MilaWang commited on
Commit
c32acad
·
verified ·
1 Parent(s): 4cdbe50

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/README.md +202 -0
  2. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/adapter_config.json +29 -0
  3. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/adapter_model.safetensors +3 -0
  4. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/README.md +202 -0
  5. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/adapter_config.json +29 -0
  6. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/adapter_model.safetensors +3 -0
  7. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/optimizer.pt +3 -0
  8. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/rng_state.pth +3 -0
  9. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/scheduler.pt +3 -0
  10. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/special_tokens_map.json +24 -0
  11. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/tokenizer.json +0 -0
  12. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/tokenizer.model +3 -0
  13. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/tokenizer_config.json +0 -0
  14. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/trainer_state.json +755 -0
  15. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/training_args.bin +3 -0
  16. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/README.md +202 -0
  17. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/adapter_config.json +29 -0
  18. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/adapter_model.safetensors +3 -0
  19. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/optimizer.pt +3 -0
  20. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/rng_state.pth +3 -0
  21. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/scheduler.pt +3 -0
  22. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/special_tokens_map.json +24 -0
  23. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/tokenizer.json +0 -0
  24. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/tokenizer.model +3 -0
  25. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/tokenizer_config.json +0 -0
  26. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/trainer_state.json +1477 -0
  27. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/training_args.bin +3 -0
  28. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/README.md +202 -0
  29. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/adapter_config.json +29 -0
  30. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/adapter_model.safetensors +3 -0
  31. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/optimizer.pt +3 -0
  32. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/rng_state.pth +3 -0
  33. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/scheduler.pt +3 -0
  34. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/special_tokens_map.json +24 -0
  35. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/tokenizer.json +0 -0
  36. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/tokenizer.model +3 -0
  37. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/tokenizer_config.json +0 -0
  38. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/trainer_state.json +2206 -0
  39. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/training_args.bin +3 -0
  40. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/README.md +202 -0
  41. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/adapter_config.json +29 -0
  42. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/adapter_model.safetensors +3 -0
  43. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/optimizer.pt +3 -0
  44. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/rng_state.pth +3 -0
  45. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/scheduler.pt +3 -0
  46. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/special_tokens_map.json +24 -0
  47. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/tokenizer.json +0 -0
  48. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/tokenizer.model +3 -0
  49. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/tokenizer_config.json +0 -0
  50. Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/trainer_state.json +2928 -0
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1783b161c00789a4b631199a90697e7cf1fb64473a5daae89f6d8dd4277e4c66
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e987798fb953d47a59902f5b3c86517cedce305908221860c33520110d05629
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe91ed29e79ba606fe5e333859069e02bbb701c59bd6af895bdd53261d43a469
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8abb126f443bfdd69eb1a4c09bb8a151edb1083eb2bacfb18dda619ac766a826
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5232d89f08bdd76d944153588195abb7719a0929a020b5e1bb06ede6cd420bd
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/trainer_state.json ADDED
@@ -0,0 +1,755 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.433101624250412,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023",
4
+ "epoch": 0.9995114802149487,
5
+ "eval_steps": 10,
6
+ "global_step": 1023,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.009770395701025891,
13
+ "grad_norm": 1.1888047456741333,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7474,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.019540791402051783,
20
+ "grad_norm": 1.3118009567260742,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.157,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.029311187103077674,
27
+ "grad_norm": 1.1254922151565552,
28
+ "learning_rate": 0.0002,
29
+ "loss": 0.9979,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.039081582804103565,
34
+ "grad_norm": 0.9634686708450317,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.8859,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.048851978505129456,
41
+ "grad_norm": 0.9101817607879639,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.7826,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.05862237420615535,
48
+ "grad_norm": 1.0019943714141846,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7358,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.06839276990718124,
55
+ "grad_norm": 0.9201828837394714,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6664,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.07816316560820713,
62
+ "grad_norm": 0.9210318922996521,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6785,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.08793356130923302,
69
+ "grad_norm": 0.8079697489738464,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.652,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.09770395701025891,
76
+ "grad_norm": 0.7530406713485718,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.6469,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.1074743527112848,
83
+ "grad_norm": 0.8732273578643799,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6604,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.1172447484123107,
90
+ "grad_norm": 0.9163013696670532,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6429,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.1270151441133366,
97
+ "grad_norm": 0.5931605696678162,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6269,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.13678553981436248,
104
+ "grad_norm": 0.8782339692115784,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6349,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.14655593551538837,
111
+ "grad_norm": 0.6683491468429565,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.657,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.15632633121641426,
118
+ "grad_norm": 0.7998592257499695,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6315,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.16609672691744015,
125
+ "grad_norm": 0.6159262657165527,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.6347,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.17586712261846604,
132
+ "grad_norm": 0.671146035194397,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.6023,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.18563751831949193,
139
+ "grad_norm": 0.5839019417762756,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.6101,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.19540791402051783,
146
+ "grad_norm": 0.5090241432189941,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.6121,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.20517830972154372,
153
+ "grad_norm": 0.652291476726532,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.6296,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.2149487054225696,
160
+ "grad_norm": 0.6500856876373291,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.577,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.2247191011235955,
167
+ "grad_norm": 0.6135480999946594,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.6186,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2344894968246214,
174
+ "grad_norm": 0.6102302074432373,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6132,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.24425989252564728,
181
+ "grad_norm": 0.6909783482551575,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.592,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.2540302882266732,
188
+ "grad_norm": 0.5834446549415588,
189
+ "learning_rate": 0.0002,
190
+ "loss": 0.5832,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.26380068392769906,
195
+ "grad_norm": 0.5275322198867798,
196
+ "learning_rate": 0.0002,
197
+ "loss": 0.6038,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.27357107962872496,
202
+ "grad_norm": 0.5611422657966614,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.5469,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.28334147532975085,
209
+ "grad_norm": 0.6549052596092224,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.552,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.29311187103077674,
216
+ "grad_norm": 0.563291072845459,
217
+ "learning_rate": 0.0002,
218
+ "loss": 0.5609,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.30288226673180263,
223
+ "grad_norm": 0.5598369240760803,
224
+ "learning_rate": 0.0002,
225
+ "loss": 0.5632,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3126526624328285,
230
+ "grad_norm": 0.6525678634643555,
231
+ "learning_rate": 0.0002,
232
+ "loss": 0.5627,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.3224230581338544,
237
+ "grad_norm": 0.5190592408180237,
238
+ "learning_rate": 0.0002,
239
+ "loss": 0.5526,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.3321934538348803,
244
+ "grad_norm": 0.45483070611953735,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.5698,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.3419638495359062,
251
+ "grad_norm": 0.8094475865364075,
252
+ "learning_rate": 0.0002,
253
+ "loss": 0.5768,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.3517342452369321,
258
+ "grad_norm": 0.5545358061790466,
259
+ "learning_rate": 0.0002,
260
+ "loss": 0.5555,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.361504640937958,
265
+ "grad_norm": 0.6899498701095581,
266
+ "learning_rate": 0.0002,
267
+ "loss": 0.5529,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.37127503663898387,
272
+ "grad_norm": 0.4584816098213196,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.556,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.38104543234000976,
279
+ "grad_norm": 0.5436979532241821,
280
+ "learning_rate": 0.0002,
281
+ "loss": 0.5451,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.39081582804103565,
286
+ "grad_norm": 0.7512422800064087,
287
+ "learning_rate": 0.0002,
288
+ "loss": 0.5377,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.40058622374206154,
293
+ "grad_norm": 0.6394727826118469,
294
+ "learning_rate": 0.0002,
295
+ "loss": 0.5438,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.41035661944308743,
300
+ "grad_norm": 0.5314047336578369,
301
+ "learning_rate": 0.0002,
302
+ "loss": 0.5535,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.4201270151441133,
307
+ "grad_norm": 0.5658334493637085,
308
+ "learning_rate": 0.0002,
309
+ "loss": 0.5587,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.4298974108451392,
314
+ "grad_norm": 0.5295330882072449,
315
+ "learning_rate": 0.0002,
316
+ "loss": 0.5219,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.4396678065461651,
321
+ "grad_norm": 0.6460115313529968,
322
+ "learning_rate": 0.0002,
323
+ "loss": 0.522,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.449438202247191,
328
+ "grad_norm": 0.512022852897644,
329
+ "learning_rate": 0.0002,
330
+ "loss": 0.5416,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.4592085979482169,
335
+ "grad_norm": 0.7365363836288452,
336
+ "learning_rate": 0.0002,
337
+ "loss": 0.5256,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.4689789936492428,
342
+ "grad_norm": 0.6292932629585266,
343
+ "learning_rate": 0.0002,
344
+ "loss": 0.5354,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.4787493893502687,
349
+ "grad_norm": 0.6255582571029663,
350
+ "learning_rate": 0.0002,
351
+ "loss": 0.5436,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.48851978505129456,
356
+ "grad_norm": 0.5599279403686523,
357
+ "learning_rate": 0.0002,
358
+ "loss": 0.5394,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.49829018075232046,
363
+ "grad_norm": 0.573657751083374,
364
+ "learning_rate": 0.0002,
365
+ "loss": 0.5297,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.5080605764533463,
370
+ "grad_norm": 0.6362313628196716,
371
+ "learning_rate": 0.0002,
372
+ "loss": 0.5299,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.5178309721543722,
377
+ "grad_norm": 0.6360035538673401,
378
+ "learning_rate": 0.0002,
379
+ "loss": 0.5458,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.5276013678553981,
384
+ "grad_norm": 0.7129001021385193,
385
+ "learning_rate": 0.0002,
386
+ "loss": 0.5228,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.537371763556424,
391
+ "grad_norm": 0.5596054196357727,
392
+ "learning_rate": 0.0002,
393
+ "loss": 0.5091,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.5471421592574499,
398
+ "grad_norm": 0.7081596851348877,
399
+ "learning_rate": 0.0002,
400
+ "loss": 0.5153,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.5569125549584758,
405
+ "grad_norm": 0.6816760301589966,
406
+ "learning_rate": 0.0002,
407
+ "loss": 0.4999,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.5666829506595017,
412
+ "grad_norm": 0.47695112228393555,
413
+ "learning_rate": 0.0002,
414
+ "loss": 0.4974,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.5764533463605276,
419
+ "grad_norm": 0.7528041005134583,
420
+ "learning_rate": 0.0002,
421
+ "loss": 0.5247,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.5862237420615535,
426
+ "grad_norm": 0.5452813506126404,
427
+ "learning_rate": 0.0002,
428
+ "loss": 0.5265,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.5959941377625794,
433
+ "grad_norm": 0.6085044741630554,
434
+ "learning_rate": 0.0002,
435
+ "loss": 0.4965,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.6057645334636053,
440
+ "grad_norm": 0.6745641231536865,
441
+ "learning_rate": 0.0002,
442
+ "loss": 0.4916,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.6155349291646312,
447
+ "grad_norm": 0.647544264793396,
448
+ "learning_rate": 0.0002,
449
+ "loss": 0.5107,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.625305324865657,
454
+ "grad_norm": 0.6123825311660767,
455
+ "learning_rate": 0.0002,
456
+ "loss": 0.4864,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.6350757205666829,
461
+ "grad_norm": 0.5815364122390747,
462
+ "learning_rate": 0.0002,
463
+ "loss": 0.484,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.6448461162677088,
468
+ "grad_norm": 0.6184095740318298,
469
+ "learning_rate": 0.0002,
470
+ "loss": 0.4966,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.6546165119687347,
475
+ "grad_norm": 0.5856700539588928,
476
+ "learning_rate": 0.0002,
477
+ "loss": 0.4861,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.6643869076697606,
482
+ "grad_norm": 0.6424922943115234,
483
+ "learning_rate": 0.0002,
484
+ "loss": 0.4964,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.6741573033707865,
489
+ "grad_norm": 0.7051425576210022,
490
+ "learning_rate": 0.0002,
491
+ "loss": 0.5019,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.6839276990718124,
496
+ "grad_norm": 0.6133471131324768,
497
+ "learning_rate": 0.0002,
498
+ "loss": 0.4649,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.6936980947728383,
503
+ "grad_norm": 0.6933842897415161,
504
+ "learning_rate": 0.0002,
505
+ "loss": 0.4847,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.7034684904738642,
510
+ "grad_norm": 0.6440989375114441,
511
+ "learning_rate": 0.0002,
512
+ "loss": 0.4945,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.7132388861748901,
517
+ "grad_norm": 0.87819904088974,
518
+ "learning_rate": 0.0002,
519
+ "loss": 0.4777,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.723009281875916,
524
+ "grad_norm": 0.6810497641563416,
525
+ "learning_rate": 0.0002,
526
+ "loss": 0.4914,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.7327796775769418,
531
+ "grad_norm": 0.7822733521461487,
532
+ "learning_rate": 0.0002,
533
+ "loss": 0.4789,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.7425500732779677,
538
+ "grad_norm": 0.6669152975082397,
539
+ "learning_rate": 0.0002,
540
+ "loss": 0.4615,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.7523204689789936,
545
+ "grad_norm": 0.7351736426353455,
546
+ "learning_rate": 0.0002,
547
+ "loss": 0.4689,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.7620908646800195,
552
+ "grad_norm": 1.0013558864593506,
553
+ "learning_rate": 0.0002,
554
+ "loss": 0.4629,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.7718612603810454,
559
+ "grad_norm": 0.7465775609016418,
560
+ "learning_rate": 0.0002,
561
+ "loss": 0.4739,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.7816316560820713,
566
+ "grad_norm": 1.0959300994873047,
567
+ "learning_rate": 0.0002,
568
+ "loss": 0.4635,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.7914020517830972,
573
+ "grad_norm": 0.5292418599128723,
574
+ "learning_rate": 0.0002,
575
+ "loss": 0.4549,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.8011724474841231,
580
+ "grad_norm": 0.6555328965187073,
581
+ "learning_rate": 0.0002,
582
+ "loss": 0.458,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.810942843185149,
587
+ "grad_norm": 0.6462382674217224,
588
+ "learning_rate": 0.0002,
589
+ "loss": 0.488,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.8207132388861749,
594
+ "grad_norm": 0.6840918064117432,
595
+ "learning_rate": 0.0002,
596
+ "loss": 0.4541,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.8304836345872008,
601
+ "grad_norm": 0.5715351700782776,
602
+ "learning_rate": 0.0002,
603
+ "loss": 0.4509,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.8402540302882266,
608
+ "grad_norm": 0.5583404898643494,
609
+ "learning_rate": 0.0002,
610
+ "loss": 0.4535,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.8500244259892525,
615
+ "grad_norm": 0.8243112564086914,
616
+ "learning_rate": 0.0002,
617
+ "loss": 0.4533,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.8597948216902784,
622
+ "grad_norm": 0.6543600559234619,
623
+ "learning_rate": 0.0002,
624
+ "loss": 0.4545,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.8695652173913043,
629
+ "grad_norm": 0.6494827270507812,
630
+ "learning_rate": 0.0002,
631
+ "loss": 0.4814,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.8793356130923302,
636
+ "grad_norm": 0.8458304405212402,
637
+ "learning_rate": 0.0002,
638
+ "loss": 0.4593,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.8891060087933561,
643
+ "grad_norm": 0.6854186654090881,
644
+ "learning_rate": 0.0002,
645
+ "loss": 0.4382,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.898876404494382,
650
+ "grad_norm": 0.6300225853919983,
651
+ "learning_rate": 0.0002,
652
+ "loss": 0.4488,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.9086468001954079,
657
+ "grad_norm": 0.9791533350944519,
658
+ "learning_rate": 0.0002,
659
+ "loss": 0.4638,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.9184171958964338,
664
+ "grad_norm": 0.6965218186378479,
665
+ "learning_rate": 0.0002,
666
+ "loss": 0.446,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.9281875915974597,
671
+ "grad_norm": 0.6066922545433044,
672
+ "learning_rate": 0.0002,
673
+ "loss": 0.4453,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.9379579872984856,
678
+ "grad_norm": 0.8081962466239929,
679
+ "learning_rate": 0.0002,
680
+ "loss": 0.4471,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.9477283829995115,
685
+ "grad_norm": 0.7755117416381836,
686
+ "learning_rate": 0.0002,
687
+ "loss": 0.4348,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.9574987787005373,
692
+ "grad_norm": 0.7127223610877991,
693
+ "learning_rate": 0.0002,
694
+ "loss": 0.4423,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.9672691744015632,
699
+ "grad_norm": 0.6947609186172485,
700
+ "learning_rate": 0.0002,
701
+ "loss": 0.4272,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.9770395701025891,
706
+ "grad_norm": 1.0100330114364624,
707
+ "learning_rate": 0.0002,
708
+ "loss": 0.4262,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.986809965803615,
713
+ "grad_norm": 0.6727001667022705,
714
+ "learning_rate": 0.0002,
715
+ "loss": 0.4169,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.9965803615046409,
720
+ "grad_norm": 0.7834463119506836,
721
+ "learning_rate": 0.0002,
722
+ "loss": 0.4507,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.9995114802149487,
727
+ "eval_loss": 0.433101624250412,
728
+ "eval_runtime": 26.5222,
729
+ "eval_samples_per_second": 13.762,
730
+ "eval_steps_per_second": 1.734,
731
+ "step": 1023
732
+ }
733
+ ],
734
+ "logging_steps": 10,
735
+ "max_steps": 8184,
736
+ "num_input_tokens_seen": 0,
737
+ "num_train_epochs": 8,
738
+ "save_steps": 200,
739
+ "stateful_callbacks": {
740
+ "TrainerControl": {
741
+ "args": {
742
+ "should_epoch_stop": false,
743
+ "should_evaluate": false,
744
+ "should_log": false,
745
+ "should_save": true,
746
+ "should_training_stop": false
747
+ },
748
+ "attributes": {}
749
+ }
750
+ },
751
+ "total_flos": 4.49057827848192e+16,
752
+ "train_batch_size": 1,
753
+ "trial_name": null,
754
+ "trial_params": null
755
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-1023/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:469618ae8560edd4a517eb99451fb8bc5c5f148706842d569488535fb05e84cb
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adc979ea9bd43c1e8245e72e8f60f6e33ea07dae85becbf2fa3a957cda657347
