6486570239067078,
2032
+ "learning_rate": 0.0002,
2033
+ "loss": 0.298,
2034
+ "step": 2870
2035
+ },
2036
+ {
2037
+ "epoch": 2.251759186864738,
2038
+ "grad_norm": 0.9577697515487671,
2039
+ "learning_rate": 0.0002,
2040
+ "loss": 0.3013,
2041
+ "step": 2880
2042
+ },
2043
+ {
2044
+ "epoch": 2.2595777951524627,
2045
+ "grad_norm": 0.8712478876113892,
2046
+ "learning_rate": 0.0002,
2047
+ "loss": 0.3037,
2048
+ "step": 2890
2049
+ },
2050
+ {
2051
+ "epoch": 2.2673964034401877,
2052
+ "grad_norm": 0.783490002155304,
2053
+ "learning_rate": 0.0002,
2054
+ "loss": 0.3063,
2055
+ "step": 2900
2056
+ },
2057
+ {
2058
+ "epoch": 2.275215011727912,
2059
+ "grad_norm": 0.9283138513565063,
2060
+ "learning_rate": 0.0002,
2061
+ "loss": 0.2926,
2062
+ "step": 2910
2063
+ },
2064
+ {
2065
+ "epoch": 2.283033620015637,
2066
+ "grad_norm": 1.7705273628234863,
2067
+ "learning_rate": 0.0002,
2068
+ "loss": 0.2941,
2069
+ "step": 2920
2070
+ },
2071
+ {
2072
+ "epoch": 2.290852228303362,
2073
+ "grad_norm": 0.6388339996337891,
2074
+ "learning_rate": 0.0002,
2075
+ "loss": 0.2879,
2076
+ "step": 2930
2077
+ },
2078
+ {
2079
+ "epoch": 2.2986708365910866,
2080
+ "grad_norm": 0.9375593066215515,
2081
+ "learning_rate": 0.0002,
2082
+ "loss": 0.2916,
2083
+ "step": 2940
2084
+ },
2085
+ {
2086
+ "epoch": 2.3064894448788116,
2087
+ "grad_norm": 0.7213515639305115,
2088
+ "learning_rate": 0.0002,
2089
+ "loss": 0.3004,
2090
+ "step": 2950
2091
+ },
2092
+ {
2093
+ "epoch": 2.3143080531665365,
2094
+ "grad_norm": 0.9552587866783142,
2095
+ "learning_rate": 0.0002,
2096
+ "loss": 0.31,
2097
+ "step": 2960
2098
+ },
2099
+ {
2100
+ "epoch": 2.322126661454261,
2101
+ "grad_norm": 0.8279618620872498,
2102
+ "learning_rate": 0.0002,
2103
+ "loss": 0.2943,
2104
+ "step": 2970
2105
+ },
2106
+ {
2107
+ "epoch": 2.329945269741986,
2108
+ "grad_norm": 0.6073647141456604,
2109
+ "learning_rate": 0.0002,
2110
+ "loss": 0.2973,
2111
+ "step": 2980
2112
+ },
2113
+ {
2114
+ "epoch": 2.3377638780297105,
2115
+ "grad_norm": 0.798538863658905,
2116
+ "learning_rate": 0.0002,
2117
+ "loss": 0.2957,
2118
+ "step": 2990
2119
+ },
2120
+ {
2121
+ "epoch": 2.3455824863174355,
2122
+ "grad_norm": 1.0310461521148682,
2123
+ "learning_rate": 0.0002,
2124
+ "loss": 0.3077,
2125
+ "step": 3000
2126
+ },
2127
+ {
2128
+ "epoch": 2.3534010946051604,
2129
+ "grad_norm": 0.7587346434593201,
2130
+ "learning_rate": 0.0002,
2131
+ "loss": 0.2975,
2132
+ "step": 3010
2133
+ },
2134
+ {
2135
+ "epoch": 2.361219702892885,
2136
+ "grad_norm": 0.8931202292442322,
2137
+ "learning_rate": 0.0002,
2138
+ "loss": 0.2847,
2139
+ "step": 3020
2140
+ },
2141
+ {
2142
+ "epoch": 2.36903831118061,
2143
+ "grad_norm": 0.6081550717353821,
2144
+ "learning_rate": 0.0002,
2145
+ "loss": 0.2998,
2146
+ "step": 3030
2147
+ },
2148
+ {
2149
+ "epoch": 2.3768569194683344,
2150
