MilaWang commited on
Commit
ae96c31
·
verified ·
1 Parent(s): 48c7155

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/README.md +202 -0
  2. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/adapter_config.json +29 -0
  3. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/adapter_model.safetensors +3 -0
  4. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/README.md +202 -0
  5. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/adapter_config.json +29 -0
  6. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/adapter_model.safetensors +3 -0
  7. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/optimizer.pt +3 -0
  8. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/rng_state.pth +3 -0
  9. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/scheduler.pt +3 -0
  10. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/special_tokens_map.json +24 -0
  11. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/tokenizer.json +0 -0
  12. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/tokenizer.model +3 -0
  13. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/tokenizer_config.json +0 -0
  14. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/trainer_state.json +838 -0
  15. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/training_args.bin +3 -0
  16. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/README.md +202 -0
  17. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/adapter_config.json +29 -0
  18. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/adapter_model.safetensors +3 -0
  19. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/optimizer.pt +3 -0
  20. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/rng_state.pth +3 -0
  21. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/scheduler.pt +3 -0
  22. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/special_tokens_map.json +24 -0
  23. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/tokenizer.json +0 -0
  24. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/tokenizer.model +3 -0
  25. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/tokenizer_config.json +0 -0
  26. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/trainer_state.json +958 -0
  27. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/training_args.bin +3 -0
  28. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/README.md +202 -0
  29. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/adapter_config.json +29 -0
  30. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/adapter_model.safetensors +3 -0
  31. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/optimizer.pt +3 -0
  32. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/rng_state.pth +3 -0
  33. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/scheduler.pt +3 -0
  34. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/special_tokens_map.json +24 -0
  35. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/tokenizer.json +0 -0
  36. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/tokenizer.model +3 -0
  37. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/tokenizer_config.json +0 -0
  38. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/trainer_state.json +146 -0
  39. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/training_args.bin +3 -0
  40. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/README.md +202 -0
  41. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/adapter_config.json +29 -0
  42. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/adapter_model.safetensors +3 -0
  43. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/optimizer.pt +3 -0
  44. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/rng_state.pth +3 -0
  45. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/scheduler.pt +3 -0
  46. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/special_tokens_map.json +24 -0
  47. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/tokenizer.json +0 -0
  48. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/tokenizer.model +3 -0