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f390acf8a313926b1a26a81c35026b933d766da265ce88c1b44b7088cfdfc24
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:246ee26d5ccdcb5674a202819fba3e19700de529e218e03698311d1a8886d49b
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c51ecee2be7313ce1ceb257e8cd0083bd8b7ccfae83d12d0412d787bf15c77b
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/trainer_state.json ADDED
@@ -0,0 +1,1477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.3446754515171051,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047",
4
+ "epoch": 2.0,
5
+ "eval_steps": 10,
6
+ "global_step": 2047,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.009770395701025891,
13
+ "grad_norm": 1.1888047456741333,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7474,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.019540791402051783,
20
+ "grad_norm": 1.3118009567260742,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.157,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.029311187103077674,
27
+ "grad_norm": 1.1254922151565552,
28
+ "learning_rate": 0.0002,
29
+ "loss": 0.9979,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.039081582804103565,
34
+ "grad_norm": 0.9634686708450317,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.8859,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.048851978505129456,
41
+ "grad_norm": 0.9101817607879639,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.7826,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.05862237420615535,
48
+ "grad_norm": 1.0019943714141846,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7358,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.06839276990718124,
55
+ "grad_norm": 0.9201828837394714,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6664,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.07816316560820713,
62
+ "grad_norm": 0.9210318922996521,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6785,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.08793356130923302,
69
+ "grad_norm": 0.8079697489738464,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.652,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.09770395701025891,
76
+ "grad_norm": 0.7530406713485718,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.6469,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.1074743527112848,
83
+ "grad_norm": 0.8732273578643799,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6604,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.1172447484123107,
90
+ "grad_norm": 0.9163013696670532,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6429,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.1270151441133366,
97
+ "grad_norm": 0.5931605696678162,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6269,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.13678553981436248,
104
+ "grad_norm": 0.8782339692115784,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6349,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.14655593551538837,
111
+ "grad_norm": 0.6683491468429565,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.657,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.15632633121641426,
118
+ "grad_norm": 0.7998592257499695,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6315,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.16609672691744015,
125
+ "grad_norm": 0.6159262657165527,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.6347,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.17586712261846604,
132
+ "grad_norm": 0.671146035194397,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.6023,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.18563751831949193,
139
+ "grad_norm": 0.5839019417762756,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.6101,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.19540791402051783,
146
+ "grad_norm": 0.5090241432189941,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.6121,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.20517830972154372,
153
+ "grad_norm": 0.652291476726532,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.6296,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.2149487054225696,
160
+ "grad_norm": 0.6500856876373291,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.577,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.2247191011235955,
167
+ "grad_norm": 0.6135480999946594,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.6186,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2344894968246214,
174
+ "grad_norm": 0.6102302074432373,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6132,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.24425989252564728,
181
+ "grad_norm": 0.6909783482551575,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.592,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.2540302882266732,
188
+ "grad_norm": 0.5834446549415588,
189
+ "learning_rate": 0.0002,
190
+ "loss": 0.5832,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.26380068392769906,
195
+ "grad_norm": 0.5275322198867798,
196
+ "learning_rate": 0.0002,
197
+ "loss": 0.6038,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.27357107962872496,
202
+ "grad_norm": 0.5611422657966614,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.5469,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.28334147532975085,
209
+ "grad_norm": 0.6549052596092224,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.552,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.29311187103077674,
216
+ "grad_norm": 0.563291072845459,
217
+ "learning_rate": 0.0002,
218
+ "loss": 0.5609,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.30288226673180263,
223
+ "grad_norm": 0.5598369240760803,
224
+ "learning_rate": 0.0002,
225
+ "loss": 0.5632,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3126526624328285,
230
+ "grad_norm": 0.6525678634643555,
231
+ "learning_rate": 0.0002,
232
+ "loss": 0.5627,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.3224230581338544,
237
+ "grad_norm": 0.5190592408180237,
238
+ "learning_rate": 0.0002,
239
+ "loss": 0.5526,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.3321934538348803,
244
+ "grad_norm": 0.45483070611953735,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.5698,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.3419638495359062,
251
+ "grad_norm": 0.8094475865364075,
252
+ "learning_rate": 0.0002,
253
+ "loss": 0.5768,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.3517342452369321,
258
+ "grad_norm": 0.5545358061790466,
259
+ "learning_rate": 0.0002,
260
+ "loss": 0.5555,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.361504640937958,
265
+ "grad_norm": 0.6899498701095581,
266
+ "learning_rate": 0.0002,
267
+ "loss": 0.5529,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.37127503663898387,
272
+ "grad_norm": 0.4584816098213196,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.556,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.38104543234000976,
279
+ "grad_norm": 0.5436979532241821,
280
+ "learning_rate": 0.0002,
281
+ "loss": 0.5451,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.39081582804103565,
286
+ "grad_norm": 0.7512422800064087,
287
+ "learning_rate": 0.0002,
288
+ "loss": 0.5377,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.40058622374206154,
293
+ "grad_norm": 0.6394727826118469,
294
+ "learning_rate": 0.0002,
295
+ "loss": 0.5438,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.41035661944308743,
300
+ "grad_norm": 0.5314047336578369,
301
+ "learning_rate": 0.0002,
302
+ "loss": 0.5535,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.4201270151441133,
307
+ "grad_norm": 0.5658334493637085,
308
+ "learning_rate": 0.0002,
309
+ "loss": 0.5587,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.4298974108451392,
314
+ "grad_norm": 0.5295330882072449,
315
+ "learning_rate": 0.0002,
316
+ "loss": 0.5219,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.4396678065461651,
321
+ "grad_norm": 0.6460115313529968,
322
+ "learning_rate": 0.0002,
323
+ "loss": 0.522,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.449438202247191,
328
+ "grad_norm": 0.512022852897644,
329
+ "learning_rate": 0.0002,
330
+ "loss": 0.5416,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.4592085979482169,
335
+ "grad_norm": 0.7365363836288452,
336
+ "learning_rate": 0.0002,
337
+ "loss": 0.5256,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.4689789936492428,
342
+ "grad_norm": 0.6292932629585266,
343
+ "learning_rate": 0.0002,
344
+ "loss": 0.5354,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.4787493893502687,
349
+ "grad_norm": 0.6255582571029663,
350
+ "learning_rate": 0.0002,
351
+ "loss": 0.5436,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.48851978505129456,
356
+ "grad_norm": 0.5599279403686523,
357
+ "learning_rate": 0.0002,
358
+ "loss": 0.5394,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.49829018075232046,
363
+ "grad_norm": 0.573657751083374,
364
+ "learning_rate": 0.0002,
365
+ "loss": 0.5297,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.5080605764533463,
370
+ "grad_norm": 0.6362313628196716,
371
+ "learning_rate": 0.0002,
372
+ "loss": 0.5299,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.5178309721543722,
377
+ "grad_norm": 0.6360035538673401,
378
+ "learning_rate": 0.0002,
379
+ "loss": 0.5458,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.5276013678553981,
384
+ "grad_norm": 0.7129001021385193,
385
+ "learning_rate": 0.0002,
386
+ "loss": 0.5228,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.537371763556424,
391
+ "grad_norm": 0.5596054196357727,
392
+ "learning_rate": 0.0002,
393
+ "loss": 0.5091,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.5471421592574499,
398
+ "grad_norm": 0.7081596851348877,
399
+ "learning_rate": 0.0002,
400
+ "loss": 0.5153,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.5569125549584758,
405
+ "grad_norm": 0.6816760301589966,
406
+ "learning_rate": 0.0002,
407
+ "loss": 0.4999,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.5666829506595017,
412
+ "grad_norm": 0.47695112228393555,
413
+ "learning_rate": 0.0002,
414
+ "loss": 0.4974,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.5764533463605276,
419
+ "grad_norm": 0.7528041005134583,
420
+ "learning_rate": 0.0002,
421
+ "loss": 0.5247,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.5862237420615535,
426
+ "grad_norm": 0.5452813506126404,
427
+ "learning_rate": 0.0002,
428
+ "loss": 0.5265,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.5959941377625794,
433
+ "grad_norm": 0.6085044741630554,
434
+ "learning_rate": 0.0002,
435
+ "loss": 0.4965,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.6057645334636053,
440
+ "grad_norm": 0.6745641231536865,
441
+ "learning_rate": 0.0002,
442
+ "loss": 0.4916,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.6155349291646312,
447
+ "grad_norm": 0.647544264793396,
448
+ "learning_rate": 0.0002,
449
+ "loss": 0.5107,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.625305324865657,
454
+ "grad_norm": 0.6123825311660767,
455
+ "learning_rate": 0.0002,
456
+ "loss": 0.4864,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.6350757205666829,
461
+ "grad_norm": 0.5815364122390747,
462
+ "learning_rate": 0.0002,
463
+ "loss": 0.484,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.6448461162677088,
468
+ "grad_norm": 0.6184095740318298,
469
+ "learning_rate": 0.0002,
470
+ "loss": 0.4966,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.6546165119687347,
475
+ "grad_norm": 0.5856700539588928,
476
+ "learning_rate": 0.0002,
477
+ "loss": 0.4861,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.6643869076697606,
482
+ "grad_norm": 0.6424922943115234,
483
+ "learning_rate": 0.0002,
484
+ "loss": 0.4964,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.6741573033707865,
489
+ "grad_norm": 0.7051425576210022,
490
+ "learning_rate": 0.0002,
491
+ "loss": 0.5019,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.6839276990718124,
496
+ "grad_norm": 0.6133471131324768,
497
+ "learning_rate": 0.0002,
498
+ "loss": 0.4649,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.6936980947728383,
503
+ "grad_norm": 0.6933842897415161,
504
+ "learning_rate": 0.0002,
505
+ "loss": 0.4847,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.7034684904738642,
510
+ "grad_norm": 0.6440989375114441,
511
+ "learning_rate": 0.0002,
512
+ "loss": 0.4945,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.7132388861748901,
517
+ "grad_norm": 0.87819904088974,
518
+ "learning_rate": 0.0002,
519
+ "loss": 0.4777,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.723009281875916,
524
+ "grad_norm": 0.6810497641563416,
525
+ "learning_rate": 0.0002,
526
+ "loss": 0.4914,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.7327796775769418,
531
+ "grad_norm": 0.7822733521461487,
532
+ "learning_rate": 0.0002,
533
+ "loss": 0.4789,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.7425500732779677,
538
+ "grad_norm": 0.6669152975082397,
539
+ "learning_rate": 0.0002,
540
+ "loss": 0.4615,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.7523204689789936,
545
+ "grad_norm": 0.7351736426353455,
546
+ "learning_rate": 0.0002,
547
+ "loss": 0.4689,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.7620908646800195,
552
+ "grad_norm": 1.0013558864593506,
553
+ "learning_rate": 0.0002,
554
+ "loss": 0.4629,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.7718612603810454,
559
+ "grad_norm": 0.7465775609016418,
560
+ "learning_rate": 0.0002,
561
+ "loss": 0.4739,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.7816316560820713,
566
+ "grad_norm": 1.0959300994873047,
567
+ "learning_rate": 0.0002,
568
+ "loss": 0.4635,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.7914020517830972,
573
+ "grad_norm": 0.5292418599128723,
574
+ "learning_rate": 0.0002,
575
+ "loss": 0.4549,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.8011724474841231,
580
+ "grad_norm": 0.6555328965187073,
581
+ "learning_rate": 0.0002,
582
+ "loss": 0.458,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.810942843185149,
587
+ "grad_norm": 0.6462382674217224,
588
+ "learning_rate": 0.0002,
589
+ "loss": 0.488,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.8207132388861749,
594
+ "grad_norm": 0.6840918064117432,
595
+ "learning_rate": 0.0002,
596
+ "loss": 0.4541,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.8304836345872008,
601
+ "grad_norm": 0.5715351700782776,
602
+ "learning_rate": 0.0002,
603
+ "loss": 0.4509,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.8402540302882266,
608
+ "grad_norm": 0.5583404898643494,
609
+ "learning_rate": 0.0002,
610
+ "loss": 0.4535,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.8500244259892525,
615
+ "grad_norm": 0.8243112564086914,
616
+ "learning_rate": 0.0002,
617
+ "loss": 0.4533,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.8597948216902784,
622
+ "grad_norm": 0.6543600559234619,
623
+ "learning_rate": 0.0002,
624
+ "loss": 0.4545,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.8695652173913043,
629
+ "grad_norm": 0.6494827270507812,
630
+ "learning_rate": 0.0002,
631
+ "loss": 0.4814,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.8793356130923302,
636
+ "grad_norm": 0.8458304405212402,
637
+ "learning_rate": 0.0002,
638
+ "loss": 0.4593,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.8891060087933561,
643
+ "grad_norm": 0.6854186654090881,
644
+ "learning_rate": 0.0002,
645
+ "loss": 0.4382,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.898876404494382,
650
+ "grad_norm": 0.6300225853919983,
651
+ "learning_rate": 0.0002,
652
+ "loss": 0.4488,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.9086468001954079,
657
+ "grad_norm": 0.9791533350944519,
658
+ "learning_rate": 0.0002,
659
+ "loss": 0.4638,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.9184171958964338,
664
+ "grad_norm": 0.6965218186378479,
665
+ "learning_rate": 0.0002,
666
+ "loss": 0.446,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.9281875915974597,
671
+ "grad_norm": 0.6066922545433044,
672
+ "learning_rate": 0.0002,
673
+ "loss": 0.4453,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.9379579872984856,
678
+ "grad_norm": 0.8081962466239929,
679
+ "learning_rate": 0.0002,
680
+ "loss": 0.4471,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.9477283829995115,
685
+ "grad_norm": 0.7755117416381836,
686
+ "learning_rate": 0.0002,
687
+ "loss": 0.4348,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.9574987787005373,
692
+ "grad_norm": 0.7127223610877991,
693
+ "learning_rate": 0.0002,
694
+ "loss": 0.4423,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.9672691744015632,
699
+ "grad_norm": 0.6947609186172485,
700
+ "learning_rate": 0.0002,
701
+ "loss": 0.4272,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.9770395701025891,
706
+ "grad_norm": 1.0100330114364624,
707
+ "learning_rate": 0.0002,
708
+ "loss": 0.4262,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.986809965803615,
713
+ "grad_norm": 0.6727001667022705,
714
+ "learning_rate": 0.0002,
715
+ "loss": 0.4169,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.9965803615046409,
720
+ "grad_norm": 0.7834463119506836,
721
+ "learning_rate": 0.0002,
722
+ "loss": 0.4507,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.9995114802149487,
727
+ "eval_loss": 0.433101624250412,
728
+ "eval_runtime": 26.5222,
729
+ "eval_samples_per_second": 13.762,
730
+ "eval_steps_per_second": 1.734,
731
+ "step": 1023
732
+ },
733
+ {
734
+ "epoch": 1.006350757205667,
735
+ "grad_norm": 0.8070526123046875,
736
+ "learning_rate": 0.0002,
737
+ "loss": 0.4154,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.0161211529066927,
742
+ "grad_norm": 0.7301508784294128,
743
+ "learning_rate": 0.0002,
744
+ "loss": 0.3951,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.0258915486077187,
749
+ "grad_norm": 0.8212476372718811,
750
+ "learning_rate": 0.0002,
751
+ "loss": 0.4001,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.0356619443087445,
756
+ "grad_norm": 0.6269228458404541,
757
+ "learning_rate": 0.0002,
758
+ "loss": 0.3953,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.0454323400097705,
763
+ "grad_norm": 0.700432300567627,
764
+ "learning_rate": 0.0002,
765
+ "loss": 0.4147,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.0552027357107963,
770
+ "grad_norm": 0.9251010417938232,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.3857,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.0649731314118223,
777
+ "grad_norm": 0.6018561720848083,
778
+ "learning_rate": 0.0002,
779
+ "loss": 0.3955,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.074743527112848,
784
+ "grad_norm": 0.7045873403549194,
785
+ "learning_rate": 0.0002,
786
+ "loss": 0.4079,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.084513922813874,
791
+ "grad_norm": 0.7800339460372925,
792
+ "learning_rate": 0.0002,
793
+ "loss": 0.4005,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.0942843185148998,
798
+ "grad_norm": 0.7404900789260864,
799
+ "learning_rate": 0.0002,
800
+ "loss": 0.419,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.1040547142159258,
805
+ "grad_norm": 1.1851727962493896,
806
+ "learning_rate": 0.0002,
807
+ "loss": 0.4057,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.1138251099169516,
812
+ "grad_norm": 0.875406801700592,
813
+ "learning_rate": 0.0002,
814
+ "loss": 0.3966,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.1235955056179776,
819
+ "grad_norm": 0.9795705676078796,
820
+ "learning_rate": 0.0002,
821
+ "loss": 0.3863,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.1333659013190034,
826
+ "grad_norm": 0.7387922406196594,
827
+ "learning_rate": 0.0002,
828
+ "loss": 0.3991,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.1431362970200294,
833
+ "grad_norm": 0.6640482544898987,
834
+ "learning_rate": 0.0002,
835
+ "loss": 0.3914,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.1529066927210552,
840
+ "grad_norm": 0.6067684888839722,
841
+ "learning_rate": 0.0002,
842
+ "loss": 0.3809,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.1626770884220812,
847
+ "grad_norm": 0.7623337507247925,
848
+ "learning_rate": 0.0002,
849
+ "loss": 0.3915,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.172447484123107,
854
+ "grad_norm": 1.0410432815551758,
855
+ "learning_rate": 0.0002,
856
+ "loss": 0.3832,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.182217879824133,
861
+ "grad_norm": 0.7790178656578064,
862
+ "learning_rate": 0.0002,
863
+ "loss": 0.3875,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.1919882755251587,
868
+ "grad_norm": 0.7643477916717529,
869
+ "learning_rate": 0.0002,
870
+ "loss": 0.3869,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.2017586712261847,
875
+ "grad_norm": 1.2028473615646362,
876
+ "learning_rate": 0.0002,
877
+ "loss": 0.3719,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.2115290669272105,
882
+ "grad_norm": 0.787656307220459,
883
+ "learning_rate": 0.0002,
884
+ "loss": 0.3863,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.2212994626282365,
889
+ "grad_norm": 0.8074171543121338,
890
+ "learning_rate": 0.0002,
891
+ "loss": 0.3875,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.2310698583292623,
896
+ "grad_norm": 0.8488901853561401,
897
+ "learning_rate": 0.0002,
898
+ "loss": 0.3923,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.2408402540302883,
903
+ "grad_norm": 0.7454975247383118,
904
+ "learning_rate": 0.0002,
905
+ "loss": 0.3829,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.250610649731314,
910
+ "grad_norm": 0.6724955439567566,
911
+ "learning_rate": 0.0002,
912
+ "loss": 0.3981,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.26038104543234,
917
+ "grad_norm": 1.1912977695465088,
918
+ "learning_rate": 0.0002,
919
+ "loss": 0.383,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.2701514411333659,
924
+ "grad_norm": 0.7795814871788025,
925
+ "learning_rate": 0.0002,
926
+ "loss": 0.3837,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.2799218368343919,
931
+ "grad_norm": 0.672956645488739,
932
+ "learning_rate": 0.0002,
933
+ "loss": 0.3898,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.2896922325354176,
938
+ "grad_norm": 1.245808482170105,
939
+ "learning_rate": 0.0002,
940
+ "loss": 0.3849,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.2994626282364437,
945
+ "grad_norm": 0.9562020301818848,
946
+ "learning_rate": 0.0002,
947
+ "loss": 0.3877,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.3092330239374694,
952
+ "grad_norm": 1.2005938291549683,
953
+ "learning_rate": 0.0002,
954
+ "loss": 0.3711,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.3190034196384954,
959
+ "grad_norm": 0.7105128169059753,