+ "grad_norm": 0.7393735647201538,
2151
+ "learning_rate": 0.0002,
2152
+ "loss": 0.2792,
2153
+ "step": 3040
2154
+ },
2155
+ {
2156
+ "epoch": 2.3846755277560594,
2157
+ "grad_norm": 0.5691865682601929,
2158
+ "learning_rate": 0.0002,
2159
+ "loss": 0.2911,
2160
+ "step": 3050
2161
+ },
2162
+ {
2163
+ "epoch": 2.3924941360437844,
2164
+ "grad_norm": 0.5669929385185242,
2165
+ "learning_rate": 0.0002,
2166
+ "loss": 0.2893,
2167
+ "step": 3060
2168
+ },
2169
+ {
2170
+ "epoch": 2.400312744331509,
2171
+ "grad_norm": 0.9331319332122803,
2172
+ "learning_rate": 0.0002,
2173
+ "loss": 0.2949,
2174
+ "step": 3070
2175
+ },
2176
+ {
2177
+ "epoch": 2.408131352619234,
2178
+ "grad_norm": 0.684083878993988,
2179
+ "learning_rate": 0.0002,
2180
+ "loss": 0.2962,
2181
+ "step": 3080
2182
+ },
2183
+ {
2184
+ "epoch": 2.415949960906959,
2185
+ "grad_norm": 0.6313386559486389,
2186
+ "learning_rate": 0.0002,
2187
+ "loss": 0.2925,
2188
+ "step": 3090
2189
+ },
2190
+ {
2191
+ "epoch": 2.4237685691946833,
2192
+ "grad_norm": 1.1875200271606445,
2193
+ "learning_rate": 0.0002,
2194
+ "loss": 0.2916,
2195
+ "step": 3100
2196
+ },
2197
+ {
2198
+ "epoch": 2.4315871774824083,
2199
+ "grad_norm": 0.6400235295295715,
2200
+ "learning_rate": 0.0002,
2201
+ "loss": 0.2921,
2202
+ "step": 3110
2203
+ },
2204
+ {
2205
+ "epoch": 2.439405785770133,
2206
+ "grad_norm": 0.8620758652687073,
2207
+ "learning_rate": 0.0002,
2208
+ "loss": 0.2989,
2209
+ "step": 3120
2210
+ },
2211
+ {
2212
+ "epoch": 2.4472243940578577,
2213
+ "grad_norm": 0.5646781325340271,
2214
+ "learning_rate": 0.0002,
2215
+ "loss": 0.2952,
2216
+ "step": 3130
2217
+ },
2218
+ {
2219
+ "epoch": 2.4550430023455823,
2220
+ "grad_norm": 0.9492020606994629,
2221
+ "learning_rate": 0.0002,
2222
+ "loss": 0.2956,
2223
+ "step": 3140
2224
+ },
2225
+ {
2226
+ "epoch": 2.462861610633307,
2227
+ "grad_norm": 0.9361923336982727,
2228
+ "learning_rate": 0.0002,
2229
+ "loss": 0.2887,
2230
+ "step": 3150
2231
+ },
2232
+ {
2233
+ "epoch": 2.470680218921032,
2234
+ "grad_norm": 0.8445627689361572,
2235
+ "learning_rate": 0.0002,
2236
+ "loss": 0.292,
2237
+ "step": 3160
2238
+ },
2239
+ {
2240
+ "epoch": 2.4784988272087567,
2241
+ "grad_norm": 0.9534024000167847,
2242
+ "learning_rate": 0.0002,
2243
+ "loss": 0.2887,
2244
+ "step": 3170
2245
+ },
2246
+ {
2247
+ "epoch": 2.4863174354964817,
2248
+ "grad_norm": 0.7826582789421082,
2249
+ "learning_rate": 0.0002,
2250
+ "loss": 0.2866,
2251
+ "step": 3180
2252
+ },
2253
+ {
2254
+ "epoch": 2.4941360437842066,
2255
+ "grad_norm": 0.9183843731880188,
2256
+ "learning_rate": 0.0002,
2257
+ "loss": 0.2932,
2258
+ "step": 3190
2259
+ },
2260
+ {
2261
+ "epoch": 2.501954652071931,
2262
+ "grad_norm": 0.7662791609764099,
2263
+ "learning_rate": 0.0002,
2264
+ "loss": 0.2877,
2265
+ "step": 3200
2266
+ },
2267
+ {
2268