  49. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/tokenizer_config.json +0 -0
  50. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/trainer_state.json +259 -0
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b15ba179d52b965afc887dcefa50ef00275d51afaf4596b021f286670ab61f5b
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f69f44a1869bae416f6bd192c9bb397ba330ba667dc8f658da1a5be58dd58594
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e034241ec0b0e1b6d9475bdc7e6dbd0e4f7d1591f952ce837b3e4c560824b69
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a0af705e9764be37cb1c5818e4e3f6821f669fbc39af27434d248e31c735d08
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:614abd620db6f543e9653055aa3bfe54f6a360a875824c97c15665aaf537aa7c
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/trainer_state.json ADDED
@@ -0,0 +1,838 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.8057786226272583,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154",
4
+ "epoch": 7.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1078,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.06493506493506493,
13
+ "grad_norm": 0.9856782555580139,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.593,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.12987012987012986,
20
+ "grad_norm": 1.0205717086791992,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.229,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.19480519480519481,
27
+ "grad_norm": 0.7780327200889587,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0632,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.2597402597402597,
34
+ "grad_norm": 0.7994171977043152,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0682,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.3246753246753247,
41
+ "grad_norm": 0.7783251404762268,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.1134,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.38961038961038963,
48
+ "grad_norm": 0.7531919479370117,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.9359,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.45454545454545453,
55
+ "grad_norm": 0.8411881327629089,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8795,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.5194805194805194,
62
+ "grad_norm": 0.7217594385147095,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8772,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.5844155844155844,
69
+ "grad_norm": 0.8530973792076111,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.906,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.6493506493506493,
76
+ "grad_norm": 0.6478861570358276,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8438,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.7142857142857143,
83
+ "grad_norm": 0.6314818263053894,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.801,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.7792207792207793,
90
+ "grad_norm": 0.6279414892196655,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.7333,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.8441558441558441,
97
+ "grad_norm": 0.6663833856582642,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.7779,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.9090909090909091,
104
+ "grad_norm": 0.5576409101486206,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.7262,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.974025974025974,
111
+ "grad_norm": 0.6750475764274597,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.7602,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 1.0,
118
+ "eval_loss": 1.8057786226272583,
119
+ "eval_runtime": 186.6609,
120
+ "eval_samples_per_second": 2.855,
121
+ "eval_steps_per_second": 0.359,
122
+ "step": 154
123
+ },
124
+ {
125
+ "epoch": 1.0389610389610389,
126
+ "grad_norm": 0.5803011655807495,
127
+ "learning_rate": 0.0002,
128
+ "loss": 1.6961,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 1.103896103896104,
133
+ "grad_norm": 0.6350723505020142,
134
+ "learning_rate": 0.0002,