960
+ "learning_rate": 0.0002,
961
+ "loss": 0.3761,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.3287738153395212,
966
+ "grad_norm": 0.9829772710800171,
967
+ "learning_rate": 0.0002,
968
+ "loss": 0.371,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.3385442110405472,
973
+ "grad_norm": 0.6548563241958618,
974
+ "learning_rate": 0.0002,
975
+ "loss": 0.3845,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.348314606741573,
980
+ "grad_norm": 0.877531111240387,
981
+ "learning_rate": 0.0002,
982
+ "loss": 0.3797,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.358085002442599,
987
+ "grad_norm": 0.6915368437767029,
988
+ "learning_rate": 0.0002,
989
+ "loss": 0.3757,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.3678553981436248,
994
+ "grad_norm": 0.6052316427230835,
995
+ "learning_rate": 0.0002,
996
+ "loss": 0.368,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.3776257938446508,
1001
+ "grad_norm": 0.6086260080337524,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 0.3758,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.3873961895456766,
1008
+ "grad_norm": 1.0432673692703247,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.3794,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.3971665852467026,
1015
+ "grad_norm": 0.7252581715583801,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 0.3715,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.4069369809477283,
1022
+ "grad_norm": 0.7926928997039795,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 0.3919,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.4167073766487543,
1029
+ "grad_norm": 0.6464225649833679,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 0.3701,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.4264777723497801,
1036
+ "grad_norm": 1.0563385486602783,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 0.3738,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.4362481680508061,
1043
+ "grad_norm": 0.5497196316719055,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 0.3782,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.446018563751832,
1050
+ "grad_norm": 0.7382678389549255,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 0.3668,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.455788959452858,
1057
+ "grad_norm": 0.6264833807945251,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 0.3592,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.4655593551538837,
1064
+ "grad_norm": 0.6722145080566406,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 0.3809,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.4753297508549097,
1071
+ "grad_norm": 0.8594183921813965,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 0.3715,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.4851001465559355,
1078
+ "grad_norm": 0.8588142395019531,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 0.354,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.4948705422569615,
1085
+ "grad_norm": 0.8683834075927734,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 0.3654,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.5046409379579873,
1092
+ "grad_norm": 0.7628163695335388,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 0.3647,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.5144113336590133,
1099
+ "grad_norm": 0.7967382669448853,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.3666,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.524181729360039,
1106
+ "grad_norm": 0.7065442800521851,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 0.361,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.5339521250610648,
1113
+ "grad_norm": 0.6472197771072388,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 0.3623,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.5437225207620908,
1120
+ "grad_norm": 1.105960488319397,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 0.3626,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.5534929164631168,
1127
+ "grad_norm": 0.9730587601661682,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 0.3528,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.5632633121641426,
1134
+ "grad_norm": 0.987910807132721,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 0.3739,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.5730337078651684,
1141
+ "grad_norm": 0.9708227515220642,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 0.3546,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 1.5828041035661944,
1148
+ "grad_norm": 0.6303295493125916,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 0.3653,
1151
+ "step": 1620
1152
+ },
1153
+ {
1154
+ "epoch": 1.5925744992672204,
1155
+ "grad_norm": 1.0985002517700195,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 0.3639,
1158
+ "step": 1630
1159
+ },
1160
+ {
1161
+ "epoch": 1.6023448949682462,
1162
+ "grad_norm": 0.839419960975647,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 0.3533,
1165
+ "step": 1640
1166
+ },
1167
+ {
1168
+ "epoch": 1.612115290669272,
1169
+ "grad_norm": 0.7963409423828125,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 0.3544,
1172
+ "step": 1650
1173
+ },
1174
+ {
1175
+ "epoch": 1.621885686370298,
1176
+ "grad_norm": 0.8074514269828796,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 0.3721,
1179
+ "step": 1660
1180
+ },
1181
+ {
1182
+ "epoch": 1.631656082071324,
1183
+ "grad_norm": 0.8368266820907593,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 0.3573,
1186
+ "step": 1670
1187
+ },
1188
+ {
1189
+ "epoch": 1.6414264777723497,
1190
+ "grad_norm": 0.6562672257423401,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 0.3556,
1193
+ "step": 1680
1194
+ },
1195
+ {
1196
+ "epoch": 1.6511968734733755,
1197
+ "grad_norm": 0.5512149930000305,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 0.3593,
1200
+ "step": 1690
1201
+ },
1202
+ {
1203
+ "epoch": 1.6609672691744015,
1204
+ "grad_norm": 0.5829663276672363,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 0.3626,
1207
+ "step": 1700
1208
+ },
1209
+ {
1210
+ "epoch": 1.6707376648754275,
1211
+ "grad_norm": 0.8412625193595886,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 0.3526,
1214
+ "step": 1710
1215
+ },
1216
+ {
1217
+ "epoch": 1.6805080605764533,
1218
+ "grad_norm": 0.8657066226005554,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 0.3593,
1221
+ "step": 1720
1222
+ },
1223
+ {
1224
+ "epoch": 1.690278456277479,
1225
+ "grad_norm": 0.9691681861877441,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 0.3545,
1228
+ "step": 1730
1229
+ },
1230
+ {
1231
+ "epoch": 1.700048851978505,
1232
+ "grad_norm": 0.641669511795044,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 0.3694,
1235
+ "step": 1740
1236
+ },
1237
+ {
1238
+ "epoch": 1.709819247679531,
1239
+ "grad_norm": 0.7599552273750305,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 0.3594,
1242
+ "step": 1750
1243
+ },
1244
+ {
1245
+ "epoch": 1.7195896433805569,
1246
+ "grad_norm": 0.7562308311462402,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 0.3563,
1249
+ "step": 1760
1250
+ },
1251
+ {
1252
+ "epoch": 1.7293600390815826,
1253
+ "grad_norm": 0.6949060559272766,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 0.3741,
1256
+ "step": 1770
1257
+ },
1258
+ {
1259
+ "epoch": 1.7391304347826086,
1260
+ "grad_norm": 1.1047314405441284,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 0.3444,
1263
+ "step": 1780
1264
+ },
1265
+ {
1266
+ "epoch": 1.7489008304836346,
1267
+ "grad_norm": 0.9239255785942078,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 0.3602,
1270
+ "step": 1790
1271
+ },
1272
+ {
1273
+ "epoch": 1.7586712261846604,
1274
+ "grad_norm": 0.6171822547912598,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 0.3464,
1277
+ "step": 1800
1278
+ },
1279
+ {
1280
+ "epoch": 1.7684416218856862,
1281
+ "grad_norm": 0.8883067965507507,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 0.3504,
1284
+ "step": 1810
1285
+ },
1286
+ {
1287
+ "epoch": 1.7782120175867122,
1288
+ "grad_norm": 0.8204503059387207,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 0.341,
1291
+ "step": 1820
1292
+ },
1293
+ {
1294
+ "epoch": 1.7879824132877382,
1295
+ "grad_norm": 0.807534396648407,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 0.3455,
1298
+ "step": 1830
1299
+ },
1300
+ {
1301
+ "epoch": 1.797752808988764,
1302
+ "grad_norm": 0.8063831329345703,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 0.3287,
1305
+ "step": 1840
1306
+ },
1307
+ {
1308
+ "epoch": 1.8075232046897898,
1309
+ "grad_norm": 0.7789983749389648,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 0.3424,
1312
+ "step": 1850
1313
+ },
1314
+ {
1315
+ "epoch": 1.8172936003908158,
1316
+ "grad_norm": 0.6771978735923767,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 0.3495,
1319
+ "step": 1860
1320
+ },
1321
+ {
1322
+ "epoch": 1.8270639960918418,
1323
+ "grad_norm": 0.9140942096710205,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 0.3437,
1326
+ "step": 1870
1327
+ },
1328
+ {
1329
+ "epoch": 1.8368343917928676,
1330
+ "grad_norm": 0.6635336875915527,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 0.3458,
1333
+ "step": 1880
1334
+ },
1335
+ {
1336
+ "epoch": 1.8466047874938933,
1337
+ "grad_norm": 1.1987066268920898,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 0.3396,
1340
+ "step": 1890
1341
+ },
1342
+ {
1343
+ "epoch": 1.8563751831949193,
1344
+ "grad_norm": 0.7020497918128967,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 0.3413,
1347
+ "step": 1900
1348
+ },
1349
+ {
1350
+ "epoch": 1.8661455788959453,
1351
+ "grad_norm": 1.0113945007324219,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 0.3442,
1354
+ "step": 1910
1355
+ },
1356
+ {
1357
+ "epoch": 1.8759159745969711,
1358
+ "grad_norm": 0.8227802515029907,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 0.3503,
1361
+ "step": 1920
1362
+ },
1363
+ {
1364
+ "epoch": 1.885686370297997,
1365
+ "grad_norm": 0.8185329437255859,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 0.3565,
1368
+ "step": 1930
1369
+ },
1370
+ {
1371
+ "epoch": 1.895456765999023,
1372
+ "grad_norm": 0.7708970904350281,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 0.335,
1375
+ "step": 1940
1376
+ },
1377
+ {
1378
+ "epoch": 1.905227161700049,
1379
+ "grad_norm": 0.8888451457023621,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 0.3365,
1382
+ "step": 1950
1383
+ },
1384
+ {
1385
+ "epoch": 1.9149975574010747,
1386
+ "grad_norm": 0.720267653465271,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 0.3342,
1389
+ "step": 1960
1390
+ },
1391
+ {
1392
+ "epoch": 1.9247679531021005,
1393
+ "grad_norm": 0.888666570186615,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 0.3512,
1396
+ "step": 1970
1397
+ },
1398
+ {
1399
+ "epoch": 1.9345383488031265,
1400
+ "grad_norm": 0.7471952438354492,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 0.3284,
1403
+ "step": 1980
1404
+ },
1405
+ {
1406
+ "epoch": 1.9443087445041525,
1407
+ "grad_norm": 0.7166922092437744,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 0.3383,
1410
+ "step": 1990
1411
+ },
1412
+ {
1413
+ "epoch": 1.9540791402051783,
1414
+ "grad_norm": 0.7097923159599304,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 0.3355,
1417
+ "step": 2000
1418
+ },
1419
+ {
1420
+ "epoch": 1.963849535906204,
1421
+ "grad_norm": 0.8592363595962524,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 0.3282,
1424
+ "step": 2010
1425
+ },
1426
+ {
1427
+ "epoch": 1.97361993160723,
1428
+ "grad_norm": 0.5352440476417542,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 0.3273,
1431
+ "step": 2020
1432
+ },
1433
+ {
1434
+ "epoch": 1.983390327308256,
1435
+ "grad_norm": 1.0193064212799072,
1436
+ "learning_rate": 0.0002,
1437
+ "loss": 0.3387,
1438
+ "step": 2030
1439
+ },
1440
+ {
1441
+ "epoch": 1.9931607230092818,
1442
+ "grad_norm": 0.7331683039665222,
1443
+ "learning_rate": 0.0002,
1444
+ "loss": 0.3277,
1445
+ "step": 2040
1446
+ },
1447
+ {
1448
+ "epoch": 2.0,
1449
+ "eval_loss": 0.3446754515171051,
1450
+ "eval_runtime": 26.5209,
1451
+ "eval_samples_per_second": 13.763,
1452
+ "eval_steps_per_second": 1.734,
1453
+ "step": 2047
1454
+ }
1455
+ ],
1456
+ "logging_steps": 10,
1457
+ "max_steps": 8184,
1458
+ "num_input_tokens_seen": 0,
1459
+ "num_train_epochs": 8,
1460
+ "save_steps": 200,
1461
+ "stateful_callbacks": {
1462
+ "TrainerControl": {
1463
+ "args": {
1464
+ "should_epoch_stop": false,
1465
+ "should_evaluate": false,
1466
+ "should_log": false,
1467
+ "should_save": true,
1468
+ "should_training_stop": false
1469
+ },
1470
+ "attributes": {}
1471
+ }
1472
+ },
1473
+ "total_flos": 8.98115655696384e+16,
1474
+ "train_batch_size": 1,
1475
+ "trial_name": null,
1476
+ "trial_params": null
1477
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-2047/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:469618ae8560edd4a517eb99451fb8bc5c5f148706842d569488535fb05e84cb
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:507409201b19276fc2df370d6adf627c24b08000d9eba3080c15bb8a5f2d2b61
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56edad678f35ccce751f24c508cc9fccf04cf486ecfac4dc0e01e4a553383809
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0747557aab36063756040bfe2374c7e81d60a6da97d0d0956cdd9fbc8c45a5e3
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46b4b8ee0a85d37d1674bfdd49bfe7292e5c24f26cb4aad2f9ad59834d4dbc0d
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/trainer_state.json ADDED
@@ -0,0 +1,2206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.30571895837783813,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070",
4
+ "epoch": 2.9995114802149487,
5
+ "eval_steps": 10,
6
+ "global_step": 3070,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.009770395701025891,
13
+ "grad_norm": 1.1888047456741333,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7474,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.019540791402051783,
20
+ "grad_norm": 1.3118009567260742,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.157,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.029311187103077674,
27
+ "grad_norm": 1.1254922151565552,
28
+ "learning_rate": 0.0002,
29
+ "loss": 0.9979,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.039081582804103565,
34
+ "grad_norm": 0.9634686708450317,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.8859,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.048851978505129456,
41
+ "grad_norm": 0.9101817607879639,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.7826,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.05862237420615535,
48
+ "grad_norm": 1.0019943714141846,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7358,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.06839276990718124,
55
+ "grad_norm": 0.9201828837394714,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6664,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.07816316560820713,
62
+ "grad_norm": 0.9210318922996521,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6785,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.08793356130923302,
69
+ "grad_norm": 0.8079697489738464,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.652,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.09770395701025891,
76
+ "grad_norm": 0.7530406713485718,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.6469,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.1074743527112848,
83
+ "grad_norm": 0.8732273578643799,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6604,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.1172447484123107,
90
+ "grad_norm": 0.9163013696670532,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6429,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.1270151441133366,
97
+ "grad_norm": 0.5931605696678162,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6269,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.13678553981436248,
104
+ "grad_norm": 0.8782339692115784,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6349,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.14655593551538837,
111
+ "grad_norm": 0.6683491468429565,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.657,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.15632633121641426,
118
+ "grad_norm": 0.7998592257499695,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6315,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.16609672691744015,
125
+ "grad_norm": 0.6159262657165527,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.6347,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.17586712261846604,
132
+ "grad_norm": 0.671146035194397,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.6023,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.18563751831949193,
139
+ "grad_norm": 0.5839019417762756,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.6101,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.19540791402051783,
146
+ "grad_norm": 0.5090241432189941,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.6121,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.20517830972154372,
153
+ "grad_norm": 0.652291476726532,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.6296,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.2149487054225696,
160
+ "grad_norm": 0.6500856876373291,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.577,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.2247191011235955,
167
+ "grad_norm": 0.6135480999946594,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.6186,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2344894968246214,
174
+ "grad_norm": 0.6102302074432373,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6132,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.24425989252564728,
181
+ "grad_norm": 0.6909783482551575,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.592,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.2540302882266732,
188
+ "grad_norm": 0.5834446549415588,
189
+ "learning_rate": 0.0002,
190
+ "loss": 0.5832,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.26380068392769906,
195
+ "grad_norm": 0.5275322198867798,
196
+ "learning_rate": 0.0002,
197
+ "loss": 0.6038,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.27357107962872496,
202
+ "grad_norm": 0.5611422657966614,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.5469,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.28334147532975085,
209
+ "grad_norm": 0.6549052596092224,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.552,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.29311187103077674,
216
+ "grad_norm": 0.563291072845459,
217
+ "learning_rate": 0.0002,
218
+ "loss": 0.5609,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.30288226673180263,
223
+ "grad_norm": 0.5598369240760803,
224
+ "learning_rate": 0.0002,
225
+ "loss": 0.5632,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3126526624328285,
230
+ "grad_norm": 0.6525678634643555,
231
+ "learning_rate": 0.0002,
232
+ "loss": 0.5627,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.3224230581338544,
237
+ "grad_norm": 0.5190592408180237,
238
+ "learning_rate": 0.0002,
239
+ "loss": 0.5526,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.3321934538348803,
244
+ "grad_norm": 0.45483070611953735,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.5698,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.3419638495359062,
251
+ "grad_norm": 0.8094475865364075,
252
+ "learning_rate": 0.0002,
253
+ "loss": 0.5768,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.3517342452369321,
258
+ "grad_norm": 0.5545358061790466,
259
+ "learning_rate": 0.0002,
260
+ "loss": 0.5555,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.361504640937958,
265
+ "grad_norm": 0.6899498701095581,
266
+ "learning_rate": 0.0002,
267
+ "loss": 0.5529,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.37127503663898387,
272
+ "grad_norm": 0.4584816098213196,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.556,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.38104543234000976,
279
+ "grad_norm": 0.5436979532241821,
280
+ "learning_rate": 0.0002,
281
+ "loss": 0.5451,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.39081582804103565,
286
+ "grad_norm": 0.7512422800064087,
287
+ "learning_rate": 0.0002,
288
+ "loss": 0.5377,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.40058622374206154,
293
+ "grad_norm": 0.6394727826118469,
294
+ "learning_rate": 0.0002,
295
+ "loss": 0.5438,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.41035661944308743,
300
+ "grad_norm": 0.5314047336578369,
301
+ "learning_rate": 0.0002,
302
+ "loss": 0.5535,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.4201270151441133,
307
+ "grad_norm": 0.5658334493637085,
308
+ "learning_rate": 0.0002,
309
+ "loss": 0.5587,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.4298974108451392,
314
+ "grad_norm": 0.5295330882072449,
315
+ "learning_rate": 0.0002,
316
+ "loss": 0.5219,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.4396678065461651,
321
+ "grad_norm": 0.6460115313529968,
322
+ "learning_rate": 0.0002,
323
+ "loss": 0.522,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.449438202247191,
328
+ "grad_norm": 0.512022852897644,
329
+ "learning_rate": 0.0002,
330
+ "loss": 0.5416,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.4592085979482169,
335
+ "grad_norm": 0.7365363836288452,
336
+ "learning_rate": 0.0002,
337
+ "loss": 0.5256,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.4689789936492428,
342
+ "grad_norm": 0.6292932629585266,
343
+ "learning_rate": 0.0002,
344
+ "loss": 0.5354,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.4787493893502687,
349
+ "grad_norm": 0.6255582571029663,
350
+ "learning_rate": 0.0002,
351
+ "loss": 0.5436,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.48851978505129456,
356
+ "grad_norm": 0.5599279403686523,
357
+ "learning_rate": 0.0002,
358
+ "loss": 0.5394,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.49829018075232046,
363
+ "grad_norm": 0.573657751083374,
364
+ "learning_rate": 0.0002,
365
+ "loss": 0.5297,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.5080605764533463,
370
+ "grad_norm": 0.6362313628196716,
371
+ "learning_rate": 0.0002,
372
+ "loss": 0.5299,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.5178309721543722,
377
+ "grad_norm": 0.6360035538673401,
378
+ "learning_rate": 0.0002,
379
+ "loss": 0.5458,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.5276013678553981,
384
+ "grad_norm": 0.7129001021385193,
385
+ "learning_rate": 0.0002,
386
+ "loss": 0.5228,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.537371763556424,
391
+ "grad_norm": 0.5596054196357727,
392
+ "learning_rate": 0.0002,
393
+ "loss": 0.5091,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.5471421592574499,