+ "epoch": 2.509773260359656,
2269
+ "grad_norm": 0.5516344308853149,
2270
+ "learning_rate": 0.0002,
2271
+ "loss": 0.3027,
2272
+ "step": 3210
2273
+ },
2274
+ {
2275
+ "epoch": 2.5175918686473806,
2276
+ "grad_norm": 0.8428415656089783,
2277
+ "learning_rate": 0.0002,
2278
+ "loss": 0.2922,
2279
+ "step": 3220
2280
+ },
2281
+ {
2282
+ "epoch": 2.5254104769351056,
2283
+ "grad_norm": 0.7443435192108154,
2284
+ "learning_rate": 0.0002,
2285
+ "loss": 0.2796,
2286
+ "step": 3230
2287
+ },
2288
+ {
2289
+ "epoch": 2.53322908522283,
2290
+ "grad_norm": 0.7847051024436951,
2291
+ "learning_rate": 0.0002,
2292
+ "loss": 0.2882,
2293
+ "step": 3240
2294
+ },
2295
+ {
2296
+ "epoch": 2.541047693510555,
2297
+ "grad_norm": 0.6948403120040894,
2298
+ "learning_rate": 0.0002,
2299
+ "loss": 0.2863,
2300
+ "step": 3250
2301
+ },
2302
+ {
2303
+ "epoch": 2.54886630179828,
2304
+ "grad_norm": 0.6670306921005249,
2305
+ "learning_rate": 0.0002,
2306
+ "loss": 0.2967,
2307
+ "step": 3260
2308
+ },
2309
+ {
2310
+ "epoch": 2.5566849100860045,
2311
+ "grad_norm": 1.191672682762146,
2312
+ "learning_rate": 0.0002,
2313
+ "loss": 0.2942,
2314
+ "step": 3270
2315
+ },
2316
+ {
2317
+ "epoch": 2.5645035183737295,
2318
+ "grad_norm": 0.7504554390907288,
2319
+ "learning_rate": 0.0002,
2320
+ "loss": 0.2902,
2321
+ "step": 3280
2322
+ },
2323
+ {
2324
+ "epoch": 2.5723221266614544,
2325
+ "grad_norm": 0.9115633964538574,
2326
+ "learning_rate": 0.0002,
2327
+ "loss": 0.2815,
2328
+ "step": 3290
2329
+ },
2330
+ {
2331
+ "epoch": 2.580140734949179,
2332
+ "grad_norm": 0.8133999109268188,
2333
+ "learning_rate": 0.0002,
2334
+ "loss": 0.2888,
2335
+ "step": 3300
2336
+ },
2337
+ {
2338
+ "epoch": 2.587959343236904,
2339
+ "grad_norm": 1.501922845840454,
2340
+ "learning_rate": 0.0002,
2341
+ "loss": 0.2736,
2342
+ "step": 3310
2343
+ },
2344
+ {
2345
+ "epoch": 2.595777951524629,
2346
+ "grad_norm": 1.25674569606781,
2347
+ "learning_rate": 0.0002,
2348
+ "loss": 0.2898,
2349
+ "step": 3320
2350
+ },
2351
+ {
2352
+ "epoch": 2.6035965598123534,
2353
+ "grad_norm": 0.6403043270111084,
2354
+ "learning_rate": 0.0002,
2355
+ "loss": 0.2977,
2356
+ "step": 3330
2357
+ },
2358
+ {
2359
+ "epoch": 2.6114151681000783,
2360
+ "grad_norm": 0.802317202091217,
2361
+ "learning_rate": 0.0002,
2362
+ "loss": 0.2891,
2363
+ "step": 3340
2364
+ },
2365
+ {
2366
+ "epoch": 2.619233776387803,
2367
+ "grad_norm": 0.8865256905555725,
2368
+ "learning_rate": 0.0002,
2369
+ "loss": 0.2894,
2370
+ "step": 3350
2371
+ },
2372
+ {
2373
+ "epoch": 2.627052384675528,
2374
+ "grad_norm": 1.0685266256332397,
2375
+ "learning_rate": 0.0002,
2376
+ "loss": 0.2852,
2377
+ "step": 3360
2378
+ },
2379
+ {
2380
+ "epoch": 2.6348709929632523,
2381
+ "grad_norm": 0.6208046078681946,
2382
+ "learning_rate": 0.0002,
2383
+ "loss": 0.2853,
2384
+ "step": 3370
2385
+ },
2386