135
+ "loss": 1.7369,
136
+ "step": 170
137
+ },
138
+ {
139
+ "epoch": 1.1688311688311688,
140
+ "grad_norm": 0.7430880069732666,
141
+ "learning_rate": 0.0002,
142
+ "loss": 1.6487,
143
+ "step": 180
144
+ },
145
+ {
146
+ "epoch": 1.2337662337662338,
147
+ "grad_norm": 0.7743862271308899,
148
+ "learning_rate": 0.0002,
149
+ "loss": 1.6922,
150
+ "step": 190
151
+ },
152
+ {
153
+ "epoch": 1.2987012987012987,
154
+ "grad_norm": 0.644690752029419,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.6812,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 1.3636363636363638,
161
+ "grad_norm": 0.6815120577812195,
162
+ "learning_rate": 0.0002,
163
+ "loss": 1.6846,
164
+ "step": 210
165
+ },
166
+ {
167
+ "epoch": 1.4285714285714286,
168
+ "grad_norm": 0.6068838238716125,
169
+ "learning_rate": 0.0002,
170
+ "loss": 1.7777,
171
+ "step": 220
172
+ },
173
+ {
174
+ "epoch": 1.4935064935064934,
175
+ "grad_norm": 0.6361706256866455,
176
+ "learning_rate": 0.0002,
177
+ "loss": 1.6935,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 1.5584415584415585,
182
+ "grad_norm": 0.7081064581871033,
183
+ "learning_rate": 0.0002,
184
+ "loss": 1.7301,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 1.6233766233766234,
189
+ "grad_norm": 0.638526976108551,
190
+ "learning_rate": 0.0002,
191
+ "loss": 1.6151,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 1.6883116883116882,
196
+ "grad_norm": 0.6861023306846619,
197
+ "learning_rate": 0.0002,
198
+ "loss": 1.6573,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.7532467532467533,
203
+ "grad_norm": 0.75590580701828,
204
+ "learning_rate": 0.0002,
205
+ "loss": 1.6843,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.8181818181818183,
210
+ "grad_norm": 0.7851096987724304,
211
+ "learning_rate": 0.0002,
212
+ "loss": 1.7069,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.883116883116883,
217
+ "grad_norm": 0.6292237043380737,
218
+ "learning_rate": 0.0002,
219
+ "loss": 1.7264,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.948051948051948,
224
+ "grad_norm": 0.6913678646087646,
225
+ "learning_rate": 0.0002,
226
+ "loss": 1.7089,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 2.0,
231
+ "eval_loss": 1.8135713338851929,
232
+ "eval_runtime": 187.0663,
233
+ "eval_samples_per_second": 2.849,
234
+ "eval_steps_per_second": 0.358,
235
+ "step": 308
236
+ },
237
+ {
238
+ "epoch": 2.012987012987013,
239
+ "grad_norm": 0.6253831386566162,
240
+ "learning_rate": 0.0002,
241
+ "loss": 1.6608,
242
+ "step": 310
243
+ },
244
+ {
245
+ "epoch": 2.0779220779220777,
246
+ "grad_norm": 0.9163504242897034,
247
+ "learning_rate": 0.0002,
248
+ "loss": 1.5344,
249
+ "step": 320
250
+ },
251
+ {
252
+ "epoch": 2.142857142857143,
253
+ "grad_norm": 0.7300911545753479,
254
+ "learning_rate": 0.0002,
255
+ "loss": 1.4746,
256
+ "step": 330
257
+ },
258
+ {
259
+ "epoch": 2.207792207792208,
260
+ "grad_norm": 0.8673648238182068,
261
+ "learning_rate": 0.0002,
262
+ "loss": 1.4508,
263
+ "step": 340
264
+ },
265
+ {
266
+ "epoch": 2.2727272727272725,
267
+ "grad_norm": 0.8984062671661377,
268
+ "learning_rate": 0.0002,
269
+ "loss": 1.5415,
270
+ "step": 350
271
+ },
272
+ {
273
+ "epoch": 2.3376623376623376,
274
+ "grad_norm": 1.0172897577285767,
275
+ "learning_rate": 0.0002,
276
+ "loss": 1.483,
277
+ "step": 360
278
+ },
279
+ {
280
+ "epoch": 2.4025974025974026,
281
+ "grad_norm": 1.0102241039276123,
282
+ "learning_rate": 0.0002,
283
+ "loss": 1.5222,
284
+ "step": 370
285
+ },
286
+ {
287
+ "epoch": 2.4675324675324677,
288
+ "grad_norm": 0.8766448497772217,
289
+ "learning_rate": 0.0002,
290
+ "loss": 1.4976,
291
+ "step": 380
292
+ },
293
+ {
294
+ "epoch": 2.5324675324675323,
295
+ "grad_norm": 0.8568485379219055,
296
+ "learning_rate": 0.0002,
297
+ "loss": 1.5209,
298
+ "step": 390
299
+ },
300
+ {
301
+ "epoch": 2.5974025974025974,
302
+ "grad_norm": 0.8487656712532043,
303
+ "learning_rate": 0.0002,
304
+ "loss": 1.536,
305
+ "step": 400
306
+ },
307
+ {
308
+ "epoch": 2.6623376623376624,
309