398
+ "grad_norm": 0.7081596851348877,
399
+ "learning_rate": 0.0002,
400
+ "loss": 0.5153,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.5569125549584758,
405
+ "grad_norm": 0.6816760301589966,
406
+ "learning_rate": 0.0002,
407
+ "loss": 0.4999,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.5666829506595017,
412
+ "grad_norm": 0.47695112228393555,
413
+ "learning_rate": 0.0002,
414
+ "loss": 0.4974,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.5764533463605276,
419
+ "grad_norm": 0.7528041005134583,
420
+ "learning_rate": 0.0002,
421
+ "loss": 0.5247,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.5862237420615535,
426
+ "grad_norm": 0.5452813506126404,
427
+ "learning_rate": 0.0002,
428
+ "loss": 0.5265,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.5959941377625794,
433
+ "grad_norm": 0.6085044741630554,
434
+ "learning_rate": 0.0002,
435
+ "loss": 0.4965,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.6057645334636053,
440
+ "grad_norm": 0.6745641231536865,
441
+ "learning_rate": 0.0002,
442
+ "loss": 0.4916,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.6155349291646312,
447
+ "grad_norm": 0.647544264793396,
448
+ "learning_rate": 0.0002,
449
+ "loss": 0.5107,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.625305324865657,
454
+ "grad_norm": 0.6123825311660767,
455
+ "learning_rate": 0.0002,
456
+ "loss": 0.4864,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.6350757205666829,
461
+ "grad_norm": 0.5815364122390747,
462
+ "learning_rate": 0.0002,
463
+ "loss": 0.484,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.6448461162677088,
468
+ "grad_norm": 0.6184095740318298,
469
+ "learning_rate": 0.0002,
470
+ "loss": 0.4966,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.6546165119687347,
475
+ "grad_norm": 0.5856700539588928,
476
+ "learning_rate": 0.0002,
477
+ "loss": 0.4861,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.6643869076697606,
482
+ "grad_norm": 0.6424922943115234,
483
+ "learning_rate": 0.0002,
484
+ "loss": 0.4964,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.6741573033707865,
489
+ "grad_norm": 0.7051425576210022,
490
+ "learning_rate": 0.0002,
491
+ "loss": 0.5019,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.6839276990718124,
496
+ "grad_norm": 0.6133471131324768,
497
+ "learning_rate": 0.0002,
498
+ "loss": 0.4649,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.6936980947728383,
503
+ "grad_norm": 0.6933842897415161,
504
+ "learning_rate": 0.0002,
505
+ "loss": 0.4847,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.7034684904738642,
510
+ "grad_norm": 0.6440989375114441,
511
+ "learning_rate": 0.0002,
512
+ "loss": 0.4945,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.7132388861748901,
517
+ "grad_norm": 0.87819904088974,
518
+ "learning_rate": 0.0002,
519
+ "loss": 0.4777,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.723009281875916,
524
+ "grad_norm": 0.6810497641563416,
525
+ "learning_rate": 0.0002,
526
+ "loss": 0.4914,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.7327796775769418,
531
+ "grad_norm": 0.7822733521461487,
532
+ "learning_rate": 0.0002,
533
+ "loss": 0.4789,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.7425500732779677,
538
+ "grad_norm": 0.6669152975082397,
539
+ "learning_rate": 0.0002,
540
+ "loss": 0.4615,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.7523204689789936,
545
+ "grad_norm": 0.7351736426353455,
546
+ "learning_rate": 0.0002,
547
+ "loss": 0.4689,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.7620908646800195,
552
+ "grad_norm": 1.0013558864593506,
553
+ "learning_rate": 0.0002,
554
+ "loss": 0.4629,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.7718612603810454,
559
+ "grad_norm": 0.7465775609016418,
560
+ "learning_rate": 0.0002,
561
+ "loss": 0.4739,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.7816316560820713,
566
+ "grad_norm": 1.0959300994873047,
567
+ "learning_rate": 0.0002,
568
+ "loss": 0.4635,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.7914020517830972,
573
+ "grad_norm": 0.5292418599128723,
574
+ "learning_rate": 0.0002,
575
+ "loss": 0.4549,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.8011724474841231,
580
+ "grad_norm": 0.6555328965187073,
581
+ "learning_rate": 0.0002,
582
+ "loss": 0.458,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.810942843185149,
587
+ "grad_norm": 0.6462382674217224,
588
+ "learning_rate": 0.0002,
589
+ "loss": 0.488,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.8207132388861749,
594
+ "grad_norm": 0.6840918064117432,
595
+ "learning_rate": 0.0002,
596
+ "loss": 0.4541,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.8304836345872008,
601
+ "grad_norm": 0.5715351700782776,
602
+ "learning_rate": 0.0002,
603
+ "loss": 0.4509,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.8402540302882266,
608
+ "grad_norm": 0.5583404898643494,
609
+ "learning_rate": 0.0002,
610
+ "loss": 0.4535,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.8500244259892525,
615
+ "grad_norm": 0.8243112564086914,
616
+ "learning_rate": 0.0002,
617
+ "loss": 0.4533,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.8597948216902784,
622
+ "grad_norm": 0.6543600559234619,
623
+ "learning_rate": 0.0002,
624
+ "loss": 0.4545,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.8695652173913043,
629
+ "grad_norm": 0.6494827270507812,
630
+ "learning_rate": 0.0002,
631
+ "loss": 0.4814,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.8793356130923302,
636
+ "grad_norm": 0.8458304405212402,
637
+ "learning_rate": 0.0002,
638
+ "loss": 0.4593,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.8891060087933561,
643
+ "grad_norm": 0.6854186654090881,
644
+ "learning_rate": 0.0002,
645
+ "loss": 0.4382,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.898876404494382,
650
+ "grad_norm": 0.6300225853919983,
651
+ "learning_rate": 0.0002,
652
+ "loss": 0.4488,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.9086468001954079,
657
+ "grad_norm": 0.9791533350944519,
658
+ "learning_rate": 0.0002,
659
+ "loss": 0.4638,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.9184171958964338,
664
+ "grad_norm": 0.6965218186378479,
665
+ "learning_rate": 0.0002,
666
+ "loss": 0.446,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.9281875915974597,
671
+ "grad_norm": 0.6066922545433044,
672
+ "learning_rate": 0.0002,
673
+ "loss": 0.4453,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.9379579872984856,
678
+ "grad_norm": 0.8081962466239929,
679
+ "learning_rate": 0.0002,
680
+ "loss": 0.4471,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.9477283829995115,
685
+ "grad_norm": 0.7755117416381836,
686
+ "learning_rate": 0.0002,
687
+ "loss": 0.4348,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.9574987787005373,
692
+ "grad_norm": 0.7127223610877991,
693
+ "learning_rate": 0.0002,
694
+ "loss": 0.4423,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.9672691744015632,
699
+ "grad_norm": 0.6947609186172485,
700
+ "learning_rate": 0.0002,
701
+ "loss": 0.4272,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.9770395701025891,
706
+ "grad_norm": 1.0100330114364624,
707
+ "learning_rate": 0.0002,
708
+ "loss": 0.4262,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.986809965803615,
713
+ "grad_norm": 0.6727001667022705,
714
+ "learning_rate": 0.0002,
715
+ "loss": 0.4169,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.9965803615046409,
720
+ "grad_norm": 0.7834463119506836,
721
+ "learning_rate": 0.0002,
722
+ "loss": 0.4507,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.9995114802149487,
727
+ "eval_loss": 0.433101624250412,
728
+ "eval_runtime": 26.5222,
729
+ "eval_samples_per_second": 13.762,
730
+ "eval_steps_per_second": 1.734,
731
+ "step": 1023
732
+ },
733
+ {
734
+ "epoch": 1.006350757205667,
735
+ "grad_norm": 0.8070526123046875,
736
+ "learning_rate": 0.0002,
737
+ "loss": 0.4154,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.0161211529066927,
742
+ "grad_norm": 0.7301508784294128,
743
+ "learning_rate": 0.0002,
744
+ "loss": 0.3951,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.0258915486077187,
749
+ "grad_norm": 0.8212476372718811,
750
+ "learning_rate": 0.0002,
751
+ "loss": 0.4001,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.0356619443087445,
756
+ "grad_norm": 0.6269228458404541,
757
+ "learning_rate": 0.0002,
758
+ "loss": 0.3953,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.0454323400097705,
763
+ "grad_norm": 0.700432300567627,
764
+ "learning_rate": 0.0002,
765
+ "loss": 0.4147,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.0552027357107963,
770
+ "grad_norm": 0.9251010417938232,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.3857,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.0649731314118223,
777
+ "grad_norm": 0.6018561720848083,
778
+ "learning_rate": 0.0002,
779
+ "loss": 0.3955,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.074743527112848,
784
+ "grad_norm": 0.7045873403549194,
785
+ "learning_rate": 0.0002,
786
+ "loss": 0.4079,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.084513922813874,
791
+ "grad_norm": 0.7800339460372925,
792
+ "learning_rate": 0.0002,
793
+ "loss": 0.4005,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.0942843185148998,
798
+ "grad_norm": 0.7404900789260864,
799
+ "learning_rate": 0.0002,
800
+ "loss": 0.419,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.1040547142159258,
805
+ "grad_norm": 1.1851727962493896,
806
+ "learning_rate": 0.0002,
807
+ "loss": 0.4057,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.1138251099169516,
812
+ "grad_norm": 0.875406801700592,
813
+ "learning_rate": 0.0002,
814
+ "loss": 0.3966,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.1235955056179776,
819
+ "grad_norm": 0.9795705676078796,
820
+ "learning_rate": 0.0002,
821
+ "loss": 0.3863,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.1333659013190034,
826
+ "grad_norm": 0.7387922406196594,
827
+ "learning_rate": 0.0002,
828
+ "loss": 0.3991,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.1431362970200294,
833
+ "grad_norm": 0.6640482544898987,
834
+ "learning_rate": 0.0002,
835
+ "loss": 0.3914,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.1529066927210552,
840
+ "grad_norm": 0.6067684888839722,
841
+ "learning_rate": 0.0002,
842
+ "loss": 0.3809,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.1626770884220812,
847
+ "grad_norm": 0.7623337507247925,
848
+ "learning_rate": 0.0002,
849
+ "loss": 0.3915,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.172447484123107,
854
+ "grad_norm": 1.0410432815551758,
855
+ "learning_rate": 0.0002,
856
+ "loss": 0.3832,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.182217879824133,
861
+ "grad_norm": 0.7790178656578064,
862
+ "learning_rate": 0.0002,
863
+ "loss": 0.3875,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.1919882755251587,
868
+ "grad_norm": 0.7643477916717529,
869
+ "learning_rate": 0.0002,
870
+ "loss": 0.3869,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.2017586712261847,
875
+ "grad_norm": 1.2028473615646362,
876
+ "learning_rate": 0.0002,
877
+ "loss": 0.3719,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.2115290669272105,
882
+ "grad_norm": 0.787656307220459,
883
+ "learning_rate": 0.0002,
884
+ "loss": 0.3863,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.2212994626282365,
889
+ "grad_norm": 0.8074171543121338,
890
+ "learning_rate": 0.0002,
891
+ "loss": 0.3875,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.2310698583292623,
896
+ "grad_norm": 0.8488901853561401,
897
+ "learning_rate": 0.0002,
898
+ "loss": 0.3923,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.2408402540302883,
903
+ "grad_norm": 0.7454975247383118,
904
+ "learning_rate": 0.0002,
905
+ "loss": 0.3829,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.250610649731314,
910
+ "grad_norm": 0.6724955439567566,
911
+ "learning_rate": 0.0002,
912
+ "loss": 0.3981,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.26038104543234,
917
+ "grad_norm": 1.1912977695465088,
918
+ "learning_rate": 0.0002,
919
+ "loss": 0.383,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.2701514411333659,
924
+ "grad_norm": 0.7795814871788025,
925
+ "learning_rate": 0.0002,
926
+ "loss": 0.3837,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.2799218368343919,
931
+ "grad_norm": 0.672956645488739,
932
+ "learning_rate": 0.0002,
933
+ "loss": 0.3898,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.2896922325354176,
938
+ "grad_norm": 1.245808482170105,
939
+ "learning_rate": 0.0002,
940
+ "loss": 0.3849,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.2994626282364437,
945
+ "grad_norm": 0.9562020301818848,
946
+ "learning_rate": 0.0002,
947
+ "loss": 0.3877,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.3092330239374694,
952
+ "grad_norm": 1.2005938291549683,
953
+ "learning_rate": 0.0002,
954
+ "loss": 0.3711,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.3190034196384954,
959
+ "grad_norm": 0.7105128169059753,
960
+ "learning_rate": 0.0002,
961
+ "loss": 0.3761,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.3287738153395212,
966
+ "grad_norm": 0.9829772710800171,
967
+ "learning_rate": 0.0002,
968
+ "loss": 0.371,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.3385442110405472,
973
+ "grad_norm": 0.6548563241958618,
974
+ "learning_rate": 0.0002,
975
+ "loss": 0.3845,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.348314606741573,
980
+ "grad_norm": 0.877531111240387,
981
+ "learning_rate": 0.0002,
982
+ "loss": 0.3797,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.358085002442599,
987
+ "grad_norm": 0.6915368437767029,
988
+ "learning_rate": 0.0002,
989
+ "loss": 0.3757,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.3678553981436248,
994
+ "grad_norm": 0.6052316427230835,
995
+ "learning_rate": 0.0002,
996
+ "loss": 0.368,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.3776257938446508,
1001
+ "grad_norm": 0.6086260080337524,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 0.3758,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.3873961895456766,
1008
+ "grad_norm": 1.0432673692703247,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.3794,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.3971665852467026,
1015
+ "grad_norm": 0.7252581715583801,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 0.3715,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.4069369809477283,
1022
+ "grad_norm": 0.7926928997039795,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 0.3919,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.4167073766487543,
1029
+ "grad_norm": 0.6464225649833679,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 0.3701,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.4264777723497801,
1036
+ "grad_norm": 1.0563385486602783,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 0.3738,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.4362481680508061,
1043
+ "grad_norm": 0.5497196316719055,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 0.3782,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.446018563751832,
1050
+ "grad_norm": 0.7382678389549255,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 0.3668,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.455788959452858,
1057
+ "grad_norm": 0.6264833807945251,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 0.3592,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.4655593551538837,
1064
+ "grad_norm": 0.6722145080566406,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 0.3809,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.4753297508549097,
1071
+ "grad_norm": 0.8594183921813965,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 0.3715,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.4851001465559355,
1078
+ "grad_norm": 0.8588142395019531,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 0.354,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.4948705422569615,
1085
+ "grad_norm": 0.8683834075927734,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 0.3654,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.5046409379579873,
1092
+ "grad_norm": 0.7628163695335388,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 0.3647,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.5144113336590133,
1099
+ "grad_norm": 0.7967382669448853,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.3666,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.524181729360039,
1106
+ "grad_norm": 0.7065442800521851,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 0.361,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.5339521250610648,
1113
+ "grad_norm": 0.6472197771072388,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 0.3623,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.5437225207620908,
1120
+ "grad_norm": 1.105960488319397,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 0.3626,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.5534929164631168,
1127
+ "grad_norm": 0.9730587601661682,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 0.3528,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.5632633121641426,
1134
+ "grad_norm": 0.987910807132721,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 0.3739,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.5730337078651684,
1141
+ "grad_norm": 0.9708227515220642,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 0.3546,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 1.5828041035661944,
1148
+ "grad_norm": 0.6303295493125916,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 0.3653,
1151
+ "step": 1620
1152
+ },
1153
+ {
1154
+ "epoch": 1.5925744992672204,
1155
+ "grad_norm": 1.0985002517700195,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 0.3639,
1158
+ "step": 1630
1159
+ },
1160
+ {
1161
+ "epoch": 1.6023448949682462,
1162
+ "grad_norm": 0.839419960975647,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 0.3533,
1165
+ "step": 1640
1166
+ },
1167
+ {
1168
+ "epoch": 1.612115290669272,
1169
+ "grad_norm": 0.7963409423828125,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 0.3544,
1172
+ "step": 1650
1173
+ },
1174
+ {
1175
+ "epoch": 1.621885686370298,
1176
+ "grad_norm": 0.8074514269828796,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 0.3721,
1179
+ "step": 1660
1180
+ },
1181
+ {
1182
+ "epoch": 1.631656082071324,
1183
+ "grad_norm": 0.8368266820907593,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 0.3573,
1186
+ "step": 1670
1187
+ },
1188
+ {
1189
+ "epoch": 1.6414264777723497,
1190
+ "grad_norm": 0.6562672257423401,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 0.3556,
1193
+ "step": 1680
1194
+ },
1195
+ {
1196
+ "epoch": 1.6511968734733755,
1197
+ "grad_norm": 0.5512149930000305,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 0.3593,
1200
+ "step": 1690
1201
+ },
1202
+ {
1203
+ "epoch": 1.6609672691744015,
1204
+ "grad_norm": 0.5829663276672363,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 0.3626,
1207
+ "step": 1700
1208
+ },
1209
+ {
1210
+ "epoch": 1.6707376648754275,
1211
+ "grad_norm": 0.8412625193595886,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 0.3526,
1214
+ "step": 1710
1215
+ },
1216
+ {
1217
+ "epoch": 1.6805080605764533,
1218
+ "grad_norm": 0.8657066226005554,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 0.3593,
1221
+ "step": 1720
1222
+ },
1223
+ {
1224
+ "epoch": 1.690278456277479,
1225
+ "grad_norm": 0.9691681861877441,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 0.3545,
1228
+ "step": 1730
1229
+ },
1230
+ {
1231
+ "epoch": 1.700048851978505,
1232
+ "grad_norm": 0.641669511795044,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 0.3694,
1235
+ "step": 1740
1236
+ },
1237
+ {
1238
+ "epoch": 1.709819247679531,
1239
+ "grad_norm": 0.7599552273750305,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 0.3594,
1242
+ "step": 1750
1243
+ },
1244
+ {
1245
+ "epoch": 1.7195896433805569,
1246
+ "grad_norm": 0.7562308311462402,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 0.3563,
1249
+ "step": 1760
1250
+ },
1251
+ {
1252
+ "epoch": 1.7293600390815826,
1253
+ "grad_norm": 0.6949060559272766,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 0.3741,
1256
+ "step": 1770
1257
+ },
1258
+ {
1259
+ "epoch": 1.7391304347826086,
1260
+ "grad_norm": 1.1047314405441284,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 0.3444,
1263
+ "step": 1780
1264
+ },
1265
+ {
1266
+ "epoch": 1.7489008304836346,
1267
+ "grad_norm": 0.9239255785942078,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 0.3602,
1270
+ "step": 1790
1271
+ },
1272
+ {
1273
+ "epoch": 1.7586712261846604,
1274
+ "grad_norm": 0.6171822547912598,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 0.3464,
1277
+ "step": 1800
1278
+ },
1279
+ {
1280
+ "epoch": 1.7684416218856862,
1281
+ "grad_norm": 0.8883067965507507,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 0.3504,
1284
+ "step": 1810
1285
+ },
1286
+ {
1287
+ "epoch": 1.7782120175867122,
1288
+ "grad_norm": 0.8204503059387207,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 0.341,
1291
+ "step": 1820
1292
+ },
1293
+ {
1294
+ "epoch": 1.7879824132877382,
1295
+ "grad_norm": 0.807534396648407,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 0.3455,
1298
+ "step": 1830
1299
+ },
1300
+ {
1301
+ "epoch": 1.797752808988764,
1302
+ "grad_norm": 0.8063831329345703,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 0.3287,
1305
+ "step": 1840
1306
+ },
1307
+ {
1308
+ "epoch": 1.8075232046897898,
1309
+ "grad_norm": 0.7789983749389648,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 0.3424,
1312
+ "step": 1850
1313
+ },
1314
+ {
1315
+ "epoch": 1.8172936003908158,
1316
+ "grad_norm": 0.6771978735923767,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 0.3495,
1319
+ "step": 1860
1320
+ },
1321
+ {
1322
+ "epoch": 1.8270639960918418,
1323
+ "grad_norm": 0.9140942096710205,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 0.3437,
1326
+ "step": 1870
1327
+ },
1328
+ {
1329
+ "epoch": 1.8368343917928676,
1330
+ "grad_norm": 0.6635336875915527,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 0.3458,
1333
+ "step": 1880
1334
+ },
1335
+ {
1336
+ "epoch": 1.8466047874938933,
1337
+ "grad_norm": 1.1987066268920898,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 0.3396,
1340
+ "step": 1890
1341
+ },
1342
+ {
1343
+ "epoch": 1.8563751831949193,
1344
+ "grad_norm": 0.7020497918128967,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 0.3413,
1347
+ "step": 1900
1348
+ },
1349
+ {
1350
+ "epoch": 1.8661455788959453,
1351
+ "grad_norm": 1.0113945007324219,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 0.3442,
1354
+ "step": 1910
1355
+ },
1356
+ {
1357
+ "epoch": 1.8759159745969711,
1358