+ {
2387
+ "epoch": 2.6426896012509773,
2388
+ "grad_norm": 0.7943758368492126,
2389
+ "learning_rate": 0.0002,
2390
+ "loss": 0.2869,
2391
+ "step": 3380
2392
+ },
2393
+ {
2394
+ "epoch": 2.6505082095387023,
2395
+ "grad_norm": 0.46959924697875977,
2396
+ "learning_rate": 0.0002,
2397
+ "loss": 0.294,
2398
+ "step": 3390
2399
+ },
2400
+ {
2401
+ "epoch": 2.6583268178264268,
2402
+ "grad_norm": 0.915804386138916,
2403
+ "learning_rate": 0.0002,
2404
+ "loss": 0.2872,
2405
+ "step": 3400
2406
+ },
2407
+ {
2408
+ "epoch": 2.6661454261141517,
2409
+ "grad_norm": 0.744133710861206,
2410
+ "learning_rate": 0.0002,
2411
+ "loss": 0.2794,
2412
+ "step": 3410
2413
+ },
2414
+ {
2415
+ "epoch": 2.6739640344018767,
2416
+ "grad_norm": 0.6811481714248657,
2417
+ "learning_rate": 0.0002,
2418
+ "loss": 0.2868,
2419
+ "step": 3420
2420
+ },
2421
+ {
2422
+ "epoch": 2.681782642689601,
2423
+ "grad_norm": 0.7864041328430176,
2424
+ "learning_rate": 0.0002,
2425
+ "loss": 0.2947,
2426
+ "step": 3430
2427
+ },
2428
+ {
2429
+ "epoch": 2.689601250977326,
2430
+ "grad_norm": 0.6726815700531006,
2431
+ "learning_rate": 0.0002,
2432
+ "loss": 0.2824,
2433
+ "step": 3440
2434
+ },
2435
+ {
2436
+ "epoch": 2.6974198592650507,
2437
+ "grad_norm": 0.8560361266136169,
2438
+ "learning_rate": 0.0002,
2439
+ "loss": 0.2911,
2440
+ "step": 3450
2441
+ },
2442
+ {
2443
+ "epoch": 2.7052384675527756,
2444
+ "grad_norm": 0.6773067116737366,
2445
+ "learning_rate": 0.0002,
2446
+ "loss": 0.2867,
2447
+ "step": 3460
2448
+ },
2449
+ {
2450
+ "epoch": 2.7130570758405,
2451
+ "grad_norm": 0.8093675971031189,
2452
+ "learning_rate": 0.0002,
2453
+ "loss": 0.2833,
2454
+ "step": 3470
2455
+ },
2456
+ {
2457
+ "epoch": 2.720875684128225,
2458
+ "grad_norm": 0.7565127611160278,
2459
+ "learning_rate": 0.0002,
2460
+ "loss": 0.2897,
2461
+ "step": 3480
2462
+ },
2463
+ {
2464
+ "epoch": 2.72869429241595,
2465
+ "grad_norm": 0.5608393549919128,
2466
+ "learning_rate": 0.0002,
2467
+ "loss": 0.2826,
2468
+ "step": 3490
2469
+ },
2470
+ {
2471
+ "epoch": 2.7365129007036746,
2472
+ "grad_norm": 0.8530815243721008,
2473
+ "learning_rate": 0.0002,
2474
+ "loss": 0.2757,
2475
+ "step": 3500
2476
+ },
2477
+ {
2478
+ "epoch": 2.7443315089913995,
2479
+ "grad_norm": 0.6655313968658447,
2480
+ "learning_rate": 0.0002,
2481
+ "loss": 0.2854,
2482
+ "step": 3510
2483
+ },
2484
+ {
2485
+ "epoch": 2.7521501172791245,
2486
+ "grad_norm": 0.8840405941009521,
2487
+ "learning_rate": 0.0002,
2488
+ "loss": 0.284,
2489
+ "step": 3520
2490
+ },
2491
+ {
2492
+ "epoch": 2.759968725566849,
2493
+ "grad_norm": 0.5805156826972961,
2494
+ "learning_rate": 0.0002,
2495
+ "loss": 0.2898,
2496
+ "step": 3530
2497
+ },
2498
+ {
2499
+ "epoch": 2.767787333854574,
2500
+ "grad_norm": 0.8929122090339661,
2501
+ "learning_rate": 0.0002,
2502
+ "loss": 0.284,
2503
+ "step": 3540