+ "grad_norm": 0.866093099117279,
310
+ "learning_rate": 0.0002,
311
+ "loss": 1.4806,
312
+ "step": 410
313
+ },
314
+ {
315
+ "epoch": 2.7272727272727275,
316
+ "grad_norm": 1.0025275945663452,
317
+ "learning_rate": 0.0002,
318
+ "loss": 1.5116,
319
+ "step": 420
320
+ },
321
+ {
322
+ "epoch": 2.792207792207792,
323
+ "grad_norm": 0.8296443223953247,
324
+ "learning_rate": 0.0002,
325
+ "loss": 1.5332,
326
+ "step": 430
327
+ },
328
+ {
329
+ "epoch": 2.857142857142857,
330
+ "grad_norm": 0.9941014647483826,
331
+ "learning_rate": 0.0002,
332
+ "loss": 1.5849,
333
+ "step": 440
334
+ },
335
+ {
336
+ "epoch": 2.9220779220779223,
337
+ "grad_norm": 0.8613234162330627,
338
+ "learning_rate": 0.0002,
339
+ "loss": 1.6162,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 2.987012987012987,
344
+ "grad_norm": 0.8564832806587219,
345
+ "learning_rate": 0.0002,
346
+ "loss": 1.5041,
347
+ "step": 460
348
+ },
349
+ {
350
+ "epoch": 3.0,
351
+ "eval_loss": 1.8579131364822388,
352
+ "eval_runtime": 187.734,
353
+ "eval_samples_per_second": 2.839,
354
+ "eval_steps_per_second": 0.357,
355
+ "step": 462
356
+ },
357
+ {
358
+ "epoch": 3.051948051948052,
359
+ "grad_norm": 1.0442030429840088,
360
+ "learning_rate": 0.0002,
361
+ "loss": 1.3853,
362
+ "step": 470
363
+ },
364
+ {
365
+ "epoch": 3.116883116883117,
366
+ "grad_norm": 1.243507742881775,
367
+ "learning_rate": 0.0002,
368
+ "loss": 1.2958,
369
+ "step": 480
370
+ },
371
+ {
372
+ "epoch": 3.1818181818181817,
373
+ "grad_norm": 1.338243842124939,
374
+ "learning_rate": 0.0002,
375
+ "loss": 1.3303,
376
+ "step": 490
377
+ },
378
+ {
379
+ "epoch": 3.2467532467532467,
380
+ "grad_norm": 1.3856316804885864,
381
+ "learning_rate": 0.0002,
382
+ "loss": 1.2034,
383
+ "step": 500
384
+ },
385
+ {
386
+ "epoch": 3.311688311688312,
387
+ "grad_norm": 1.3414607048034668,
388
+ "learning_rate": 0.0002,
389
+ "loss": 1.2052,
390
+ "step": 510
391
+ },
392
+ {
393
+ "epoch": 3.3766233766233764,
394
+ "grad_norm": 1.2239990234375,
395
+ "learning_rate": 0.0002,
396
+ "loss": 1.3492,
397
+ "step": 520
398
+ },
399
+ {
400
+ "epoch": 3.4415584415584415,
401
+ "grad_norm": 1.3926455974578857,
402
+ "learning_rate": 0.0002,
403
+ "loss": 1.2586,
404
+ "step": 530
405
+ },
406
+ {
407
+ "epoch": 3.5064935064935066,
408
+ "grad_norm": 1.3495798110961914,
409
+ "learning_rate": 0.0002,
410
+ "loss": 1.2829,
411
+ "step": 540
412
+ },
413
+ {
414
+ "epoch": 3.571428571428571,
415
+ "grad_norm": 1.6570665836334229,
416
+ "learning_rate": 0.0002,
417
+ "loss": 1.3272,
418
+ "step": 550
419
+ },
420
+ {
421
+ "epoch": 3.6363636363636362,
422
+ "grad_norm": 1.2888237237930298,
423
+ "learning_rate": 0.0002,
424
+ "loss": 1.3111,
425
+ "step": 560
426
+ },
427
+ {
428
+ "epoch": 3.7012987012987013,
429
+ "grad_norm": 1.2630363702774048,
430
+ "learning_rate": 0.0002,
431
+ "loss": 1.2834,
432
+ "step": 570
433
+ },
434
+ {
435
+ "epoch": 3.7662337662337664,
436
+ "grad_norm": 1.2843817472457886,
437
+ "learning_rate": 0.0002,
438
+ "loss": 1.2856,
439
+ "step": 580
440
+ },
441
+ {
442
+ "epoch": 3.8311688311688314,
443
+ "grad_norm": 1.1630159616470337,
444
+ "learning_rate": 0.0002,
445
+ "loss": 1.3166,
446
+ "step": 590
447
+ },
448
+ {
449
+ "epoch": 3.896103896103896,
450
+ "grad_norm": 1.2588003873825073,
451
+ "learning_rate": 0.0002,
452
+ "loss": 1.3049,
453
+ "step": 600
454
+ },
455
+ {
456
+ "epoch": 3.961038961038961,
457
+ "grad_norm": 1.1966116428375244,
458
+ "learning_rate": 0.0002,
459
+ "loss": 1.2935,
460
+ "step": 610
461
+ },
462
+ {
463
+ "epoch": 4.0,
464
+ "eval_loss": 1.9952489137649536,
465
+ "eval_runtime": 184.0309,
466
+ "eval_samples_per_second": 2.896,
467
+ "eval_steps_per_second": 0.364,
468
+ "step": 616
469
+ },
470
+ {
471
+ "epoch": 4.025974025974026,
472
+ "grad_norm": 1.4200360774993896,
473
+ "learning_rate": 0.0002,
474
+ "loss": 1.2198,
475
+ "step": 620
476
+ },
477
+ {
478
+ "epoch": 4.090909090909091,
479
+ "grad_norm": 1.5336390733718872,
480
+ "learning_rate": 0.0002,
481
+ "loss": 1.0751,
482
+ "step": 630
483