+ "grad_norm": 0.8227802515029907,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 0.3503,
1361
+ "step": 1920
1362
+ },
1363
+ {
1364
+ "epoch": 1.885686370297997,
1365
+ "grad_norm": 0.8185329437255859,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 0.3565,
1368
+ "step": 1930
1369
+ },
1370
+ {
1371
+ "epoch": 1.895456765999023,
1372
+ "grad_norm": 0.7708970904350281,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 0.335,
1375
+ "step": 1940
1376
+ },
1377
+ {
1378
+ "epoch": 1.905227161700049,
1379
+ "grad_norm": 0.8888451457023621,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 0.3365,
1382
+ "step": 1950
1383
+ },
1384
+ {
1385
+ "epoch": 1.9149975574010747,
1386
+ "grad_norm": 0.720267653465271,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 0.3342,
1389
+ "step": 1960
1390
+ },
1391
+ {
1392
+ "epoch": 1.9247679531021005,
1393
+ "grad_norm": 0.888666570186615,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 0.3512,
1396
+ "step": 1970
1397
+ },
1398
+ {
1399
+ "epoch": 1.9345383488031265,
1400
+ "grad_norm": 0.7471952438354492,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 0.3284,
1403
+ "step": 1980
1404
+ },
1405
+ {
1406
+ "epoch": 1.9443087445041525,
1407
+ "grad_norm": 0.7166922092437744,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 0.3383,
1410
+ "step": 1990
1411
+ },
1412
+ {
1413
+ "epoch": 1.9540791402051783,
1414
+ "grad_norm": 0.7097923159599304,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 0.3355,
1417
+ "step": 2000
1418
+ },
1419
+ {
1420
+ "epoch": 1.963849535906204,
1421
+ "grad_norm": 0.8592363595962524,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 0.3282,
1424
+ "step": 2010
1425
+ },
1426
+ {
1427
+ "epoch": 1.97361993160723,
1428
+ "grad_norm": 0.5352440476417542,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 0.3273,
1431
+ "step": 2020
1432
+ },
1433
+ {
1434
+ "epoch": 1.983390327308256,
1435
+ "grad_norm": 1.0193064212799072,
1436
+ "learning_rate": 0.0002,
1437
+ "loss": 0.3387,
1438
+ "step": 2030
1439
+ },
1440
+ {
1441
+ "epoch": 1.9931607230092818,
1442
+ "grad_norm": 0.7331683039665222,
1443
+ "learning_rate": 0.0002,
1444
+ "loss": 0.3277,
1445
+ "step": 2040
1446
+ },
1447
+ {
1448
+ "epoch": 2.0,
1449
+ "eval_loss": 0.3446754515171051,
1450
+ "eval_runtime": 26.5209,
1451
+ "eval_samples_per_second": 13.763,
1452
+ "eval_steps_per_second": 1.734,
1453
+ "step": 2047
1454
+ },
1455
+ {
1456
+ "epoch": 2.0029311187103076,
1457
+ "grad_norm": 0.5937952399253845,
1458
+ "learning_rate": 0.0002,
1459
+ "loss": 0.321,
1460
+ "step": 2050
1461
+ },
1462
+ {
1463
+ "epoch": 2.012701514411334,
1464
+ "grad_norm": 0.7739789485931396,
1465
+ "learning_rate": 0.0002,
1466
+ "loss": 0.3193,
1467
+ "step": 2060
1468
+ },
1469
+ {
1470
+ "epoch": 2.0224719101123596,
1471
+ "grad_norm": 0.8177487850189209,
1472
+ "learning_rate": 0.0002,
1473
+ "loss": 0.3082,
1474
+ "step": 2070
1475
+ },
1476
+ {
1477
+ "epoch": 2.0322423058133854,
1478
+ "grad_norm": 0.8874511122703552,
1479
+ "learning_rate": 0.0002,
1480
+ "loss": 0.3124,
1481
+ "step": 2080
1482
+ },
1483
+ {
1484
+ "epoch": 2.042012701514411,
1485
+ "grad_norm": 0.5704050660133362,
1486
+ "learning_rate": 0.0002,
1487
+ "loss": 0.3134,
1488
+ "step": 2090
1489
+ },
1490
+ {
1491
+ "epoch": 2.0517830972154374,
1492
+ "grad_norm": 0.6900630593299866,
1493
+ "learning_rate": 0.0002,
1494
+ "loss": 0.3183,
1495
+ "step": 2100
1496
+ },
1497
+ {
1498
+ "epoch": 2.061553492916463,
1499
+ "grad_norm": 0.6171090006828308,
1500
+ "learning_rate": 0.0002,
1501
+ "loss": 0.3299,
1502
+ "step": 2110
1503
+ },
1504
+ {
1505
+ "epoch": 2.071323888617489,
1506
+ "grad_norm": 0.6837073564529419,
1507
+ "learning_rate": 0.0002,
1508
+ "loss": 0.3174,
1509
+ "step": 2120
1510
+ },
1511
+ {
1512
+ "epoch": 2.0810942843185147,
1513
+ "grad_norm": 0.7657505869865417,
1514
+ "learning_rate": 0.0002,
1515
+ "loss": 0.3188,
1516
+ "step": 2130
1517
+ },
1518
+ {
1519
+ "epoch": 2.090864680019541,
1520
+ "grad_norm": 0.6443445682525635,
1521
+ "learning_rate": 0.0002,
1522
+ "loss": 0.3106,
1523
+ "step": 2140
1524
+ },
1525
+ {
1526
+ "epoch": 2.1006350757205667,
1527
+ "grad_norm": 0.7839877605438232,
1528
+ "learning_rate": 0.0002,
1529
+ "loss": 0.3122,
1530
+ "step": 2150
1531
+ },
1532
+ {
1533
+ "epoch": 2.1104054714215925,
1534
+ "grad_norm": 0.6591543555259705,
1535
+ "learning_rate": 0.0002,
1536
+ "loss": 0.3075,
1537
+ "step": 2160
1538
+ },
1539
+ {
1540
+ "epoch": 2.1201758671226183,
1541
+ "grad_norm": 0.4450279176235199,
1542
+ "learning_rate": 0.0002,
1543
+ "loss": 0.3156,
1544
+ "step": 2170
1545
+ },
1546
+ {
1547
+ "epoch": 2.1299462628236445,
1548
+ "grad_norm": 0.7616181373596191,
1549
+ "learning_rate": 0.0002,
1550
+ "loss": 0.3166,
1551
+ "step": 2180
1552
+ },
1553
+ {
1554
+ "epoch": 2.1397166585246703,
1555
+ "grad_norm": 0.9556062817573547,
1556
+ "learning_rate": 0.0002,
1557
+ "loss": 0.3222,
1558
+ "step": 2190
1559
+ },
1560
+ {
1561
+ "epoch": 2.149487054225696,
1562
+ "grad_norm": 0.7944735288619995,
1563
+ "learning_rate": 0.0002,
1564
+ "loss": 0.3065,
1565
+ "step": 2200
1566
+ },
1567
+ {
1568
+ "epoch": 2.159257449926722,
1569
+ "grad_norm": 0.8850461840629578,
1570
+ "learning_rate": 0.0002,
1571
+ "loss": 0.3182,
1572
+ "step": 2210
1573
+ },
1574
+ {
1575
+ "epoch": 2.169027845627748,
1576
+ "grad_norm": 0.586155354976654,
1577
+ "learning_rate": 0.0002,
1578
+ "loss": 0.3116,
1579
+ "step": 2220
1580
+ },
1581
+ {
1582
+ "epoch": 2.178798241328774,
1583
+ "grad_norm": 0.5621091723442078,
1584
+ "learning_rate": 0.0002,
1585
+ "loss": 0.3124,
1586
+ "step": 2230
1587
+ },
1588
+ {
1589
+ "epoch": 2.1885686370297996,
1590
+ "grad_norm": 1.0284475088119507,
1591
+ "learning_rate": 0.0002,
1592
+ "loss": 0.3231,
1593
+ "step": 2240
1594
+ },
1595
+ {
1596
+ "epoch": 2.1983390327308254,
1597
+ "grad_norm": 0.6767295002937317,
1598
+ "learning_rate": 0.0002,
1599
+ "loss": 0.313,
1600
+ "step": 2250
1601
+ },
1602
+ {
1603
+ "epoch": 2.2081094284318517,
1604
+ "grad_norm": 1.5721969604492188,
1605
+ "learning_rate": 0.0002,
1606
+ "loss": 0.3058,
1607
+ "step": 2260
1608
+ },
1609
+ {
1610
+ "epoch": 2.2178798241328774,
1611
+ "grad_norm": 0.6935747861862183,
1612
+ "learning_rate": 0.0002,
1613
+ "loss": 0.3184,
1614
+ "step": 2270
1615
+ },
1616
+ {
1617
+ "epoch": 2.227650219833903,
1618
+ "grad_norm": 0.6964385509490967,
1619
+ "learning_rate": 0.0002,
1620
+ "loss": 0.3145,
1621
+ "step": 2280
1622
+ },
1623
+ {
1624
+ "epoch": 2.237420615534929,
1625
+ "grad_norm": 0.7350403070449829,
1626
+ "learning_rate": 0.0002,
1627
+ "loss": 0.3196,
1628
+ "step": 2290
1629
+ },
1630
+ {
1631
+ "epoch": 2.247191011235955,
1632
+ "grad_norm": 0.6564902663230896,
1633
+ "learning_rate": 0.0002,
1634
+ "loss": 0.3043,
1635
+ "step": 2300
1636
+ },
1637
+ {
1638
+ "epoch": 2.256961406936981,
1639
+ "grad_norm": 0.6696506142616272,
1640
+ "learning_rate": 0.0002,
1641
+ "loss": 0.3092,
1642
+ "step": 2310
1643
+ },
1644
+ {
1645
+ "epoch": 2.2667318026380068,
1646
+ "grad_norm": 0.5929620265960693,
1647
+ "learning_rate": 0.0002,
1648
+ "loss": 0.3163,
1649
+ "step": 2320
1650
+ },
1651
+ {
1652
+ "epoch": 2.2765021983390326,
1653
+ "grad_norm": 0.7476680874824524,
1654
+ "learning_rate": 0.0002,
1655
+ "loss": 0.3156,
1656
+ "step": 2330
1657
+ },
1658
+ {
1659
+ "epoch": 2.286272594040059,
1660
+ "grad_norm": 1.0137721300125122,
1661
+ "learning_rate": 0.0002,
1662
+ "loss": 0.3151,
1663
+ "step": 2340
1664
+ },
1665
+ {
1666
+ "epoch": 2.2960429897410846,
1667
+ "grad_norm": 0.6992525458335876,
1668
+ "learning_rate": 0.0002,
1669
+ "loss": 0.308,
1670
+ "step": 2350
1671
+ },
1672
+ {
1673
+ "epoch": 2.3058133854421103,
1674
+ "grad_norm": 0.572147786617279,
1675
+ "learning_rate": 0.0002,
1676
+ "loss": 0.3166,
1677
+ "step": 2360
1678
+ },
1679
+ {
1680
+ "epoch": 2.315583781143136,
1681
+ "grad_norm": 0.6631198525428772,
1682
+ "learning_rate": 0.0002,
1683
+ "loss": 0.314,
1684
+ "step": 2370
1685
+ },
1686
+ {
1687
+ "epoch": 2.3253541768441623,
1688
+ "grad_norm": 0.9330461025238037,
1689
+ "learning_rate": 0.0002,
1690
+ "loss": 0.308,
1691
+ "step": 2380
1692
+ },
1693
+ {
1694
+ "epoch": 2.335124572545188,
1695
+ "grad_norm": 0.783240556716919,
1696
+ "learning_rate": 0.0002,
1697
+ "loss": 0.3266,
1698
+ "step": 2390
1699
+ },
1700
+ {
1701
+ "epoch": 2.344894968246214,
1702
+ "grad_norm": 0.574898898601532,
1703
+ "learning_rate": 0.0002,
1704
+ "loss": 0.3166,
1705
+ "step": 2400
1706
+ },
1707
+ {
1708
+ "epoch": 2.3546653639472397,
1709
+ "grad_norm": 0.6607279777526855,
1710
+ "learning_rate": 0.0002,
1711
+ "loss": 0.3119,
1712
+ "step": 2410
1713
+ },
1714
+ {
1715
+ "epoch": 2.364435759648266,
1716
+ "grad_norm": 0.8342743515968323,
1717
+ "learning_rate": 0.0002,
1718
+ "loss": 0.3129,
1719
+ "step": 2420
1720
+ },
1721
+ {
1722
+ "epoch": 2.3742061553492917,
1723
+ "grad_norm": 0.8198254108428955,
1724
+ "learning_rate": 0.0002,
1725
+ "loss": 0.315,
1726
+ "step": 2430
1727
+ },
1728
+ {
1729
+ "epoch": 2.3839765510503175,
1730
+ "grad_norm": 0.9324616193771362,
1731
+ "learning_rate": 0.0002,
1732
+ "loss": 0.3107,
1733
+ "step": 2440
1734
+ },
1735
+ {
1736
+ "epoch": 2.3937469467513433,
1737
+ "grad_norm": 0.8188948035240173,
1738
+ "learning_rate": 0.0002,
1739
+ "loss": 0.3,
1740
+ "step": 2450
1741
+ },
1742
+ {
1743
+ "epoch": 2.4035173424523695,
1744
+ "grad_norm": 0.7812654376029968,
1745
+ "learning_rate": 0.0002,
1746
+ "loss": 0.3095,
1747
+ "step": 2460
1748
+ },
1749
+ {
1750
+ "epoch": 2.4132877381533953,
1751
+ "grad_norm": 0.7986653447151184,
1752
+ "learning_rate": 0.0002,
1753
+ "loss": 0.2994,
1754
+ "step": 2470
1755
+ },
1756
+ {
1757
+ "epoch": 2.423058133854421,
1758
+ "grad_norm": 0.6537502408027649,
1759
+ "learning_rate": 0.0002,
1760
+ "loss": 0.3095,
1761
+ "step": 2480
1762
+ },
1763
+ {
1764
+ "epoch": 2.432828529555447,
1765
+ "grad_norm": 0.4680769741535187,
1766
+ "learning_rate": 0.0002,
1767
+ "loss": 0.3092,
1768
+ "step": 2490
1769
+ },
1770
+ {
1771
+ "epoch": 2.442598925256473,
1772
+ "grad_norm": 1.0223482847213745,
1773
+ "learning_rate": 0.0002,
1774
+ "loss": 0.3117,
1775
+ "step": 2500
1776
+ },
1777
+ {
1778
+ "epoch": 2.452369320957499,
1779
+ "grad_norm": 0.5865668654441833,
1780
+ "learning_rate": 0.0002,
1781
+ "loss": 0.3047,
1782
+ "step": 2510
1783
+ },
1784
+ {
1785
+ "epoch": 2.4621397166585246,
1786
+ "grad_norm": 0.8539699912071228,
1787
+ "learning_rate": 0.0002,
1788
+ "loss": 0.3138,
1789
+ "step": 2520
1790
+ },
1791
+ {
1792
+ "epoch": 2.4719101123595504,
1793
+ "grad_norm": 0.8653438687324524,
1794
+ "learning_rate": 0.0002,
1795
+ "loss": 0.3082,
1796
+ "step": 2530
1797
+ },
1798
+ {
1799
+ "epoch": 2.4816805080605766,
1800
+ "grad_norm": 1.084686040878296,
1801
+ "learning_rate": 0.0002,
1802
+ "loss": 0.3098,
1803
+ "step": 2540
1804
+ },
1805
+ {
1806
+ "epoch": 2.4914509037616024,
1807
+ "grad_norm": 0.8754410743713379,
1808
+ "learning_rate": 0.0002,
1809
+ "loss": 0.3139,
1810
+ "step": 2550
1811
+ },
1812
+ {
1813
+ "epoch": 2.501221299462628,
1814
+ "grad_norm": 0.838127851486206,
1815
+ "learning_rate": 0.0002,
1816
+ "loss": 0.3066,
1817
+ "step": 2560
1818
+ },
1819
+ {
1820
+ "epoch": 2.5109916951636544,
1821
+ "grad_norm": 0.7761465907096863,
1822
+ "learning_rate": 0.0002,
1823
+ "loss": 0.2933,
1824
+ "step": 2570
1825
+ },
1826
+ {
1827
+ "epoch": 2.52076209086468,
1828
+ "grad_norm": 0.7373273372650146,
1829
+ "learning_rate": 0.0002,
1830
+ "loss": 0.2942,
1831
+ "step": 2580
1832
+ },
1833
+ {
1834
+ "epoch": 2.530532486565706,
1835
+ "grad_norm": 0.7441604137420654,
1836
+ "learning_rate": 0.0002,
1837
+ "loss": 0.3079,
1838
+ "step": 2590
1839
+ },
1840
+ {
1841
+ "epoch": 2.5403028822667317,
1842
+ "grad_norm": 0.7476372718811035,
1843
+ "learning_rate": 0.0002,
1844
+ "loss": 0.3048,
1845
+ "step": 2600
1846
+ },
1847
+ {
1848
+ "epoch": 2.5500732779677575,
1849
+ "grad_norm": 0.860421895980835,
1850
+ "learning_rate": 0.0002,
1851
+ "loss": 0.2979,
1852
+ "step": 2610
1853
+ },
1854
+ {
1855
+ "epoch": 2.5598436736687837,
1856
+ "grad_norm": 0.8230026364326477,
1857
+ "learning_rate": 0.0002,
1858
+ "loss": 0.3046,
1859
+ "step": 2620
1860
+ },
1861
+ {
1862
+ "epoch": 2.5696140693698095,
1863
+ "grad_norm": 0.8646627068519592,
1864
+ "learning_rate": 0.0002,
1865
+ "loss": 0.3034,
1866
+ "step": 2630
1867
+ },
1868
+ {
1869
+ "epoch": 2.5793844650708353,
1870
+ "grad_norm": 0.9704413414001465,
1871
+ "learning_rate": 0.0002,
1872
+ "loss": 0.3147,
1873
+ "step": 2640
1874
+ },
1875
+ {
1876
+ "epoch": 2.5891548607718615,
1877
+ "grad_norm": 0.8837246298789978,
1878
+ "learning_rate": 0.0002,
1879
+ "loss": 0.3078,
1880
+ "step": 2650
1881
+ },
1882
+ {
1883
+ "epoch": 2.5989252564728873,
1884
+ "grad_norm": 0.7060710191726685,
1885
+ "learning_rate": 0.0002,
1886
+ "loss": 0.3006,
1887
+ "step": 2660
1888
+ },
1889
+ {
1890
+ "epoch": 2.608695652173913,
1891
+ "grad_norm": 0.7364303469657898,
1892
+ "learning_rate": 0.0002,
1893
+ "loss": 0.3024,
1894
+ "step": 2670
1895
+ },
1896
+ {
1897
+ "epoch": 2.618466047874939,
1898
+ "grad_norm": 0.9422456622123718,
1899
+ "learning_rate": 0.0002,
1900
+ "loss": 0.3047,
1901
+ "step": 2680
1902
+ },
1903
+ {
1904
+ "epoch": 2.6282364435759646,
1905
+ "grad_norm": 0.8265060186386108,
1906
+ "learning_rate": 0.0002,
1907
+ "loss": 0.3033,
1908
+ "step": 2690
1909
+ },
1910
+ {
1911
+ "epoch": 2.638006839276991,
1912
+ "grad_norm": 0.6122261881828308,
1913
+ "learning_rate": 0.0002,
1914
+ "loss": 0.2949,
1915
+ "step": 2700
1916
+ },
1917
+ {
1918
+ "epoch": 2.6477772349780166,
1919
+ "grad_norm": 0.7424021363258362,
1920
+ "learning_rate": 0.0002,
1921
+ "loss": 0.2978,
1922
+ "step": 2710
1923
+ },
1924
+ {
1925
+ "epoch": 2.6575476306790424,
1926
+ "grad_norm": 0.6899349689483643,
1927
+ "learning_rate": 0.0002,
1928
+ "loss": 0.3078,
1929
+ "step": 2720
1930
+ },
1931
+ {
1932
+ "epoch": 2.6673180263800687,
1933
+ "grad_norm": 0.8241371512413025,
1934
+ "learning_rate": 0.0002,
1935
+ "loss": 0.3059,
1936
+ "step": 2730
1937
+ },
1938
+ {
1939
+ "epoch": 2.6770884220810944,
1940
+ "grad_norm": 0.7357944846153259,
1941
+ "learning_rate": 0.0002,
1942
+ "loss": 0.3169,
1943
+ "step": 2740
1944
+ },
1945
+ {
1946
+ "epoch": 2.68685881778212,
1947
+ "grad_norm": 1.2319949865341187,
1948
+ "learning_rate": 0.0002,
1949
+ "loss": 0.3104,
1950
+ "step": 2750
1951
+ },
1952
+ {
1953
+ "epoch": 2.696629213483146,
1954
+ "grad_norm": 0.6758335828781128,
1955
+ "learning_rate": 0.0002,
1956
+ "loss": 0.3016,
1957
+ "step": 2760
1958
+ },
1959
+ {
1960
+ "epoch": 2.7063996091841718,
1961
+ "grad_norm": 0.666590690612793,
1962
+ "learning_rate": 0.0002,
1963
+ "loss": 0.3175,
1964
+ "step": 2770
1965
+ },
1966
+ {
1967
+ "epoch": 2.716170004885198,
1968
+ "grad_norm": 0.765657365322113,
1969
+ "learning_rate": 0.0002,
1970
+ "loss": 0.3123,
1971
+ "step": 2780
1972
+ },
1973
+ {
1974
+ "epoch": 2.7259404005862238,
1975
+ "grad_norm": 0.6624470949172974,
1976
+ "learning_rate": 0.0002,
1977
+ "loss": 0.2969,
1978
+ "step": 2790
1979
+ },
1980
+ {
1981
+ "epoch": 2.7357107962872496,
1982
+ "grad_norm": 0.9891471266746521,
1983
+ "learning_rate": 0.0002,
1984
+ "loss": 0.3021,
1985
+ "step": 2800
1986
+ },
1987
+ {
1988
+ "epoch": 2.745481191988276,
1989
+ "grad_norm": 0.590451180934906,
1990
+ "learning_rate": 0.0002,
1991
+ "loss": 0.307,
1992
+ "step": 2810
1993
+ },
1994
+ {
1995
+ "epoch": 2.7552515876893016,
1996
+ "grad_norm": 0.5418292284011841,
1997
+ "learning_rate": 0.0002,
1998
+ "loss": 0.3084,
1999
+ "step": 2820
2000
+ },
2001
+ {
2002
+ "epoch": 2.7650219833903273,
2003
+ "grad_norm": 0.9565151929855347,
2004
+ "learning_rate": 0.0002,
2005
+ "loss": 0.309,
2006
+ "step": 2830
2007
+ },
2008
+ {
2009
+ "epoch": 2.774792379091353,
2010
+ "grad_norm": 0.7840000987052917,
2011
+ "learning_rate": 0.0002,
2012
+ "loss": 0.3046,
2013
+ "step": 2840
2014
+ },
2015
+ {
2016
+ "epoch": 2.784562774792379,
2017
+ "grad_norm": 0.7269287705421448,
2018
+ "learning_rate": 0.0002,
2019
+ "loss": 0.2938,
2020
+ "step": 2850
2021
+ },
2022
+ {
2023
+ "epoch": 2.794333170493405,
2024
+ "grad_norm": 0.6564769744873047,
2025
+ "learning_rate": 0.0002,
2026
+ "loss": 0.2945,
2027
+ "step": 2860
2028
+ },
2029
+ {
2030
+ "epoch": 2.804103566194431,
2031
+ "grad_norm": 0.5916360020637512,
2032
+ "learning_rate": 0.0002,
2033
+ "loss": 0.2952,
2034
+ "step": 2870
2035
+ },
2036
+ {
2037
+ "epoch": 2.8138739618954567,
2038
+ "grad_norm": 0.5752355456352234,
2039
+ "learning_rate": 0.0002,
2040
+ "loss": 0.2981,
2041
+ "step": 2880
2042
+ },
2043
+ {
2044
+ "epoch": 2.823644357596483,
2045
+ "grad_norm": 0.9079744815826416,
2046
+ "learning_rate": 0.0002,
2047
+ "loss": 0.2976,
2048
+ "step": 2890
2049
+ },
2050
+ {
2051
+ "epoch": 2.8334147532975087,
2052
+ "grad_norm": 0.6955378651618958,
2053
+ "learning_rate": 0.0002,
2054
+ "loss": 0.2967,
2055
+ "step": 2900
2056
+ },
2057
+ {
2058
+ "epoch": 2.8431851489985345,
2059
+ "grad_norm": 0.5551539063453674,
2060
+ "learning_rate": 0.0002,
2061
+ "loss": 0.289,
2062
+ "step": 2910
2063
+ },
2064
+ {
2065
+ "epoch": 2.8529555446995603,
2066
+ "grad_norm": 0.7029260396957397,
2067
+ "learning_rate": 0.0002,
2068
+ "loss": 0.3047,
2069
+ "step": 2920
2070
+ },
2071
+ {
2072
+ "epoch": 2.862725940400586,
2073
+ "grad_norm": 1.002670168876648,
2074
+ "learning_rate": 0.0002,
2075
+ "loss": 0.2935,
2076
+ "step": 2930
2077
+ },
2078
+ {
2079
+ "epoch": 2.8724963361016123,
2080
+ "grad_norm": 0.8380820751190186,
2081
+ "learning_rate": 0.0002,
2082
+ "loss": 0.3005,
2083
+ "step": 2940
2084
+ },
2085
+ {
2086
+ "epoch": 2.882266731802638,
2087
+ "grad_norm": 0.658412754535675,
2088
+ "learning_rate": 0.0002,
2089
+ "loss": 0.2948,
2090
+ "step": 2950
2091
+ },
2092
+ {
2093
+ "epoch": 2.892037127503664,
2094
+ "grad_norm": 0.9336162209510803,
2095
+ "learning_rate": 0.0002,
2096
+ "loss": 0.3003,
2097
+ "step": 2960
2098
+ },
2099
+ {
2100
+ "epoch": 2.90180752320469,
2101
+ "grad_norm": 0.7143391370773315,
2102
+ "learning_rate": 0.0002,
2103
+ "loss": 0.2874,
2104
+ "step": 2970
2105
+ },
2106
+ {
2107
+ "epoch": 2.911577918905716,
2108
+ "grad_norm": 0.5564678311347961,
2109
+ "learning_rate": 0.0002,
2110
+ "loss": 0.2975,
2111
+ "step": 2980
2112
+ },
2113
+ {
2114
+ "epoch": 2.9213483146067416,
2115
+ "grad_norm": 1.1643658876419067,
2116
+ "learning_rate": 0.0002,
2117
+ "loss": 0.3045,
2118
+ "step": 2990
2119
+ },
2120
+ {
2121
+ "epoch": 2.9311187103077674,
2122
+ "grad_norm": 0.6776673793792725,
2123
+ "learning_rate": 0.0002,
2124
+ "loss": 0.3027,
2125
+ "step": 3000
2126
+ },
2127
+ {
2128
+ "epoch": 2.940889106008793,
2129
+ "grad_norm": 0.6123829483985901,
2130
+ "learning_rate": 0.0002,
2131
+ "loss": 0.2887,
2132
+ "step": 3010
2133
+ },
2134
+ {
2135
+ "epoch": 2.9506595017098194,
2136
+ "grad_norm": 0.7569496631622314,
2137
+ "learning_rate": 0.0002,
2138
+ "loss": 0.2897,
2139
+ "step": 3020
2140
+ },
2141
+ {
2142
+ "epoch": 2.960429897410845,
2143
+ "grad_norm": 0.6484465599060059,
2144
+ "learning_rate": 0.0002,
2145
+ "loss": 0.3023,
2146
+ "step": 3030
2147
+ },
2148
+ {
2149
+ "epoch": 2.970200293111871,
2150
+ "grad_norm": 0.7745254039764404,
2151
+ "learning_rate": 0.0002,
2152
+ "loss": 0.2925,
2153
+ "step": 3040
2154
+ },
2155
+ {
2156
+ "epoch": 2.979970688812897,
2157
+ "grad_norm": 0.6034068465232849,
2158
+ "learning_rate": 0.0002,
2159
+ "loss": 0.2946,
2160
+ "step": 3050
2161
+ },
2162
+ {
2163
+ "epoch": 2.989741084513923,
2164
+ "grad_norm": 1.202962040901184,
2165
+ "learning_rate": 0.0002,
2166
+ "loss": 0.2935,
2167
+ "step": 3060
2168
+ },
2169
+ {
2170
+ "epoch": 2.9995114802149487,
2171
+ "grad_norm": 0.8330838680267334,
2172
+ "learning_rate": 0.0002,
2173
+ "loss": 0.3045,
2174
+ "step": 3070
2175
+ },
2176
+ {
2177
+ "epoch": 2.9995114802149487,
2178
+ "eval_loss": 0.30571895837783813,
2179
+ "eval_runtime": 26.5297,
2180
+ "eval_samples_per_second": 13.758,
2181
+ "eval_steps_per_second": 1.734,
2182
+ "step": 3070
2183
+ }
2184
+ ],
2185
+ "logging_steps": 10,
2186
+ "max_steps": 8184,
2187
+ "num_input_tokens_seen": 0,
2188
+ "num_train_epochs": 8,
2189
+ "save_steps": 200,
2190
+ "stateful_callbacks": {
2191
+ "TrainerControl": {
2192
+ "args": {
2193
+ "should_epoch_stop": false,
2194
+ "should_evaluate": false,
2195
+ "should_log": false,
2196
+ "should_save": true,
2197
+ "should_training_stop": false
2198
+ },
2199
+ "attributes": {}
2200
+ }
2201
+ },
2202
+ "total_flos": 1.347173483544576e+17,
2203
+ "train_batch_size": 1,
2204
+ "trial_name": null,
2205
+ "trial_params": null
2206
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-3070/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:469618ae8560edd4a517eb99451fb8bc5c5f148706842d569488535fb05e84cb
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43f91955986d5f645672d33784be22a794bc618a9382c323a3c2749b0f3a65ae
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02ba35ce47743bfbcc8eb51f146221b23dfc839209af54415950e4e4e4bacbb4
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe31f03bf55f7742c115caf760ba47051e21b556d1b1d1e5d5760ac992fa9bb6
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eb0a611aea8c03604e4871ae8f30f2c46c2da4f9dd50a6f3adc320a593e4f99
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094/trainer_state.json ADDED
@@ -0,0 +1,2928 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.289143443107605,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-17256-sd-1/checkpoint-4094",
4
+ "epoch": 4.0,
5
+ "eval_steps": 10,
6
+ "global_step": 4094,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.009770395701025891,
13
+ "grad_norm": 1.1888047456741333,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7474,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.019540791402051783,
20
+ "grad_norm": 1.3118009567260742,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.157,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.029311187103077674,
27
+ "grad_norm": 1.1254922151565552,
28
+ "learning_rate": 0.0002,
29
+ "loss": 0.9979,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.039081582804103565,
34
+ "grad_norm": 0.9634686708450317,
35
+ "learning_rate": 0.0002,
36
+ "loss": 0.8859,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.048851978505129456,
41
+ "grad_norm": 0.9101817607879639,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.7826,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.05862237420615535,
48
+ "grad_norm": 1.0019943714141846,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.7358,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.06839276990718124,
55
+ "grad_norm": 0.9201828837394714,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.6664,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.07816316560820713,
62
+ "grad_norm": 0.9210318922996521,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.6785,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.08793356130923302,