2504
+ },
2505
+ {
2506
+ "epoch": 2.775605942142299,
2507
+ "grad_norm": 0.8708682656288147,
2508
+ "learning_rate": 0.0002,
2509
+ "loss": 0.2889,
2510
+ "step": 3550
2511
+ },
2512
+ {
2513
+ "epoch": 2.7834245504300235,
2514
+ "grad_norm": 0.7769750952720642,
2515
+ "learning_rate": 0.0002,
2516
+ "loss": 0.2758,
2517
+ "step": 3560
2518
+ },
2519
+ {
2520
+ "epoch": 2.791243158717748,
2521
+ "grad_norm": 0.9139852523803711,
2522
+ "learning_rate": 0.0002,
2523
+ "loss": 0.2884,
2524
+ "step": 3570
2525
+ },
2526
+ {
2527
+ "epoch": 2.799061767005473,
2528
+ "grad_norm": 0.8278502821922302,
2529
+ "learning_rate": 0.0002,
2530
+ "loss": 0.2799,
2531
+ "step": 3580
2532
+ },
2533
+ {
2534
+ "epoch": 2.806880375293198,
2535
+ "grad_norm": 1.2494527101516724,
2536
+ "learning_rate": 0.0002,
2537
+ "loss": 0.2813,
2538
+ "step": 3590
2539
+ },
2540
+ {
2541
+ "epoch": 2.8146989835809224,
2542
+ "grad_norm": 0.7714791893959045,
2543
+ "learning_rate": 0.0002,
2544
+ "loss": 0.2865,
2545
+ "step": 3600
2546
+ },
2547
+ {
2548
+ "epoch": 2.8225175918686474,
2549
+ "grad_norm": 0.7571589946746826,
2550
+ "learning_rate": 0.0002,
2551
+ "loss": 0.2814,
2552
+ "step": 3610
2553
+ },
2554
+ {
2555
+ "epoch": 2.8303362001563723,
2556
+ "grad_norm": 1.0769212245941162,
2557
+ "learning_rate": 0.0002,
2558
+ "loss": 0.2808,
2559
+ "step": 3620
2560
+ },
2561
+ {
2562
+ "epoch": 2.838154808444097,
2563
+ "grad_norm": 0.7629138827323914,
2564
+ "learning_rate": 0.0002,
2565
+ "loss": 0.271,
2566
+ "step": 3630
2567
+ },
2568
+ {
2569
+ "epoch": 2.845973416731822,
2570
+ "grad_norm": 0.625410795211792,
2571
+ "learning_rate": 0.0002,
2572
+ "loss": 0.2932,
2573
+ "step": 3640
2574
+ },
2575
+ {
2576
+ "epoch": 2.8537920250195468,
2577
+ "grad_norm": 0.8575489521026611,
2578
+ "learning_rate": 0.0002,
2579
+ "loss": 0.2797,
2580
+ "step": 3650
2581
+ },
2582
+ {
2583
+ "epoch": 2.8616106333072713,
2584
+ "grad_norm": 0.5776465535163879,
2585
+ "learning_rate": 0.0002,
2586
+ "loss": 0.2837,
2587
+ "step": 3660
2588
+ },
2589
+ {
2590
+ "epoch": 2.8694292415949962,
2591
+ "grad_norm": 0.57872474193573,
2592
+ "learning_rate": 0.0002,
2593
+ "loss": 0.2758,
2594
+ "step": 3670
2595
+ },
2596
+ {
2597
+ "epoch": 2.8772478498827208,
2598
+ "grad_norm": 0.5034054517745972,
2599
+ "learning_rate": 0.0002,
2600
+ "loss": 0.2728,
2601
+ "step": 3680
2602
+ },
2603
+ {
2604
+ "epoch": 2.8850664581704457,
2605
+ "grad_norm": 0.8414032459259033,
2606
+ "learning_rate": 0.0002,
2607
+ "loss": 0.2779,
2608
+ "step": 3690
2609
+ },
2610
+ {
2611
+ "epoch": 2.8928850664581702,
2612
+ "grad_norm": 1.0529718399047852,
2613
+ "learning_rate": 0.0002,
2614
+ "loss": 0.2922,
2615
+ "step": 3700
2616
+ },
2617
+ {
2618
+ "epoch": 2.900703674745895,
2619
+ "grad_norm": 0.642629086971283,
2620
+ "learning_rate": 0.0002,
2621
+ "loss": 0.28,