69
+ "grad_norm": 0.8079697489738464,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.652,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.09770395701025891,
76
+ "grad_norm": 0.7530406713485718,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.6469,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.1074743527112848,
83
+ "grad_norm": 0.8732273578643799,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.6604,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.1172447484123107,
90
+ "grad_norm": 0.9163013696670532,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.6429,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.1270151441133366,
97
+ "grad_norm": 0.5931605696678162,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.6269,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.13678553981436248,
104
+ "grad_norm": 0.8782339692115784,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.6349,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.14655593551538837,
111
+ "grad_norm": 0.6683491468429565,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.657,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.15632633121641426,
118
+ "grad_norm": 0.7998592257499695,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.6315,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.16609672691744015,
125
+ "grad_norm": 0.6159262657165527,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.6347,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.17586712261846604,
132
+ "grad_norm": 0.671146035194397,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.6023,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.18563751831949193,
139
+ "grad_norm": 0.5839019417762756,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.6101,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.19540791402051783,
146
+ "grad_norm": 0.5090241432189941,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.6121,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.20517830972154372,
153
+ "grad_norm": 0.652291476726532,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.6296,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.2149487054225696,
160
+ "grad_norm": 0.6500856876373291,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.577,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.2247191011235955,
167
+ "grad_norm": 0.6135480999946594,
168
+ "learning_rate": 0.0002,
169
+ "loss": 0.6186,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2344894968246214,
174
+ "grad_norm": 0.6102302074432373,
175
+ "learning_rate": 0.0002,
176
+ "loss": 0.6132,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.24425989252564728,
181
+ "grad_norm": 0.6909783482551575,
182
+ "learning_rate": 0.0002,
183
+ "loss": 0.592,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.2540302882266732,
188
+ "grad_norm": 0.5834446549415588,
189
+ "learning_rate": 0.0002,
190
+ "loss": 0.5832,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.26380068392769906,
195
+ "grad_norm": 0.5275322198867798,
196
+ "learning_rate": 0.0002,
197
+ "loss": 0.6038,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.27357107962872496,
202
+ "grad_norm": 0.5611422657966614,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.5469,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.28334147532975085,
209
+ "grad_norm": 0.6549052596092224,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.552,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.29311187103077674,
216
+ "grad_norm": 0.563291072845459,
217
+ "learning_rate": 0.0002,
218
+ "loss": 0.5609,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.30288226673180263,
223
+ "grad_norm": 0.5598369240760803,
224
+ "learning_rate": 0.0002,
225
+ "loss": 0.5632,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3126526624328285,
230
+ "grad_norm": 0.6525678634643555,
231
+ "learning_rate": 0.0002,
232
+ "loss": 0.5627,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.3224230581338544,
237
+ "grad_norm": 0.5190592408180237,
238
+ "learning_rate": 0.0002,
239
+ "loss": 0.5526,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.3321934538348803,
244
+ "grad_norm": 0.45483070611953735,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.5698,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.3419638495359062,
251
+ "grad_norm": 0.8094475865364075,
252
+ "learning_rate": 0.0002,
253
+ "loss": 0.5768,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.3517342452369321,
258
+ "grad_norm": 0.5545358061790466,
259
+ "learning_rate": 0.0002,
260
+ "loss": 0.5555,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.361504640937958,
265
+ "grad_norm": 0.6899498701095581,
266
+ "learning_rate": 0.0002,
267
+ "loss": 0.5529,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.37127503663898387,
272
+ "grad_norm": 0.4584816098213196,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.556,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.38104543234000976,
279
+ "grad_norm": 0.5436979532241821,
280
+ "learning_rate": 0.0002,
281
+ "loss": 0.5451,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.39081582804103565,
286
+ "grad_norm": 0.7512422800064087,
287
+ "learning_rate": 0.0002,
288
+ "loss": 0.5377,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.40058622374206154,
293
+ "grad_norm": 0.6394727826118469,
294
+ "learning_rate": 0.0002,
295
+ "loss": 0.5438,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.41035661944308743,
300
+ "grad_norm": 0.5314047336578369,
301
+ "learning_rate": 0.0002,
302
+ "loss": 0.5535,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.4201270151441133,
307
+ "grad_norm": 0.5658334493637085,
308
+ "learning_rate": 0.0002,
309
+ "loss": 0.5587,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.4298974108451392,
314
+ "grad_norm": 0.5295330882072449,
315
+ "learning_rate": 0.0002,
316
+ "loss": 0.5219,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.4396678065461651,
321
+ "grad_norm": 0.6460115313529968,
322
+ "learning_rate": 0.0002,
323
+ "loss": 0.522,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.449438202247191,
328
+ "grad_norm": 0.512022852897644,
329
+ "learning_rate": 0.0002,
330
+ "loss": 0.5416,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.4592085979482169,
335
+ "grad_norm": 0.7365363836288452,
336
+ "learning_rate": 0.0002,
337
+ "loss": 0.5256,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.4689789936492428,
342
+ "grad_norm": 0.6292932629585266,
343
+ "learning_rate": 0.0002,
344
+ "loss": 0.5354,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.4787493893502687,
349
+ "grad_norm": 0.6255582571029663,
350
+ "learning_rate": 0.0002,
351
+ "loss": 0.5436,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.48851978505129456,
356
+ "grad_norm": 0.5599279403686523,
357
+ "learning_rate": 0.0002,
358
+ "loss": 0.5394,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.49829018075232046,
363
+ "grad_norm": 0.573657751083374,
364
+ "learning_rate": 0.0002,
365
+ "loss": 0.5297,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.5080605764533463,
370
+ "grad_norm": 0.6362313628196716,
371
+ "learning_rate": 0.0002,
372
+ "loss": 0.5299,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.5178309721543722,
377
+ "grad_norm": 0.6360035538673401,
378
+ "learning_rate": 0.0002,
379
+ "loss": 0.5458,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.5276013678553981,
384
+ "grad_norm": 0.7129001021385193,
385
+ "learning_rate": 0.0002,
386
+ "loss": 0.5228,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.537371763556424,
391
+ "grad_norm": 0.5596054196357727,
392
+ "learning_rate": 0.0002,
393
+ "loss": 0.5091,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.5471421592574499,
398
+ "grad_norm": 0.7081596851348877,
399
+ "learning_rate": 0.0002,
400
+ "loss": 0.5153,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.5569125549584758,
405
+ "grad_norm": 0.6816760301589966,
406
+ "learning_rate": 0.0002,
407
+ "loss": 0.4999,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.5666829506595017,
412
+ "grad_norm": 0.47695112228393555,
413
+ "learning_rate": 0.0002,
414
+ "loss": 0.4974,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.5764533463605276,
419
+ "grad_norm": 0.7528041005134583,
420
+ "learning_rate": 0.0002,
421
+ "loss": 0.5247,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.5862237420615535,
426
+ "grad_norm": 0.5452813506126404,
427
+ "learning_rate": 0.0002,
428
+ "loss": 0.5265,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.5959941377625794,
433
+ "grad_norm": 0.6085044741630554,
434
+ "learning_rate": 0.0002,
435
+ "loss": 0.4965,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.6057645334636053,
440
+ "grad_norm": 0.6745641231536865,
441
+ "learning_rate": 0.0002,
442
+ "loss": 0.4916,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.6155349291646312,
447
+ "grad_norm": 0.647544264793396,
448
+ "learning_rate": 0.0002,
449
+ "loss": 0.5107,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.625305324865657,
454
+ "grad_norm": 0.6123825311660767,
455
+ "learning_rate": 0.0002,
456
+ "loss": 0.4864,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.6350757205666829,
461
+ "grad_norm": 0.5815364122390747,
462
+ "learning_rate": 0.0002,
463
+ "loss": 0.484,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.6448461162677088,
468
+ "grad_norm": 0.6184095740318298,
469
+ "learning_rate": 0.0002,
470
+ "loss": 0.4966,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.6546165119687347,
475
+ "grad_norm": 0.5856700539588928,
476
+ "learning_rate": 0.0002,
477
+ "loss": 0.4861,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.6643869076697606,
482
+ "grad_norm": 0.6424922943115234,
483
+ "learning_rate": 0.0002,
484
+ "loss": 0.4964,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.6741573033707865,
489
+ "grad_norm": 0.7051425576210022,
490
+ "learning_rate": 0.0002,
491
+ "loss": 0.5019,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.6839276990718124,
496
+ "grad_norm": 0.6133471131324768,
497
+ "learning_rate": 0.0002,
498
+ "loss": 0.4649,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.6936980947728383,
503
+ "grad_norm": 0.6933842897415161,
504
+ "learning_rate": 0.0002,
505
+ "loss": 0.4847,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.7034684904738642,
510
+ "grad_norm": 0.6440989375114441,
511
+ "learning_rate": 0.0002,
512
+ "loss": 0.4945,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.7132388861748901,
517
+ "grad_norm": 0.87819904088974,
518
+ "learning_rate": 0.0002,
519
+ "loss": 0.4777,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.723009281875916,
524
+ "grad_norm": 0.6810497641563416,
525
+ "learning_rate": 0.0002,
526
+ "loss": 0.4914,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.7327796775769418,
531
+ "grad_norm": 0.7822733521461487,
532
+ "learning_rate": 0.0002,
533
+ "loss": 0.4789,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.7425500732779677,
538
+ "grad_norm": 0.6669152975082397,
539
+ "learning_rate": 0.0002,
540
+ "loss": 0.4615,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.7523204689789936,
545
+ "grad_norm": 0.7351736426353455,
546
+ "learning_rate": 0.0002,
547
+ "loss": 0.4689,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.7620908646800195,
552
+ "grad_norm": 1.0013558864593506,
553
+ "learning_rate": 0.0002,
554
+ "loss": 0.4629,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.7718612603810454,
559
+ "grad_norm": 0.7465775609016418,
560
+ "learning_rate": 0.0002,
561
+ "loss": 0.4739,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.7816316560820713,
566
+ "grad_norm": 1.0959300994873047,
567
+ "learning_rate": 0.0002,
568
+ "loss": 0.4635,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.7914020517830972,
573
+ "grad_norm": 0.5292418599128723,
574
+ "learning_rate": 0.0002,
575
+ "loss": 0.4549,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.8011724474841231,
580
+ "grad_norm": 0.6555328965187073,
581
+ "learning_rate": 0.0002,
582
+ "loss": 0.458,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.810942843185149,
587
+ "grad_norm": 0.6462382674217224,
588
+ "learning_rate": 0.0002,
589
+ "loss": 0.488,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.8207132388861749,
594
+ "grad_norm": 0.6840918064117432,
595
+ "learning_rate": 0.0002,
596
+ "loss": 0.4541,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.8304836345872008,
601
+ "grad_norm": 0.5715351700782776,
602
+ "learning_rate": 0.0002,
603
+ "loss": 0.4509,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.8402540302882266,
608
+ "grad_norm": 0.5583404898643494,
609
+ "learning_rate": 0.0002,
610
+ "loss": 0.4535,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.8500244259892525,
615
+ "grad_norm": 0.8243112564086914,
616
+ "learning_rate": 0.0002,
617
+ "loss": 0.4533,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.8597948216902784,
622
+ "grad_norm": 0.6543600559234619,
623
+ "learning_rate": 0.0002,
624
+ "loss": 0.4545,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.8695652173913043,
629
+ "grad_norm": 0.6494827270507812,
630
+ "learning_rate": 0.0002,
631
+ "loss": 0.4814,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.8793356130923302,
636
+ "grad_norm": 0.8458304405212402,
637
+ "learning_rate": 0.0002,
638
+ "loss": 0.4593,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.8891060087933561,
643
+ "grad_norm": 0.6854186654090881,
644
+ "learning_rate": 0.0002,
645
+ "loss": 0.4382,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.898876404494382,
650
+ "grad_norm": 0.6300225853919983,
651
+ "learning_rate": 0.0002,
652
+ "loss": 0.4488,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.9086468001954079,
657
+ "grad_norm": 0.9791533350944519,
658
+ "learning_rate": 0.0002,
659
+ "loss": 0.4638,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.9184171958964338,
664
+ "grad_norm": 0.6965218186378479,
665
+ "learning_rate": 0.0002,
666
+ "loss": 0.446,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.9281875915974597,
671
+ "grad_norm": 0.6066922545433044,
672
+ "learning_rate": 0.0002,
673
+ "loss": 0.4453,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.9379579872984856,
678
+ "grad_norm": 0.8081962466239929,
679
+ "learning_rate": 0.0002,
680
+ "loss": 0.4471,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.9477283829995115,
685
+ "grad_norm": 0.7755117416381836,
686
+ "learning_rate": 0.0002,
687
+ "loss": 0.4348,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.9574987787005373,
692
+ "grad_norm": 0.7127223610877991,
693
+ "learning_rate": 0.0002,
694
+ "loss": 0.4423,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.9672691744015632,
699
+ "grad_norm": 0.6947609186172485,
700
+ "learning_rate": 0.0002,
701
+ "loss": 0.4272,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.9770395701025891,
706
+ "grad_norm": 1.0100330114364624,
707
+ "learning_rate": 0.0002,
708
+ "loss": 0.4262,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.986809965803615,
713
+ "grad_norm": 0.6727001667022705,
714
+ "learning_rate": 0.0002,
715
+ "loss": 0.4169,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.9965803615046409,
720
+ "grad_norm": 0.7834463119506836,
721
+ "learning_rate": 0.0002,
722
+ "loss": 0.4507,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.9995114802149487,
727
+ "eval_loss": 0.433101624250412,
728
+ "eval_runtime": 26.5222,
729
+ "eval_samples_per_second": 13.762,
730
+ "eval_steps_per_second": 1.734,
731
+ "step": 1023
732
+ },
733
+ {
734
+ "epoch": 1.006350757205667,
735
+ "grad_norm": 0.8070526123046875,
736
+ "learning_rate": 0.0002,
737
+ "loss": 0.4154,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.0161211529066927,
742
+ "grad_norm": 0.7301508784294128,
743
+ "learning_rate": 0.0002,
744
+ "loss": 0.3951,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.0258915486077187,
749
+ "grad_norm": 0.8212476372718811,
750
+ "learning_rate": 0.0002,
751
+ "loss": 0.4001,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.0356619443087445,
756
+ "grad_norm": 0.6269228458404541,
757
+ "learning_rate": 0.0002,
758
+ "loss": 0.3953,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.0454323400097705,
763
+ "grad_norm": 0.700432300567627,
764
+ "learning_rate": 0.0002,
765
+ "loss": 0.4147,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.0552027357107963,
770
+ "grad_norm": 0.9251010417938232,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.3857,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.0649731314118223,
777
+ "grad_norm": 0.6018561720848083,
778
+ "learning_rate": 0.0002,
779
+ "loss": 0.3955,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.074743527112848,
784
+ "grad_norm": 0.7045873403549194,
785
+ "learning_rate": 0.0002,
786
+ "loss": 0.4079,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.084513922813874,
791
+ "grad_norm": 0.7800339460372925,
792
+ "learning_rate": 0.0002,
793
+ "loss": 0.4005,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.0942843185148998,
798
+ "grad_norm": 0.7404900789260864,
799
+ "learning_rate": 0.0002,
800
+ "loss": 0.419,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.1040547142159258,
805
+ "grad_norm": 1.1851727962493896,
806
+ "learning_rate": 0.0002,
807
+ "loss": 0.4057,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.1138251099169516,
812
+ "grad_norm": 0.875406801700592,
813
+ "learning_rate": 0.0002,
814
+ "loss": 0.3966,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.1235955056179776,
819
+ "grad_norm": 0.9795705676078796,
820
+ "learning_rate": 0.0002,
821
+ "loss": 0.3863,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.1333659013190034,
826
+ "grad_norm": 0.7387922406196594,
827
+ "learning_rate": 0.0002,
828
+ "loss": 0.3991,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.1431362970200294,
833
+ "grad_norm": 0.6640482544898987,
834
+ "learning_rate": 0.0002,
835
+ "loss": 0.3914,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.1529066927210552,
840
+ "grad_norm": 0.6067684888839722,
841
+ "learning_rate": 0.0002,
842
+ "loss": 0.3809,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.1626770884220812,
847
+ "grad_norm": 0.7623337507247925,
848
+ "learning_rate": 0.0002,
849
+ "loss": 0.3915,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.172447484123107,
854
+ "grad_norm": 1.0410432815551758,
855
+ "learning_rate": 0.0002,
856
+ "loss": 0.3832,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.182217879824133,
861
+ "grad_norm": 0.7790178656578064,
862
+ "learning_rate": 0.0002,
863
+ "loss": 0.3875,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.1919882755251587,
868
+ "grad_norm": 0.7643477916717529,
869
+ "learning_rate": 0.0002,
870
+ "loss": 0.3869,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.2017586712261847,
875
+ "grad_norm": 1.2028473615646362,
876
+ "learning_rate": 0.0002,
877
+ "loss": 0.3719,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.2115290669272105,
882
+ "grad_norm": 0.787656307220459,
883
+ "learning_rate": 0.0002,
884
+ "loss": 0.3863,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.2212994626282365,
889
+ "grad_norm": 0.8074171543121338,
890
+ "learning_rate": 0.0002,
891
+ "loss": 0.3875,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.2310698583292623,
896
+ "grad_norm": 0.8488901853561401,
897
+ "learning_rate": 0.0002,
898
+ "loss": 0.3923,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.2408402540302883,
903
+ "grad_norm": 0.7454975247383118,
904
+ "learning_rate": 0.0002,
905
+ "loss": 0.3829,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.250610649731314,
910
+ "grad_norm": 0.6724955439567566,
911
+ "learning_rate": 0.0002,
912
+ "loss": 0.3981,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.26038104543234,
917
+ "grad_norm": 1.1912977695465088,
918
+ "learning_rate": 0.0002,
919
+ "loss": 0.383,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.2701514411333659,
924
+ "grad_norm": 0.7795814871788025,
925
+ "learning_rate": 0.0002,
926
+ "loss": 0.3837,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.2799218368343919,
931
+ "grad_norm": 0.672956645488739,
932
+ "learning_rate": 0.0002,
933
+ "loss": 0.3898,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.2896922325354176,
938
+ "grad_norm": 1.245808482170105,
939
+ "learning_rate": 0.0002,
940
+ "loss": 0.3849,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.2994626282364437,
945
+ "grad_norm": 0.9562020301818848,
946
+ "learning_rate": 0.0002,
947
+ "loss": 0.3877,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.3092330239374694,
952
+ "grad_norm": 1.2005938291549683,
953
+ "learning_rate": 0.0002,
954
+ "loss": 0.3711,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.3190034196384954,
959
+ "grad_norm": 0.7105128169059753,
960
+ "learning_rate": 0.0002,
961
+ "loss": 0.3761,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.3287738153395212,
966
+ "grad_norm": 0.9829772710800171,
967
+ "learning_rate": 0.0002,
968
+ "loss": 0.371,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.3385442110405472,
973
+ "grad_norm": 0.6548563241958618,
974
+ "learning_rate": 0.0002,
975
+ "loss": 0.3845,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.348314606741573,
980
+ "grad_norm": 0.877531111240387,
981
+ "learning_rate": 0.0002,
982
+ "loss": 0.3797,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.358085002442599,
987
+ "grad_norm": 0.6915368437767029,
988
+ "learning_rate": 0.0002,
989
+ "loss": 0.3757,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.3678553981436248,
994
+ "grad_norm": 0.6052316427230835,
995
+ "learning_rate": 0.0002,
996
+ "loss": 0.368,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.3776257938446508,
1001
+ "grad_norm": 0.6086260080337524,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 0.3758,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.3873961895456766,
1008
+ "grad_norm": 1.0432673692703247,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.3794,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.3971665852467026,
1015
+ "grad_norm": 0.7252581715583801,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 0.3715,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.4069369809477283,
1022
+ "grad_norm": 0.7926928997039795,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 0.3919,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.4167073766487543,
1029
+ "grad_norm": 0.6464225649833679,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 0.3701,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.4264777723497801,
1036
+ "grad_norm": 1.0563385486602783,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 0.3738,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.4362481680508061,
1043