2622
+ "step": 3710
2623
+ },
2624
+ {
2625
+ "epoch": 2.90852228303362,
2626
+ "grad_norm": 0.8804178237915039,
2627
+ "learning_rate": 0.0002,
2628
+ "loss": 0.2754,
2629
+ "step": 3720
2630
+ },
2631
+ {
2632
+ "epoch": 2.9163408913213447,
2633
+ "grad_norm": 0.8823941349983215,
2634
+ "learning_rate": 0.0002,
2635
+ "loss": 0.272,
2636
+ "step": 3730
2637
+ },
2638
+ {
2639
+ "epoch": 2.9241594996090696,
2640
+ "grad_norm": 0.7909939885139465,
2641
+ "learning_rate": 0.0002,
2642
+ "loss": 0.2764,
2643
+ "step": 3740
2644
+ },
2645
+ {
2646
+ "epoch": 2.9319781078967946,
2647
+ "grad_norm": 0.9231449961662292,
2648
+ "learning_rate": 0.0002,
2649
+ "loss": 0.2815,
2650
+ "step": 3750
2651
+ },
2652
+ {
2653
+ "epoch": 2.939796716184519,
2654
+ "grad_norm": 0.6667030453681946,
2655
+ "learning_rate": 0.0002,
2656
+ "loss": 0.2946,
2657
+ "step": 3760
2658
+ },
2659
+ {
2660
+ "epoch": 2.947615324472244,
2661
+ "grad_norm": 0.7937665581703186,
2662
+ "learning_rate": 0.0002,
2663
+ "loss": 0.2778,
2664
+ "step": 3770
2665
+ },
2666
+ {
2667
+ "epoch": 2.9554339327599686,
2668
+ "grad_norm": 0.6896514892578125,
2669
+ "learning_rate": 0.0002,
2670
+ "loss": 0.2867,
2671
+ "step": 3780
2672
+ },
2673
+ {
2674
+ "epoch": 2.9632525410476935,
2675
+ "grad_norm": 0.8817704319953918,
2676
+ "learning_rate": 0.0002,
2677
+ "loss": 0.2823,
2678
+ "step": 3790
2679
+ },
2680
+ {
2681
+ "epoch": 2.971071149335418,
2682
+ "grad_norm": 0.6947396397590637,
2683
+ "learning_rate": 0.0002,
2684
+ "loss": 0.2798,
2685
+ "step": 3800
2686
+ },
2687
+ {
2688
+ "epoch": 2.978889757623143,
2689
+ "grad_norm": 0.690621554851532,
2690
+ "learning_rate": 0.0002,
2691
+ "loss": 0.2829,
2692
+ "step": 3810
2693
+ },
2694
+ {
2695
+ "epoch": 2.986708365910868,
2696
+ "grad_norm": 0.5144171714782715,
2697
+ "learning_rate": 0.0002,
2698
+ "loss": 0.2712,
2699
+ "step": 3820
2700
+ },
2701
+ {
2702
+ "epoch": 2.9945269741985925,
2703
+ "grad_norm": 0.7612534761428833,
2704
+ "learning_rate": 0.0002,
2705
+ "loss": 0.2816,
2706
+ "step": 3830
2707
+ },
2708
+ {
2709
+ "epoch": 3.0,
2710
+ "eval_loss": 0.2826317846775055,
2711
+ "eval_runtime": 68.3043,
2712
+ "eval_samples_per_second": 5.344,
2713
+ "eval_steps_per_second": 0.673,
2714
+ "step": 3837
2715
+ }
2716
+ ],
2717
+ "logging_steps": 10,
2718
+ "max_steps": 10232,
2719
+ "num_input_tokens_seen": 0,
2720
+ "num_train_epochs": 8,
2721
+ "save_steps": 200,
2722
+ "stateful_callbacks": {
2723
+ "TrainerControl": {
2724
+ "args": {
2725
+ "should_epoch_stop": false,
2726
+ "should_evaluate": false,
2727
+ "should_log": false,
2728
+ "should_save": true,
2729
+ "should_training_stop": false
2730
+ },
2731
+ "attributes": {}
2732
+ }
2733
+ },
2734
+ "total_flos": 1.683473263755264e+17,
2735
+ "train_batch_size": 1,
2736
+ "trial_name": null,
2737
+ "trial_params": null
2738
+ }