+ "grad_norm": 0.5497196316719055,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 0.3782,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.446018563751832,
1050
+ "grad_norm": 0.7382678389549255,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 0.3668,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.455788959452858,
1057
+ "grad_norm": 0.6264833807945251,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 0.3592,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.4655593551538837,
1064
+ "grad_norm": 0.6722145080566406,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 0.3809,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.4753297508549097,
1071
+ "grad_norm": 0.8594183921813965,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 0.3715,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.4851001465559355,
1078
+ "grad_norm": 0.8588142395019531,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 0.354,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.4948705422569615,
1085
+ "grad_norm": 0.8683834075927734,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 0.3654,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.5046409379579873,
1092
+ "grad_norm": 0.7628163695335388,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 0.3647,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.5144113336590133,
1099
+ "grad_norm": 0.7967382669448853,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.3666,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.524181729360039,
1106
+ "grad_norm": 0.7065442800521851,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 0.361,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.5339521250610648,
1113
+ "grad_norm": 0.6472197771072388,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 0.3623,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.5437225207620908,
1120
+ "grad_norm": 1.105960488319397,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 0.3626,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.5534929164631168,
1127
+ "grad_norm": 0.9730587601661682,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 0.3528,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.5632633121641426,
1134
+ "grad_norm": 0.987910807132721,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 0.3739,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.5730337078651684,
1141
+ "grad_norm": 0.9708227515220642,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 0.3546,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 1.5828041035661944,
1148
+ "grad_norm": 0.6303295493125916,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 0.3653,
1151
+ "step": 1620
1152
+ },
1153
+ {
1154
+ "epoch": 1.5925744992672204,
1155
+ "grad_norm": 1.0985002517700195,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 0.3639,
1158
+ "step": 1630
1159
+ },
1160
+ {
1161
+ "epoch": 1.6023448949682462,
1162
+ "grad_norm": 0.839419960975647,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 0.3533,
1165
+ "step": 1640
1166
+ },
1167
+ {
1168
+ "epoch": 1.612115290669272,
1169
+ "grad_norm": 0.7963409423828125,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 0.3544,
1172
+ "step": 1650
1173
+ },
1174
+ {
1175
+ "epoch": 1.621885686370298,
1176
+ "grad_norm": 0.8074514269828796,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 0.3721,
1179
+ "step": 1660
1180
+ },
1181
+ {
1182
+ "epoch": 1.631656082071324,
1183
+ "grad_norm": 0.8368266820907593,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 0.3573,
1186
+ "step": 1670
1187
+ },
1188
+ {
1189
+ "epoch": 1.6414264777723497,
1190
+ "grad_norm": 0.6562672257423401,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 0.3556,
1193
+ "step": 1680
1194
+ },
1195
+ {
1196
+ "epoch": 1.6511968734733755,
1197
+ "grad_norm": 0.5512149930000305,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 0.3593,
1200
+ "step": 1690
1201
+ },
1202
+ {
1203
+ "epoch": 1.6609672691744015,
1204
+ "grad_norm": 0.5829663276672363,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 0.3626,
1207
+ "step": 1700
1208
+ },
1209
+ {
1210
+ "epoch": 1.6707376648754275,
1211
+ "grad_norm": 0.8412625193595886,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 0.3526,
1214
+ "step": 1710
1215
+ },
1216
+ {
1217
+ "epoch": 1.6805080605764533,
1218
+ "grad_norm": 0.8657066226005554,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 0.3593,
1221
+ "step": 1720
1222
+ },
1223
+ {
1224
+ "epoch": 1.690278456277479,
1225
+ "grad_norm": 0.9691681861877441,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 0.3545,
1228
+ "step": 1730
1229
+ },
1230
+ {
1231
+ "epoch": 1.700048851978505,
1232
+ "grad_norm": 0.641669511795044,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 0.3694,
1235
+ "step": 1740
1236
+ },
1237
+ {
1238
+ "epoch": 1.709819247679531,
1239
+ "grad_norm": 0.7599552273750305,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 0.3594,
1242
+ "step": 1750
1243
+ },
1244
+ {
1245
+ "epoch": 1.7195896433805569,
1246
+ "grad_norm": 0.7562308311462402,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 0.3563,
1249
+ "step": 1760
1250
+ },
1251
+ {
1252
+ "epoch": 1.7293600390815826,
1253
+ "grad_norm": 0.6949060559272766,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 0.3741,
1256
+ "step": 1770
1257
+ },
1258
+ {
1259
+ "epoch": 1.7391304347826086,
1260
+ "grad_norm": 1.1047314405441284,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 0.3444,
1263
+ "step": 1780
1264
+ },
1265
+ {
1266
+ "epoch": 1.7489008304836346,
1267
+ "grad_norm": 0.9239255785942078,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 0.3602,
1270
+ "step": 1790
1271
+ },
1272
+ {
1273
+ "epoch": 1.7586712261846604,
1274
+ "grad_norm": 0.6171822547912598,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 0.3464,
1277
+ "step": 1800
1278
+ },
1279
+ {
1280
+ "epoch": 1.7684416218856862,
1281
+ "grad_norm": 0.8883067965507507,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 0.3504,
1284
+ "step": 1810
1285
+ },
1286
+ {
1287
+ "epoch": 1.7782120175867122,
1288
+ "grad_norm": 0.8204503059387207,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 0.341,
1291
+ "step": 1820
1292
+ },
1293
+ {
1294
+ "epoch": 1.7879824132877382,
1295
+ "grad_norm": 0.807534396648407,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 0.3455,
1298
+ "step": 1830
1299
+ },
1300
+ {
1301
+ "epoch": 1.797752808988764,
1302
+ "grad_norm": 0.8063831329345703,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 0.3287,
1305
+ "step": 1840
1306
+ },
1307
+ {
1308
+ "epoch": 1.8075232046897898,
1309
+ "grad_norm": 0.7789983749389648,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 0.3424,
1312
+ "step": 1850
1313
+ },
1314
+ {
1315
+ "epoch": 1.8172936003908158,
1316
+ "grad_norm": 0.6771978735923767,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 0.3495,
1319
+ "step": 1860
1320
+ },
1321
+ {
1322
+ "epoch": 1.8270639960918418,
1323
+ "grad_norm": 0.9140942096710205,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 0.3437,
1326
+ "step": 1870
1327
+ },
1328
+ {
1329
+ "epoch": 1.8368343917928676,
1330
+ "grad_norm": 0.6635336875915527,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 0.3458,
1333
+ "step": 1880
1334
+ },
1335
+ {
1336
+ "epoch": 1.8466047874938933,
1337
+ "grad_norm": 1.1987066268920898,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 0.3396,
1340
+ "step": 1890
1341
+ },
1342
+ {
1343
+ "epoch": 1.8563751831949193,
1344
+ "grad_norm": 0.7020497918128967,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 0.3413,
1347
+ "step": 1900
1348
+ },
1349
+ {
1350
+ "epoch": 1.8661455788959453,
1351
+ "grad_norm": 1.0113945007324219,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 0.3442,
1354
+ "step": 1910
1355
+ },
1356
+ {
1357
+ "epoch": 1.8759159745969711,
1358
+ "grad_norm": 0.8227802515029907,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 0.3503,
1361
+ "step": 1920
1362
+ },
1363
+ {
1364
+ "epoch": 1.885686370297997,
1365
+ "grad_norm": 0.8185329437255859,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 0.3565,
1368
+ "step": 1930
1369
+ },
1370
+ {
1371
+ "epoch": 1.895456765999023,
1372
+ "grad_norm": 0.7708970904350281,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 0.335,
1375
+ "step": 1940
1376
+ },
1377
+ {
1378
+ "epoch": 1.905227161700049,
1379
+ "grad_norm": 0.8888451457023621,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 0.3365,
1382
+ "step": 1950
1383
+ },
1384
+ {
1385
+ "epoch": 1.9149975574010747,
1386
+ "grad_norm": 0.720267653465271,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 0.3342,
1389
+ "step": 1960
1390
+ },
1391
+ {
1392
+ "epoch": 1.9247679531021005,
1393
+ "grad_norm": 0.888666570186615,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 0.3512,
1396
+ "step": 1970
1397
+ },
1398
+ {
1399
+ "epoch": 1.9345383488031265,
1400
+ "grad_norm": 0.7471952438354492,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 0.3284,
1403
+ "step": 1980
1404
+ },
1405
+ {
1406
+ "epoch": 1.9443087445041525,
1407
+ "grad_norm": 0.7166922092437744,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 0.3383,
1410
+ "step": 1990
1411
+ },
1412
+ {
1413
+ "epoch": 1.9540791402051783,
1414
+ "grad_norm": 0.7097923159599304,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 0.3355,
1417
+ "step": 2000
1418
+ },
1419
+ {
1420
+ "epoch": 1.963849535906204,
1421
+ "grad_norm": 0.8592363595962524,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 0.3282,
1424
+ "step": 2010
1425
+ },
1426
+ {
1427
+ "epoch": 1.97361993160723,
1428
+ "grad_norm": 0.5352440476417542,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 0.3273,
1431
+ "step": 2020
1432
+ },
1433
+ {
1434
+ "epoch": 1.983390327308256,
1435
+ "grad_norm": 1.0193064212799072,
1436
+ "learning_rate": 0.0002,
1437
+ "loss": 0.3387,
1438
+ "step": 2030
1439
+ },
1440
+ {
1441
+ "epoch": 1.9931607230092818,
1442
+ "grad_norm": 0.7331683039665222,
1443
+ "learning_rate": 0.0002,
1444
+ "loss": 0.3277,
1445
+ "step": 2040
1446
+ },
1447
+ {
1448
+ "epoch": 2.0,
1449
+ "eval_loss": 0.3446754515171051,
1450
+ "eval_runtime": 26.5209,
1451
+ "eval_samples_per_second": 13.763,
1452
+ "eval_steps_per_second": 1.734,
1453
+ "step": 2047
1454
+ },
1455
+ {
1456
+ "epoch": 2.0029311187103076,
1457
+ "grad_norm": 0.5937952399253845,
1458
+ "learning_rate": 0.0002,
1459
+ "loss": 0.321,
1460
+ "step": 2050
1461
+ },
1462
+ {
1463
+ "epoch": 2.012701514411334,
1464
+ "grad_norm": 0.7739789485931396,
1465
+ "learning_rate": 0.0002,
1466
+ "loss": 0.3193,
1467
+ "step": 2060
1468
+ },
1469
+ {
1470
+ "epoch": 2.0224719101123596,
1471
+ "grad_norm": 0.8177487850189209,
1472
+ "learning_rate": 0.0002,
1473
+ "loss": 0.3082,
1474
+ "step": 2070
1475
+ },
1476
+ {
1477
+ "epoch": 2.0322423058133854,
1478
+ "grad_norm": 0.8874511122703552,
1479
+ "learning_rate": 0.0002,
1480
+ "loss": 0.3124,
1481
+ "step": 2080
1482
+ },
1483
+ {
1484
+ "epoch": 2.042012701514411,
1485
+ "grad_norm": 0.5704050660133362,
1486
+ "learning_rate": 0.0002,
1487
+ "loss": 0.3134,
1488
+ "step": 2090
1489
+ },
1490
+ {
1491
+ "epoch": 2.0517830972154374,
1492
+ "grad_norm": 0.6900630593299866,
1493
+ "learning_rate": 0.0002,
1494
+ "loss": 0.3183,
1495
+ "step": 2100
1496
+ },
1497
+ {
1498
+ "epoch": 2.061553492916463,
1499
+ "grad_norm": 0.6171090006828308,
1500
+ "learning_rate": 0.0002,
1501
+ "loss": 0.3299,
1502
+ "step": 2110
1503
+ },
1504
+ {
1505
+ "epoch": 2.071323888617489,
1506
+ "grad_norm": 0.6837073564529419,
1507
+ "learning_rate": 0.0002,
1508
+ "loss": 0.3174,
1509
+ "step": 2120
1510
+ },
1511
+ {
1512
+ "epoch": 2.0810942843185147,
1513
+ "grad_norm": 0.7657505869865417,
1514
+ "learning_rate": 0.0002,
1515
+ "loss": 0.3188,
1516
+ "step": 2130
1517
+ },
1518
+ {
1519
+ "epoch": 2.090864680019541,
1520
+ "grad_norm": 0.6443445682525635,
1521
+ "learning_rate": 0.0002,
1522
+ "loss": 0.3106,
1523
+ "step": 2140
1524
+ },
1525
+ {
1526
+ "epoch": 2.1006350757205667,
1527
+ "grad_norm": 0.7839877605438232,
1528
+ "learning_rate": 0.0002,
1529
+ "loss": 0.3122,
1530
+ "step": 2150
1531
+ },
1532
+ {
1533
+ "epoch": 2.1104054714215925,
1534
+ "grad_norm": 0.6591543555259705,
1535
+ "learning_rate": 0.0002,
1536
+ "loss": 0.3075,
1537
+ "step": 2160
1538
+ },
1539
+ {
1540
+ "epoch": 2.1201758671226183,
1541
+ "grad_norm": 0.4450279176235199,
1542
+ "learning_rate": 0.0002,
1543
+ "loss": 0.3156,
1544
+ "step": 2170
1545
+ },
1546
+ {
1547
+ "epoch": 2.1299462628236445,
1548
+ "grad_norm": 0.7616181373596191,
1549
+ "learning_rate": 0.0002,
1550
+ "loss": 0.3166,
1551
+ "step": 2180
1552
+ },
1553
+ {
1554
+ "epoch": 2.1397166585246703,
1555
+ "grad_norm": 0.9556062817573547,
1556
+ "learning_rate": 0.0002,
1557
+ "loss": 0.3222,
1558
+ "step": 2190
1559
+ },
1560
+ {
1561
+ "epoch": 2.149487054225696,
1562
+ "grad_norm": 0.7944735288619995,
1563
+ "learning_rate": 0.0002,
1564
+ "loss": 0.3065,
1565
+ "step": 2200
1566
+ },
1567
+ {
1568
+ "epoch": 2.159257449926722,
1569
+ "grad_norm": 0.8850461840629578,
1570
+ "learning_rate": 0.0002,
1571
+ "loss": 0.3182,
1572
+ "step": 2210
1573
+ },
1574
+ {
1575
+ "epoch": 2.169027845627748,
1576
+ "grad_norm": 0.586155354976654,
1577
+ "learning_rate": 0.0002,
1578
+ "loss": 0.3116,
1579
+ "step": 2220
1580
+ },
1581
+ {
1582
+ "epoch": 2.178798241328774,
1583
+ "grad_norm": 0.5621091723442078,
1584
+ "learning_rate": 0.0002,
1585
+ "loss": 0.3124,
1586
+ "step": 2230
1587
+ },
1588
+ {
1589
+ "epoch": 2.1885686370297996,
1590
+ "grad_norm": 1.0284475088119507,
1591
+ "learning_rate": 0.0002,
1592
+ "loss": 0.3231,
1593
+ "step": 2240
1594
+ },
1595
+ {
1596
+ "epoch": 2.1983390327308254,
1597
+ "grad_norm": 0.6767295002937317,
1598
+ "learning_rate": 0.0002,
1599
+ "loss": 0.313,
1600
+ "step": 2250
1601
+ },
1602
+ {
1603
+ "epoch": 2.2081094284318517,
1604
+ "grad_norm": 1.5721969604492188,
1605
+ "learning_rate": 0.0002,
1606
+ "loss": 0.3058,
1607
+ "step": 2260
1608
+ },
1609
+ {
1610
+ "epoch": 2.2178798241328774,
1611
+ "grad_norm": 0.6935747861862183,
1612
+ "learning_rate": 0.0002,
1613
+ "loss": 0.3184,
1614
+ "step": 2270
1615
+ },
1616
+ {
1617
+ "epoch": 2.227650219833903,
1618
+ "grad_norm": 0.6964385509490967,
1619
+ "learning_rate": 0.0002,
1620
+ "loss": 0.3145,
1621
+ "step": 2280
1622
+ },
1623
+ {
1624
+ "epoch": 2.237420615534929,
1625
+ "grad_norm": 0.7350403070449829,
1626
+ "learning_rate": 0.0002,
1627
+ "loss": 0.3196,
1628
+ "step": 2290
1629
+ },
1630
+ {
1631
+ "epoch": 2.247191011235955,
1632
+ "grad_norm": 0.6564902663230896,
1633
+ "learning_rate": 0.0002,
1634
+ "loss": 0.3043,
1635
+ "step": 2300
1636
+ },
1637
+ {
1638
+ "epoch": 2.256961406936981,
1639
+ "grad_norm": 0.6696506142616272,
1640
+ "learning_rate": 0.0002,
1641
+ "loss": 0.3092,
1642
+ "step": 2310
1643
+ },
1644
+ {
1645
+ "epoch": 2.2667318026380068,
1646
+ "grad_norm": 0.5929620265960693,
1647
+ "learning_rate": 0.0002,
1648
+ "loss": 0.3163,
1649
+ "step": 2320
1650
+ },
1651
+ {
1652
+ "epoch": 2.2765021983390326,
1653
+ "grad_norm": 0.7476680874824524,
1654
+ "learning_rate": 0.0002,
1655
+ "loss": 0.3156,
1656
+ "step": 2330
1657
+ },
1658
+ {
1659
+ "epoch": 2.286272594040059,
1660
+ "grad_norm": 1.0137721300125122,
1661
+ "learning_rate": 0.0002,
1662
+ "loss": 0.3151,
1663
+ "step": 2340
1664
+ },
1665
+ {
1666
+ "epoch": 2.2960429897410846,
1667
+ "grad_norm": 0.6992525458335876,
1668
+ "learning_rate": 0.0002,
1669
+ "loss": 0.308,
1670
+ "step": 2350
1671
+ },
1672
+ {
1673
+ "epoch": 2.3058133854421103,
1674
+ "grad_norm": 0.572147786617279,
1675
+ "learning_rate": 0.0002,
1676
+ "loss": 0.3166,
1677
+ "step": 2360
1678
+ },
1679
+ {
1680
+ "epoch": 2.315583781143136,
1681
+ "grad_norm": 0.6631198525428772,
1682
+ "learning_rate": 0.0002,
1683
+ "loss": 0.314,
1684
+ "step": 2370
1685
+ },
1686
+ {
1687
+ "epoch": 2.3253541768441623,
1688
+ "grad_norm": 0.9330461025238037,
1689
+ "learning_rate": 0.0002,
1690
+ "loss": 0.308,
1691
+ "step": 2380
1692
+ },
1693
+ {
1694
+ "epoch": 2.335124572545188,
1695
+ "grad_norm": 0.783240556716919,
1696
+ "learning_rate": 0.0002,
1697
+ "loss": 0.3266,
1698
+ "step": 2390
1699
+ },
1700
+ {
1701
+ "epoch": 2.344894968246214,
1702
+ "grad_norm": 0.574898898601532,
1703
+ "learning_rate": 0.0002,
1704
+ "loss": 0.3166,
1705
+ "step": 2400
1706
+ },
1707
+ {
1708
+ "epoch": 2.3546653639472397,
1709
+ "grad_norm": 0.6607279777526855,
1710
+ "learning_rate": 0.0002,
1711
+ "loss": 0.3119,
1712
+ "step": 2410
1713
+ },
1714
+ {
1715
+ "epoch": 2.364435759648266,
1716
+ "grad_norm": 0.8342743515968323,
1717
+ "learning_rate": 0.0002,
1718
+ "loss": 0.3129,
1719
+ "step": 2420
1720
+ },
1721
+ {
1722
+ "epoch": 2.3742061553492917,
1723
+ "grad_norm": 0.8198254108428955,
1724
+ "learning_rate": 0.0002,
1725
+ "loss": 0.315,
1726
+ "step": 2430
1727
+ },
1728
+ {
1729
+ "epoch": 2.3839765510503175,
1730
+ "grad_norm": 0.9324616193771362,
1731
+ "learning_rate": 0.0002,
1732
+ "loss": 0.3107,
1733
+ "step": 2440
1734
+ },
1735
+ {
1736
+ "epoch": 2.3937469467513433,
1737
+ "grad_norm": 0.8188948035240173,
1738
+ "learning_rate": 0.0002,
1739
+ "loss": 0.3,
1740
+ "step": 2450
1741
+ },
1742
+ {
1743
+ "epoch": 2.4035173424523695,
1744
+ "grad_norm": 0.7812654376029968,
1745
+ "learning_rate": 0.0002,
1746
+ "loss": 0.3095,
1747
+ "step": 2460
1748
+ },
1749
+ {
1750
+ "epoch": 2.4132877381533953,
1751
+ "grad_norm": 0.7986653447151184,
1752
+ "learning_rate": 0.0002,
1753
+ "loss": 0.2994,
1754
+ "step": 2470
1755
+ },
1756
+ {
1757
+ "epoch": 2.423058133854421,
1758
+ "grad_norm": 0.6537502408027649,
1759
+ "learning_rate": 0.0002,
1760
+ "loss": 0.3095,
1761
+ "step": 2480
1762
+ },
1763
+ {
1764
+ "epoch": 2.432828529555447,
1765
+ "grad_norm": 0.4680769741535187,
1766
+ "learning_rate": 0.0002,
1767
+ "loss": 0.3092,
1768
+ "step": 2490
1769
+ },
1770
+ {
1771
+ "epoch": 2.442598925256473,
1772
+ "grad_norm": 1.0223482847213745,
1773
+ "learning_rate": 0.0002,
1774
+ "loss": 0.3117,
1775
+ "step": 2500
1776
+ },
1777
+ {
1778
+ "epoch": 2.452369320957499,
1779
+ "grad_norm": 0.5865668654441833,
1780
+ "learning_rate": 0.0002,
1781
+ "loss": 0.3047,
1782
+ "step": 2510
1783
+ },
1784
+ {
1785
+ "epoch": 2.4621397166585246,
1786
+ "grad_norm": 0.8539699912071228,
1787
+ "learning_rate": 0.0002,
1788
+ "loss": 0.3138,
1789
+ "step": 2520
1790
+ },
1791
+ {
1792
+ "epoch": 2.4719101123595504,
1793
+ "grad_norm": 0.8653438687324524,
1794
+ "learning_rate": 0.0002,
1795
+ "loss": 0.3082,
1796
+ "step": 2530
1797
+ },
1798
+ {
1799
+ "epoch": 2.4816805080605766,
1800
+ "grad_norm": 1.084686040878296,
1801
+ "learning_rate": 0.0002,
1802
+ "loss": 0.3098,
1803
+ "step": 2540
1804
+ },
1805
+ {
1806
+ "epoch": 2.4914509037616024,
1807
+ "grad_norm": 0.8754410743713379,
1808
+ "learning_rate": 0.0002,
1809
+ "loss": 0.3139,
1810
+ "step": 2550
1811
+ },
1812
+ {
1813
+ "epoch": 2.501221299462628,
1814
+ "grad_norm": 0.838127851486206,
1815
+ "learning_rate": 0.0002,
1816
+ "loss": 0.3066,
1817
+ "step": 2560
1818
+ },
1819
+ {
1820
+ "epoch": 2.5109916951636544,
1821
+ "grad_norm": 0.7761465907096863,
1822
+ "learning_rate": 0.0002,
1823
+ "loss": 0.2933,
1824
+ "step": 2570
1825
+ },
1826
+ {
1827
+ "epoch": 2.52076209086468,
1828
+ "grad_norm": 0.7373273372650146,
1829
+ "learning_rate": 0.0002,
1830
+ "loss": 0.2942,
1831
+ "step": 2580
1832
+ },
1833
+ {
1834
+ "epoch": 2.530532486565706,
1835
+ "grad_norm": 0.7441604137420654,
1836
+ "learning_rate": 0.0002,
1837
+ "loss": 0.3079,
1838
+ "step": 2590
1839
+ },
1840
+ {
1841
+ "epoch": 2.5403028822667317,
1842
+ "grad_norm": 0.7476372718811035,
1843
+ "learning_rate": 0.0002,
1844
+ "loss": 0.3048,
1845
+ "step": 2600
1846
+ },
1847
+ {
1848
+ "epoch": 2.5500732779677575,
1849
+ "grad_norm": 0.860421895980835,
1850
+ "learning_rate": 0.0002,
1851
+ "loss": 0.2979,
1852
+ "step": 2610
1853
+ },
1854
+ {
1855
+ "epoch": 2.5598436736687837,
1856
+ "grad_norm": 0.8230026364326477,
1857
+ "learning_rate": 0.0002,
1858
+ "loss": 0.3046,
1859
+ "step": 2620
1860
+ },
1861
+ {
1862
+ "epoch": 2.5696140693698095,
1863
+ "grad_norm": 0.8646627068519592,
1864
+ "learning_rate": 0.0002,
1865
+ "loss": 0.3034,
1866
+ "step": 2630
1867
+ },
1868
+ {
1869
+ "epoch": 2.5793844650708353,
1870
+ "grad_norm": 0.9704413414001465,
1871
+ "learning_rate": 0.0002,
1872
+ "loss": 0.3147,
1873
+ "step": 2640
1874
+ },
1875
+ {
1876
+ "epoch": 2.5891548607718615,
1877
+ "grad_norm": 0.8837246298789978,
1878
+ "learning_rate": 0.0002,
1879
+ "loss": 0.3078,
1880
+ "step": 2650
1881
+ },
1882
+ {
1883
+ "epoch": 2.5989252564728873,
1884
+ "grad_norm": 0.7060710191726685,
1885
+ "learning_rate": 0.0002,
1886
+ "loss": 0.3006,
1887
+ "step": 2660
1888
+ },
1889
+ {
1890
+ "epoch": 2.608695652173913,
1891
+ "grad_norm": 0.7364303469657898,
1892
+ "learning_rate": 0.0002,
1893
+ "loss": 0.3024,
1894
+ "step": 2670
1895
+ },
1896
+ {
1897
+ "epoch": 2.618466047874939,
1898
+ "grad_norm": 0.9422456622123718,
1899
+ "learning_rate": 0.0002,
1900
+ "loss": 0.3047,
1901
+ "step": 2680
1902
+ },
1903
+ {
1904
+ "epoch": 2.6282364435759646,
1905
+ "grad_norm": 0.8265060186386108,
1906
+ "learning_rate": 0.0002,
1907
+ "loss": 0.3033,
1908
+ "step": 2690
1909
+ },
1910
+ {
1911
+ "epoch": 2.638006839276991,
1912
+ "grad_norm": 0.6122261881828308,
1913
+ "learning_rate": 0.0002,
1914
+ "loss": 0.2949,
1915
+ "step": 2700
1916
+ },
1917
+ {
1918
+ "epoch": 2.6477772349780166,
1919
+ "grad_norm": 0.7424021363258362,
1920
+ "learning_rate": 0.0002,
1921
+ "loss": 0.2978,
1922
+ "step": 2710
1923
+ },
1924
+ {
1925
+ "epoch": 2.6575476306790424,
1926
+ "grad_norm": 0.6899349689483643,
1927
+ "learning_rate": 0.0002,
1928
+ "loss": 0.3078,
1929
+ "step": 2720
1930
+ },
1931
+ {
1932
+ "epoch": 2.6673180263800687,
1933
+ "grad_norm": 0.8241371512413025,
1934
+ "learning_rate": 0.0002,
1935
+ "loss": 0.3059,
1936
+ "step": 2730
1937
+ },
1938
+ {
1939
+ "epoch": 2.6770884220810944,
1940
+ "grad_norm": 0.7357944846153259,
1941
+ "learning_rate": 0.0002,
1942
+ "loss": 0.3169,
1943
+ "step": 2740
1944
+ },
1945
+ {
1946
+ "epoch": 2.68685881778212,
1947
+ "grad_norm": 1.2319949865341187,
1948
+ "learning_rate": 0.0002,
1949
+ "loss": 0.3104,
1950
+ "step": 2750
1951
+ },
1952
+ {
1953
+ "epoch": 2.696629213483146,
1954
+ "grad_norm": 0.6758335828781128,
1955
+ "learning_rate": 0.0002,
1956
+ "loss": 0.3016,
1957
+ "step": 2760
1958
+ },
1959
+ {
1960
+ "epoch": 2.7063996091841718,
1961
+ "grad_norm": 0.666590690612793,
1962
+ "learning_rate": 0.0002,
1963
+ "loss": 0.3175,
1964
+ "step": 2770
1965
+ },
1966
+ {
1967
+ "epoch": 2.716170004885198,
1968
+ "grad_norm": 0.765657365322113,
1969
+ "learning_rate": 0.0002,
1970
+ "loss": 0.3123,
1971
+ "step": 2780
1972
+ },
1973
+ {
1974
+ "epoch": 2.7259404005862238,
1975
+ "grad_norm": 0.6624470949172974,
1976
+ "learning_rate": 0.0002,
1977
+ "loss": 0.2969,
1978
+ "step": 2790
1979
+ },
1980
+ {
1981
+ "epoch": 2.7357107962872496,
1982
+ "grad_norm": 0.9891471266746521,
1983
+ "learning_rate": 0.0002,
1984
+ "loss": 0.3021,
1985
+ "step": 2800
1986
+ },
1987
+ {
1988
+ "epoch": 2.745481191988276,
1989
+ "grad_norm": 0.590451180934906,
1990
+ "learning_rate": 0.0002,
1991
+ "loss": 0.307,
1992
+ "step": 2810
1993
+ },
1994
+ {
1995
+ "epoch": 2.7552515876893016,
1996
+ "grad_norm": 0.5418292284011841,
1997
+ "learning_rate": 0.0002,
1998
+ "loss": 0.3084,
1999
+ "step": 2820
2000
+ },
2001
+ {
2002
+ "epoch": 2.7650219833903273,
2003
+ "grad_norm": 0.9565151929855347,
2004
+ "learning_rate": 0.0002,
2005
+ "loss": 0.309,
2006
+ "step": 2830
2007
+ },
2008
+ {
2009
+ "epoch": 2.774792379091353,
2010
+ "grad_norm": 0.7840000987052917,
2011
+ "learning_rate": 0.0002,
2012
+ "loss": 0.3046,
2013
+ "step": 2840
2014
+ },
2015
+ {
2016
+ "epoch": 2.784562774792379,
2017
+ "grad_norm": 0.7269287705421448,
2018
+ "learning_rate": 0.0002,
2019
+ "loss": 0.2938,
2020
+ "step": 2850
2021
+ },
2022
+ {
2023
+ "epoch": 2.794333170493405,
2024
+ "grad_norm": 0.6564769744873047,
2025
+ "learning_rate": 0.0002,
2026
+ "loss": 0.2945,
2027
+ "step": 2860
2028
+ },
2029
+ {
2030
+ "epoch": 2.804103566194431,
2031
+ "grad_norm": 0.5916360020637512,
2032
+ "learning_rate": 0.0002,
2033
+ "loss": 0.2952,
2034
+ "step": 2870
2035
+ },
2036
+ {
2037
+ "epoch": 2.8138739618954567,
2038
+ "grad_norm": 0.5752355456352234,
2039
+ "learning_rate": 0.0002,
2040
+ "loss": 0.2981,
2041
+ "step": 2880
2042
+ },
2043
+ {
2044
+ "epoch": 2.823644357596483,
2045
+ "grad_norm": 0.9079744815826416,
2046
+ "learning_rate": 0.0002,
2047
+ "loss": 0.2976,
2048
+ "step": 2890
2049
+ },
2050
+ {
2051
+ "epoch": 2.8334147532975087,
2052
+ "grad_norm": 0.6955378651618958,
2053
+ "learning_rate": 0.0002,
2054
+ "loss": 0.2967,
2055
+ "step": 2900
2056
+ },
2057
+ {
2058
+ "epoch": 2.8431851489985345,
2059
+ "grad_norm": 0.5551539063453674,
2060
+ "learning_rate": 0.0002,
2061
+ "loss": 0.289,
2062
+ "step": 2910
2063
+ },
2064
+ {
2065
+ "epoch": 2.8529555446995603,
2066
+ "grad_norm": 0.7029260396957397,
2067
+ "learning_rate": 0.0002,
2068
+ "loss": 0.3047,
2069
+ "step": 2920
2070
+ },
2071
+ {
2072
+ "epoch": 2.862725940400586,
2073
+ "grad_norm": 1.002670168876648,
2074
+ "learning_rate": 0.0002,
2075
+ "loss": 0.2935,
2076
+ "step": 2930
2077
+ },
2078
+ {
2079
+ "epoch": 2.8724963361016123,
2080
+ "grad_norm": 0.8380820751190186,
2081
+ "learning_rate": 0.0002,
2082
+ "loss": 0.3005,
2083
+ "step": 2940
2084
+ },
2085
+ {
2086
+ "epoch": 2.882266731802638,
2087
+ "grad_norm": 0.658412754535675,
2088
+ "learning_rate": 0.0002,
2089
+ "loss": 0.2948,
2090
+ "step": 2950
2091
+ },
2092
+ {
2093
+ "epoch": 2.892037127503664,
2094
+ "grad_norm": 0.9336162209510803,
2095
+ "learning_rate": 0.0002,
2096
+ "loss": 0.3003,
2097
+ "step": 2960
2098
+ },
2099
+ {
2100
+ "epoch": 2.90180752320469,
2101
+ "grad_norm": 0.7143391370773315,
2102
+ "learning_rate": 0.0002,
2103
+ "loss": 0.2874,
2104
+ "step": 2970
2105
+ },
2106
+ {
2107
+ "epoch": 2.911577918905716,
2108
+ "grad_norm": 0.5564678311347961,
2109
+ "learning_rate": 0.0002,
2110
+ "loss": 0.2975,
2111
+ "step": 2980
2112
+ },
2113
+ {
2114
+ "epoch": 2.9213483146067416,
2115
+ "grad_norm": 1.1643658876419067,
2116
+ "learning_rate": 0.0002,
2117
+ "loss": 0.3045,
2118
+ "step": 2990
2119
+ },
2120
+ {
2121
+ "epoch": 2.9311187103077674,
2122
+ "grad_norm": 0.6776673793792725,
2123
+ "learning_rate": 0.0002,
2124
+ "loss": 0.3027,
2125
+ "step": 3000
2126
+ },
2127
+ {
2128
+ "epoch": 2.940889106008793,
2129
+ "grad_norm": 0.6123829483985901,
2130
+ "learning_rate": 0.0002,
2131
+ "loss": 0.2887,
2132
+ "step": 3010
2133
+ },
2134
+ {
2135
+ "epoch": 2.9506595017098194,
2136
+ "grad_norm": 0.7569496631622314,
2137
+ "learning_rate": 0.0002,
2138
+ "loss": 0.2897,
2139
+ "step": 3020
2140
+ },
2141
+ {
2142
+ "epoch": 2.960429897410845,
2143
+ "grad_norm": 0.6484465599060059,
2144
+ "learning_rate": 0.0002,
2145
+ "loss": 0.3023,
2146
+ "step": 3030
2147
+ },
2148
+ {
2149
+ "epoch": 2.970200293111871,
2150
+ "grad_norm": 0.7745254039764404,
2151
+ "learning_rate": 0.0002,
2152
+ "loss": 0.2925,
2153
+ "step": 3040
2154
+ },
2155
+ {
2156
+ "epoch": 2.979970688812897,
2157
+ "grad_norm": 0.6034068465232849,
2158
+ "learning_rate": 0.0002,
2159
+ "loss": 0.2946,
2160
+ "step": 3050
2161
+ },
2162
+ {
2163
+ "epoch": 2.989741084513923,
2164
+ "grad_norm": 1.202962040901184,
2165
+ "learning_rate": 0.0002,
2166
+ "loss": 0.2935,
2167
+ "step": 3060
2168
+ },
2169
+ {
2170
+ "epoch": 2.9995114802149487,
2171
+ "grad_norm": 0.8330838680267334,
2172
+ "learning_rate": 0.0002,
2173
+ "loss": 0.3045,
2174
+ "step": 3070
2175
+ },
2176
+ {
2177
+ "epoch": 2.9995114802149487,
2178
+ "eval_loss": 0.30571895837783813,
2179
+ "eval_runtime": 26.5297,
2180
+ "eval_samples_per_second": 13.758,
2181
+ "eval_steps_per_second": 1.734,
2182
+ "step": 3070
2183
+ },
2184
+ {
2185
+ "epoch": 3.0092818759159745,
2186
+ "grad_norm": 0.7035648226737976,
2187
+ "learning_rate": 0.0002,
2188
+ "loss": 0.2876,
2189
+ "step": 3080
2190
+ },
2191
+ {
2192
+ "epoch": 3.0190522716170003,
2193
+ "grad_norm": 1.0382764339447021,
2194
+ "learning_rate": 0.0002,
2195
+ "loss": 0.2739,
2196
+ "step": 3090
2197
+ },
2198
+ {
2199
+ "epoch": 3.0288226673180265,
2200
+ "grad_norm": 0.7345609068870544,
2201
+ "learning_rate": 0.0002,
2202
+ "loss": 0.278,
2203
+ "step": 3100
2204
+ },
2205
+ {
2206
+ "epoch": 3.0385930630190523,
2207
+ "grad_norm": 0.8979442119598389,
2208
+ "learning_rate": 0.0002,
2209
+ "loss": 0.2761,
2210
+ "step": 3110
2211
+ },
2212
+ {
2213
+ "epoch": 3.048363458720078,
2214
+ "grad_norm": 0.940156102180481,
2215
+ "learning_rate": 0.0002,
2216
+ "loss": 0.2774,
2217
+ "step": 3120
2218
+ },
2219
+ {
2220
+ "epoch": 3.058133854421104,
2221
+ "grad_norm": 0.6340954303741455,
2222
+ "learning_rate": 0.0002,
2223
+ "loss": 0.2787,
2224
+ "step": 3130
2225
+ },
2226
+ {
2227
+ "epoch": 3.06790425012213,
2228
+ "grad_norm": 1.4032169580459595,
2229
+ "learning_rate": 0.0002,
2230
+ "loss": 0.276,
2231
+ "step": 3140
2232
+ },
2233
+ {
2234
+ "epoch": 3.077674645823156,
2235
+ "grad_norm": 0.7248355746269226,
2236
+ "learning_rate": 0.0002,
2237
+ "loss": 0.2784,
2238
+ "step": 3150
2239
+ },
2240
+ {
2241
+ "epoch": 3.0874450415241816,
2242
+ "grad_norm": 0.9100632667541504,
2243
+ "learning_rate": 0.0002,
2244
+ "loss": 0.2811,
2245
+ "step": 3160
2246
+ },
2247
+ {
2248
+ "epoch": 3.0972154372252074,
2249
+ "grad_norm": 0.47295379638671875,
2250
+ "learning_rate": 0.0002,
2251
+ "loss": 0.2858,
2252
+ "step": 3170
2253
+ },
2254
+ {
2255
+ "epoch": 3.1069858329262336,
2256
+ "grad_norm": 0.7997456789016724,
2257
+ "learning_rate": 0.0002,
2258
+ "loss": 0.2852,
2259
+ "step": 3180
2260
+ },
2261
+ {
2262
+ "epoch": 3.1167562286272594,
2263
+ "grad_norm": 0.6676840782165527,
2264
+ "learning_rate": 0.0002,
2265
+ "loss": 0.269,
2266
+ "step": 3190
2267
+ },
2268
+ {
2269
+ "epoch": 3.126526624328285,
2270
+ "grad_norm": 0.6773821115493774,
2271
+ "learning_rate": 0.0002,
2272
+ "loss": 0.29,
2273
+ "step": 3200
2274
+ },
2275
+ {
2276
+ "epoch": 3.136297020029311,
2277
+ "grad_norm": 0.49832019209861755,
2278
+ "learning_rate": 0.0002,
2279
+ "loss": 0.2896,
2280
+ "step": 3210
2281
+ },
2282
+ {
2283
+ "epoch": 3.146067415730337,
2284
+ "grad_norm": 0.7048546671867371,
2285
+ "learning_rate": 0.0002,
2286
+ "loss": 0.2885,
2287
+ "step": 3220
2288
+ },
2289
+ {
2290
+ "epoch": 3.155837811431363,
2291
+ "grad_norm": 0.9097464084625244,
2292
+ "learning_rate": 0.0002,
2293
+ "loss": 0.2785,
2294
+ "step": 3230
2295
+ },
2296
+ {
2297
+ "epoch": 3.1656082071323888,
2298
+ "grad_norm": 0.7356650233268738,
2299
+ "learning_rate": 0.0002,
2300
+ "loss": 0.28,
2301
+ "step": 3240
2302
+ },
2303
+ {
2304
+ "epoch": 3.1753786028334146,
2305
+ "grad_norm": 0.5919857621192932,
2306
+ "learning_rate": 0.0002,
2307
+ "loss": 0.2813,
2308
+ "step": 3250
2309
+ },
2310
+ {
2311
+ "epoch": 3.185148998534441,
2312
+ "grad_norm": 0.7269758582115173,
2313
+ "learning_rate": 0.0002,
2314
+ "loss": 0.2803,
2315
+ "step": 3260
2316
+ },
2317
+ {
2318
+ "epoch": 3.1949193942354666,
2319
+ "grad_norm": 0.6074000597000122,
2320
+ "learning_rate": 0.0002,
2321
+ "loss": 0.2782,
2322
+ "step": 3270
2323
+ },
2324
+ {
2325
+ "epoch": 3.2046897899364923,
2326
+ "grad_norm": 0.7818130850791931,
2327
+ "learning_rate": 0.0002,
2328
+ "loss": 0.2866,
2329
+ "step": 3280
2330
+ },
2331
+ {
2332
+ "epoch": 3.214460185637518,
2333
+ "grad_norm": 0.7337279915809631,
2334
+ "learning_rate": 0.0002,
2335
+ "loss": 0.2717,
2336
+ "step": 3290
2337
+ },
2338
+ {
2339
+ "epoch": 3.2242305813385443,
2340
+ "grad_norm": 0.5730321407318115,
2341
+ "learning_rate": 0.0002,
2342
+ "loss": 0.2769,
2343
+ "step": 3300
2344
+ },
2345
+ {
2346
+ "epoch": 3.23400097703957,
2347
+ "grad_norm": 0.7278021574020386,
2348
+ "learning_rate": 0.0002,
2349
+ "loss": 0.2786,
2350
+ "step": 3310
2351
+ },
2352
+ {
2353
+ "epoch": 3.243771372740596,
2354
+ "grad_norm": 0.7152529358863831,
2355
+ "learning_rate": 0.0002,
2356
+ "loss": 0.2869,
2357
+ "step": 3320
2358
+ },
2359
+ {
2360
+ "epoch": 3.2535417684416217,
2361
+ "grad_norm": 0.884472131729126,
2362
+ "learning_rate": 0.0002,
2363
+ "loss": 0.2782,
2364
+ "step": 3330
2365
+ },
2366
+ {
2367
+ "epoch": 3.263312164142648,
2368
+ "grad_norm": 0.8212921023368835,
2369
+ "learning_rate": 0.0002,
2370
+ "loss": 0.2844,
2371
+ "step": 3340
2372
+ },
2373
+ {
2374
+ "epoch": 3.2730825598436737,
2375
+ "grad_norm": 0.917287290096283,
2376
+ "learning_rate": 0.0002,
2377
+ "loss": 0.2843,
2378
+ "step": 3350
2379
+ },
2380
+ {
2381
+ "epoch": 3.2828529555446995,
2382
+ "grad_norm": 0.7095558047294617,
2383
+ "learning_rate": 0.0002,
2384
+ "loss": 0.2788,
2385
+ "step": 3360
2386
+ },
2387
+ {
2388
+ "epoch": 3.2926233512457257,
2389
+ "grad_norm": 0.5871877074241638,
2390
+ "learning_rate": 0.0002,
2391
+ "loss": 0.2877,
2392
+ "step": 3370
2393
+ },
2394
+ {
2395
+ "epoch": 3.3023937469467515,
2396
+ "grad_norm": 1.0710159540176392,
2397
+ "learning_rate": 0.0002,
2398
+ "loss": 0.2858,
2399
+ "step": 3380
2400
+ },
2401
+ {
2402
+ "epoch": 3.3121641426477773,
2403
+ "grad_norm": 0.7994568347930908,
2404
+ "learning_rate": 0.0002,
2405
+ "loss": 0.2803,
2406
+ "step": 3390
2407
+ },
2408
+ {
2409
+ "epoch": 3.321934538348803,
2410
+ "grad_norm": 0.7846646308898926,
2411
+ "learning_rate": 0.0002,
2412
+ "loss": 0.3245,
2413
+ "step": 3400
2414
+ },
2415
+ {
2416
+ "epoch": 3.331704934049829,
2417
+ "grad_norm": 1.0486291646957397,
2418
+ "learning_rate": 0.0002,
2419
+ "loss": 0.2871,
2420
+ "step": 3410
2421
+ },
2422
+ {
2423
+ "epoch": 3.341475329750855,
2424
+ "grad_norm": 0.901267945766449,
2425
+ "learning_rate": 0.0002,
2426
+ "loss": 0.2871,
2427
+ "step": 3420
2428
+ },
2429
+ {
2430
+ "epoch": 3.351245725451881,
2431
+ "grad_norm": 0.7573235034942627,
2432
+ "learning_rate": 0.0002,
2433
+ "loss": 0.2841,
2434
+ "step": 3430
2435
+ },
2436
+ {
2437
+ "epoch": 3.3610161211529066,
2438
+ "grad_norm": 0.8427221179008484,
2439
+ "learning_rate": 0.0002,
2440
+ "loss": 0.2874,
2441
+ "step": 3440
2442
+ },
2443
+ {
2444
+ "epoch": 3.370786516853933,
2445
+ "grad_norm": 0.7547389268875122,
2446
+ "learning_rate": 0.0002,
2447
+ "loss": 0.2806,
2448
+ "step": 3450
2449
+ },
2450
+ {
2451
+ "epoch": 3.3805569125549586,
2452
+ "grad_norm": 0.9360662698745728,
2453
+ "learning_rate": 0.0002,
2454
+ "loss": 0.2763,
2455
+ "step": 3460
2456
+ },
2457
+ {
2458
+ "epoch": 3.3903273082559844,
2459
+ "grad_norm": 0.6213487982749939,
2460
+ "learning_rate": 0.0002,
2461
+ "loss": 0.2816,
2462
+ "step": 3470
2463
+ },
2464
+ {
2465
+ "epoch": 3.40009770395701,
2466
+ "grad_norm": 1.4937654733657837,
2467
+ "learning_rate": 0.0002,
2468
+ "loss": 0.2805,
2469
+ "step": 3480
2470
+ },
2471
+ {
2472
+ "epoch": 3.409868099658036,
2473
+ "grad_norm": 1.0794259309768677,
2474
+ "learning_rate": 0.0002,
2475
+ "loss": 0.3484,
2476
+ "step": 3490
2477
+ },
2478
+ {
2479
+ "epoch": 3.419638495359062,
2480
+ "grad_norm": 0.929327666759491,
2481
+ "learning_rate": 0.0002,
2482
+ "loss": 0.327,
2483
+ "step": 3500
2484
+ },
2485
+ {
2486
+ "epoch": 3.429408891060088,
2487
+ "grad_norm": 0.741318941116333,
2488
+ "learning_rate": 0.0002,
2489
+ "loss": 0.2933,
2490
+ "step": 3510
2491
+ },
2492
+ {
2493
+ "epoch": 3.4391792867611137,
2494
+ "grad_norm": 0.8972593545913696,
2495
+ "learning_rate": 0.0002,
2496
+ "loss": 0.2873,
2497
+ "step": 3520
2498
+ },
2499
+ {
2500
+ "epoch": 3.44894968246214,
2501
+ "grad_norm": 1.035099744796753,
2502
+ "learning_rate": 0.0002,
2503
+ "loss": 0.2836,
2504
+ "step": 3530
2505
+ },
2506
+ {
2507
+ "epoch": 3.4587200781631657,
2508
+ "grad_norm": 0.744045078754425,
2509
+ "learning_rate": 0.0002,
2510
+ "loss": 0.2768,
2511
+ "step": 3540
2512
+ },
2513
+ {
2514
+ "epoch": 3.4684904738641915,
2515
+ "grad_norm": 1.013269066810608,
2516
+ "learning_rate": 0.0002,
2517
+ "loss": 0.2911,
2518
+ "step": 3550
2519
+ },
2520
+ {
2521
+ "epoch": 3.4782608695652173,
2522
+ "grad_norm": 0.667107880115509,
2523
+ "learning_rate": 0.0002,
2524
+ "loss": 0.2819,
2525
+ "step": 3560
2526
+ },
2527
+ {
2528
+ "epoch": 3.488031265266243,
2529
+ "grad_norm": 0.7778298258781433,
2530
+ "learning_rate": 0.0002,
2531
+ "loss": 0.2779,
2532
+ "step": 3570
2533
+ },
2534
+ {
2535
+ "epoch": 3.4978016609672693,
2536
+ "grad_norm": 0.7953827977180481,
2537
+ "learning_rate": 0.0002,
2538
+ "loss": 0.2808,
2539
+ "step": 3580
2540
+ },
2541
+ {
2542
+ "epoch": 3.507572056668295,
2543
+ "grad_norm": 0.6064241528511047,
2544
+ "learning_rate": 0.0002,
2545
+ "loss": 0.2804,
2546
+ "step": 3590
2547
+ },
2548
+ {
2549
+ "epoch": 3.517342452369321,
2550
+ "grad_norm": 0.7711805105209351,
2551
+ "learning_rate": 0.0002,
2552
+ "loss": 0.2928,
2553
+ "step": 3600
2554
+ },
2555
+ {
2556
+ "epoch": 3.527112848070347,
2557
+ "grad_norm": 0.4379819631576538,
2558
+ "learning_rate": 0.0002,
2559
+ "loss": 0.2978,
2560
+ "step": 3610
2561
+ },
2562
+ {
2563
+ "epoch": 3.536883243771373,
2564
+ "grad_norm": 0.7208490967750549,
2565
+ "learning_rate": 0.0002,
2566
+ "loss": 0.2861,
2567
+ "step": 3620
2568
+ },
2569
+ {
2570
+ "epoch": 3.5466536394723986,
2571
+ "grad_norm": 0.5875769257545471,
2572
+ "learning_rate": 0.0002,
2573
+ "loss": 0.2917,
2574
+ "step": 3630
2575
+ },
2576
+ {
2577
+ "epoch": 3.5564240351734244,
2578
+ "grad_norm": 0.8589478135108948,
2579
+ "learning_rate": 0.0002,
2580
+ "loss": 0.2671,
2581
+ "step": 3640
2582
+ },
2583
+ {
2584
+ "epoch": 3.56619443087445,
2585
+ "grad_norm": 0.7626174092292786,
2586
+ "learning_rate": 0.0002,
2587
+ "loss": 0.2769,
2588
+ "step": 3650
2589
+ },
2590
+ {
2591
+ "epoch": 3.5759648265754764,
2592
+ "grad_norm": 1.1809124946594238,
2593
+ "learning_rate": 0.0002,
2594
+ "loss": 0.2863,
2595
+ "step": 3660
2596
+ },
2597
+ {
2598
+ "epoch": 3.585735222276502,
2599
+ "grad_norm": 0.8219048976898193,
2600
+ "learning_rate": 0.0002,
2601
+ "loss": 0.2788,
2602
+ "step": 3670
2603
+ },
2604
+ {
2605
+ "epoch": 3.595505617977528,
2606
+ "grad_norm": 1.075877070426941,
2607
+ "learning_rate": 0.0002,
2608
+ "loss": 0.2725,
2609
+ "step": 3680
2610
+ },
2611
+ {
2612
+ "epoch": 3.605276013678554,
2613
+ "grad_norm": 1.0180445909500122,
2614
+ "learning_rate": 0.0002,
2615
+ "loss": 0.2788,
2616
+ "step": 3690
2617
+ },
2618
+ {
2619
+ "epoch": 3.61504640937958,
2620
+ "grad_norm": 0.812706470489502,
2621
+ "learning_rate": 0.0002,
2622
+ "loss": 0.2714,
2623
+ "step": 3700
2624
+ },
2625
+ {
2626
+ "epoch": 3.6248168050806058,
2627
+ "grad_norm": 0.606896698474884,
2628
+ "learning_rate": 0.0002,
2629
+ "loss": 0.2799,
2630
+ "step": 3710
2631
+ },
2632
+ {
2633
+ "epoch": 3.6345872007816316,
2634
+ "grad_norm": 0.5841220617294312,
2635
+ "learning_rate": 0.0002,
2636
+ "loss": 0.284,
2637
+ "step": 3720
2638
+ },
2639
+ {
2640
+ "epoch": 3.6443575964826573,
2641
+ "grad_norm": 0.9902899265289307,
2642
+ "learning_rate": 0.0002,
2643
+ "loss": 0.2758,
2644
+ "step": 3730
2645
+ },
2646
+ {
2647
+ "epoch": 3.6541279921836836,
2648
+ "grad_norm": 0.6956594586372375,
2649
+ "learning_rate": 0.0002,
2650
+ "loss": 0.2741,
2651
+ "step": 3740
2652
+ },
2653
+ {
2654
+ "epoch": 3.6638983878847093,
2655
+ "grad_norm": 1.011510968208313,
2656
+ "learning_rate": 0.0002,
2657
+ "loss": 0.28,
2658
+ "step": 3750
2659
+ },
2660
+ {
2661
+ "epoch": 3.673668783585735,
2662
+ "grad_norm": 0.6990731954574585,
2663
+ "learning_rate": 0.0002,
2664
+ "loss": 0.2682,
2665
+ "step": 3760
2666
+ },
2667
+ {
2668
+ "epoch": 3.6834391792867613,
2669
+ "grad_norm": 0.7399393916130066,
2670
+ "learning_rate": 0.0002,
2671
+ "loss": 0.2834,
2672
+ "step": 3770
2673
+ },
2674
+ {
2675
+ "epoch": 3.693209574987787,
2676
+ "grad_norm": 1.0586392879486084,
2677
+ "learning_rate": 0.0002,
2678
+ "loss": 0.2852,
2679
+ "step": 3780
2680
+ },
2681
+ {
2682
+ "epoch": 3.702979970688813,
2683
+ "grad_norm": 0.6087884306907654,
2684
+ "learning_rate": 0.0002,
2685
+ "loss": 0.2772,
2686
+ "step": 3790
2687
+ },
2688
+ {
2689
+ "epoch": 3.7127503663898387,
2690
+ "grad_norm": 0.7378975749015808,
2691
+ "learning_rate": 0.0002,
2692
+ "loss": 0.2767,
2693
+ "step": 3800
2694
+ },
2695
+ {
2696
+ "epoch": 3.7225207620908645,
2697
+ "grad_norm": 0.6609274744987488,
2698
+ "learning_rate": 0.0002,
2699
+ "loss": 0.2781,
2700
+ "step": 3810
2701
+ },
2702
+ {
2703
+ "epoch": 3.7322911577918907,
2704
+ "grad_norm": 1.0175760984420776,
2705
+ "learning_rate": 0.0002,
2706
+ "loss": 0.2675,
2707
+ "step": 3820
2708
+ },
2709
+ {
2710
+ "epoch": 3.7420615534929165,
2711
+ "grad_norm": 0.730687141418457,
2712
+ "learning_rate": 0.0002,
2713
+ "loss": 0.2719,
2714
+ "step": 3830
2715
+ },
2716
+ {
2717
+ "epoch": 3.7518319491939423,
2718
+ "grad_norm": 0.7158323526382446,
2719
+ "learning_rate": 0.0002,
2720
+ "loss": 0.2915,
2721
+ "step": 3840
2722
+ },
2723
+ {
2724
+ "epoch": 3.7616023448949685,
2725
+ "grad_norm": 0.8573526740074158,
2726
+ "learning_rate": 0.0002,
2727
+ "loss": 0.2854,
2728
+ "step": 3850
2729
+ },
2730
+ {
2731
+ "epoch": 3.7713727405959943,
2732
+ "grad_norm": 1.04916512966156,
2733
+ "learning_rate": 0.0002,
2734
+ "loss": 0.274,
2735
+ "step": 3860
2736
+ },
2737
+ {
2738
+ "epoch": 3.78114313629702,
2739
+ "grad_norm": 0.9968064427375793,
2740
+ "learning_rate": 0.0002,
2741
+ "loss": 0.2776,
2742
+ "step": 3870
2743
+ },
2744
+ {
2745
+ "epoch": 3.790913531998046,
2746
+ "grad_norm": 0.8024522662162781,
2747
+ "learning_rate": 0.0002,
2748
+ "loss": 0.2816,
2749
+ "step": 3880
2750
+ },
2751
+ {
2752
+ "epoch": 3.8006839276990716,
2753
+ "grad_norm": 0.6639657616615295,
2754
+ "learning_rate": 0.0002,
2755
+ "loss": 0.2733,
2756
+ "step": 3890
2757
+ },
2758
+ {
2759
+ "epoch": 3.810454323400098,
2760
+ "grad_norm": 0.856477677822113,
2761
+ "learning_rate": 0.0002,
2762
+ "loss": 0.2735,
2763
+ "step": 3900
2764
+ },
2765
+ {
2766
+ "epoch": 3.8202247191011236,
2767
+ "grad_norm": 0.6947850584983826,
2768
+ "learning_rate": 0.0002,
2769
+ "loss": 0.274,
2770
+ "step": 3910
2771
+ },
2772
+ {
2773
+ "epoch": 3.8299951148021494,
2774
+ "grad_norm": 0.8612431287765503,
2775
+ "learning_rate": 0.0002,
2776
+ "loss": 0.2682,
2777
+ "step": 3920
2778
+ },
2779
+ {
2780
+ "epoch": 3.8397655105031756,
2781
+ "grad_norm": 0.6200122833251953,
2782
+ "learning_rate": 0.0002,
2783
+ "loss": 0.2725,
2784
+ "step": 3930
2785
+ },
2786
+ {
2787
+ "epoch": 3.8495359062042014,
2788
+ "grad_norm": 0.7116451859474182,
2789
+ "learning_rate": 0.0002,
2790
+ "loss": 0.2786,
2791
+ "step": 3940
2792
+ },
2793
+ {
2794
+ "epoch": 3.859306301905227,
2795
+ "grad_norm": 0.6768040657043457,
2796
+ "learning_rate": 0.0002,
2797
+ "loss": 0.2719,
2798
+ "step": 3950
2799
+ },
2800
+ {
2801
+ "epoch": 3.869076697606253,
2802
+ "grad_norm": 0.7205768823623657,
2803
+ "learning_rate": 0.0002,
2804
+ "loss": 0.2806,
2805
+ "step": 3960
2806
+ },
2807
+ {
2808
+ "epoch": 3.8788470933072787,
2809
+ "grad_norm": 0.6989039778709412,
2810
+ "learning_rate": 0.0002,
2811
+ "loss": 0.2806,
2812
+ "step": 3970
2813
+ },
2814
+ {
2815
+ "epoch": 3.888617489008305,
2816
+ "grad_norm": 0.6655344367027283,
2817
+ "learning_rate": 0.0002,
2818
+ "loss": 0.2865,
2819
+ "step": 3980
2820
+ },
2821
+ {
2822
+ "epoch": 3.8983878847093307,
2823
+ "grad_norm": 0.7526548504829407,
2824
+ "learning_rate": 0.0002,
2825
+ "loss": 0.2796,
2826
+ "step": 3990
2827
+ },
2828
+ {
2829
+ "epoch": 3.9081582804103565,
2830
+ "grad_norm": 0.8535363078117371,
2831
+ "learning_rate": 0.0002,
2832
+ "loss": 0.2849,
2833
+ "step": 4000
2834
+ },
2835
+ {
2836
+ "epoch": 3.9179286761113827,
2837
+ "grad_norm": 0.8054668307304382,
2838
+ "learning_rate": 0.0002,
2839
+ "loss": 0.2773,
2840
+ "step": 4010
2841
+ },
2842
+ {
2843
+ "epoch": 3.9276990718124085,
2844
+ "grad_norm": 0.664475679397583,
2845
+ "learning_rate": 0.0002,
2846
+ "loss": 0.2794,
2847
+ "step": 4020
2848
+ },
2849
+ {
2850
+ "epoch": 3.9374694675134343,
2851
+ "grad_norm": 0.8805311322212219,
2852
+ "learning_rate": 0.0002,
2853
+ "loss": 0.273,
2854
+ "step": 4030
2855
+ },
2856
+ {
2857
+ "epoch": 3.94723986321446,
2858
+ "grad_norm": 0.47290244698524475,
2859
+ "learning_rate": 0.0002,
2860
+ "loss": 0.2825,
2861
+ "step": 4040
2862
+ },
2863
+ {
2864
+ "epoch": 3.957010258915486,
2865
+ "grad_norm": 0.9041091799736023,
2866
+ "learning_rate": 0.0002,
2867
+ "loss": 0.2723,
2868
+ "step": 4050
2869
+ },
2870
+ {
2871
+ "epoch": 3.966780654616512,
2872
+ "grad_norm": 0.9564446210861206,
2873
+ "learning_rate": 0.0002,
2874
+ "loss": 0.2838,
2875
+ "step": 4060
2876
+ },
2877
+ {
2878
+ "epoch": 3.976551050317538,
2879
+ "grad_norm": 0.6496501564979553,
2880
+ "learning_rate": 0.0002,
2881
+ "loss": 0.2799,
2882
+ "step": 4070
2883
+ },
2884
+ {
2885
+ "epoch": 3.9863214460185636,
2886
+ "grad_norm": 0.7228884100914001,
2887
+ "learning_rate": 0.0002,
2888
+ "loss": 0.2781,
2889
+ "step": 4080
2890
+ },
2891
+ {
2892
+ "epoch": 3.99609184171959,
2893
+ "grad_norm": 1.1264238357543945,
2894
+ "learning_rate": 0.0002,
2895
+ "loss": 0.2896,
2896
+ "step": 4090
2897
+ },
2898
+ {
2899
+ "epoch": 4.0,
2900
+ "eval_loss": 0.289143443107605,
2901
+ "eval_runtime": 26.5206,
2902
+ "eval_samples_per_second": 13.763,
2903
+ "eval_steps_per_second": 1.735,
2904
+ "step": 4094
2905
+ }
2906
+ ],
2907
+ "logging_steps": 10,
2908
+ "max_steps": 8184,
2909
+ "num_input_tokens_seen": 0,
2910
+ "num_train_epochs": 8,
2911
+ "save_steps": 200,
2912
+ "stateful_callbacks": {
2913
+ "TrainerControl": {
2914
+ "args": {
2915
+ "should_epoch_stop": false,
2916
+ "should_evaluate": false,
2917
+ "should_log": false,
2918
+ "should_save": true,
2919
+ "should_training_stop": false
2920
+ },
2921
+ "attributes": {}
2922
+ }
2923
+ },
2924
+ "total_flos": 1.796231311392768e+17,
2925
+ "train_batch_size": 1,
2926
+ "trial_name": null,
2927
+ "trial_params": null
2928
+ }