+ },
484
+ {
485
+ "epoch": 4.1558441558441555,
486
+ "grad_norm": 1.9104152917861938,
487
+ "learning_rate": 0.0002,
488
+ "loss": 1.0175,
489
+ "step": 640
490
+ },
491
+ {
492
+ "epoch": 4.220779220779221,
493
+ "grad_norm": 1.6754790544509888,
494
+ "learning_rate": 0.0002,
495
+ "loss": 1.0111,
496
+ "step": 650
497
+ },
498
+ {
499
+ "epoch": 4.285714285714286,
500
+ "grad_norm": 1.7546768188476562,
501
+ "learning_rate": 0.0002,
502
+ "loss": 1.0242,
503
+ "step": 660
504
+ },
505
+ {
506
+ "epoch": 4.35064935064935,
507
+ "grad_norm": 1.727729320526123,
508
+ "learning_rate": 0.0002,
509
+ "loss": 1.0342,
510
+ "step": 670
511
+ },
512
+ {
513
+ "epoch": 4.415584415584416,
514
+ "grad_norm": 1.7832167148590088,
515
+ "learning_rate": 0.0002,
516
+ "loss": 0.9964,
517
+ "step": 680
518
+ },
519
+ {
520
+ "epoch": 4.48051948051948,
521
+ "grad_norm": 1.7178401947021484,
522
+ "learning_rate": 0.0002,
523
+ "loss": 1.1214,
524
+ "step": 690
525
+ },
526
+ {
527
+ "epoch": 4.545454545454545,
528
+ "grad_norm": 1.5840944051742554,
529
+ "learning_rate": 0.0002,
530
+ "loss": 1.0412,
531
+ "step": 700
532
+ },
533
+ {
534
+ "epoch": 4.6103896103896105,
535
+ "grad_norm": 1.5642529726028442,
536
+ "learning_rate": 0.0002,
537
+ "loss": 1.0194,
538
+ "step": 710
539
+ },
540
+ {
541
+ "epoch": 4.675324675324675,
542
+ "grad_norm": 1.588742733001709,
543
+ "learning_rate": 0.0002,
544
+ "loss": 1.0477,
545
+ "step": 720
546
+ },
547
+ {
548
+ "epoch": 4.740259740259741,
549
+ "grad_norm": 1.6103804111480713,
550
+ "learning_rate": 0.0002,
551
+ "loss": 1.0854,
552
+ "step": 730
553
+ },
554
+ {
555
+ "epoch": 4.805194805194805,
556
+ "grad_norm": 1.5183384418487549,
557
+ "learning_rate": 0.0002,
558
+ "loss": 1.0604,
559
+ "step": 740
560
+ },
561
+ {
562
+ "epoch": 4.87012987012987,
563
+ "grad_norm": 1.3329721689224243,
564
+ "learning_rate": 0.0002,
565
+ "loss": 1.1396,
566
+ "step": 750
567
+ },
568
+ {
569
+ "epoch": 4.935064935064935,
570
+ "grad_norm": 1.8377444744110107,
571
+ "learning_rate": 0.0002,
572
+ "loss": 1.0527,
573
+ "step": 760
574
+ },
575
+ {
576
+ "epoch": 5.0,
577
+ "grad_norm": 1.6057950258255005,
578
+ "learning_rate": 0.0002,
579
+ "loss": 1.0263,
580
+ "step": 770
581
+ },
582
+ {
583
+ "epoch": 5.0,
584
+ "eval_loss": 2.137923240661621,
585
+ "eval_runtime": 186.6056,
586
+ "eval_samples_per_second": 2.856,
587
+ "eval_steps_per_second": 0.359,
588
+ "step": 770
589
+ },
590
+ {
591
+ "epoch": 5.064935064935065,
592
+ "grad_norm": 2.6040709018707275,
593
+ "learning_rate": 0.0002,
594
+ "loss": 0.7818,
595
+ "step": 780
596
+ },
597
+ {
598
+ "epoch": 5.12987012987013,
599
+ "grad_norm": 2.240368366241455,
600
+ "learning_rate": 0.0002,
601
+ "loss": 0.7866,
602
+ "step": 790
603
+ },
604
+ {
605
+ "epoch": 5.194805194805195,
606
+ "grad_norm": 2.5823593139648438,
607
+ "learning_rate": 0.0002,
608
+ "loss": 0.7857,
609
+ "step": 800
610
+ },
611
+ {
612
+ "epoch": 5.259740259740259,
613
+ "grad_norm": 2.326618194580078,
614
+ "learning_rate": 0.0002,
615
+ "loss": 0.7576,
616
+ "step": 810
617
+ },
618
+ {
619
+ "epoch": 5.324675324675325,
620
+ "grad_norm": 1.86579430103302,
621
+ "learning_rate": 0.0002,
622
+ "loss": 0.797,
623
+ "step": 820
624
+ },
625
+ {
626
+ "epoch": 5.3896103896103895,
627
+ "grad_norm": 1.8907891511917114,
628
+ "learning_rate": 0.0002,
629
+ "loss": 0.8163,
630
+ "step": 830
631
+ },
632
+ {
633
+ "epoch": 5.454545454545454,
634
+ "grad_norm": 1.8598380088806152,
635
+ "learning_rate": 0.0002,
636
+ "loss": 0.7802,
637
+ "step": 840
638
+ },
639
+ {
640
+ "epoch": 5.51948051948052,
641
+ "grad_norm": 2.2666990756988525,
642
+ "learning_rate": 0.0002,
643
+ "loss": 0.813,
644
+ "step": 850
645
+ },
646
+ {
647
+ "epoch": 5.584415584415584,
648
+ "grad_norm": 2.06738018989563,
649
+ "learning_rate": 0.0002,
650
+ "loss": 0.8375,
651
+ "step": 860
652
+ },
653
+ {
654
+ "epoch": 5.64935064935065,
655
+ "grad_norm": 2.180816888809204,
656
+ "learning_rate": 0.0002,
657
+ "loss": 0.8116,
658
+ "step": 870
659
+ },
660
+ {
661
+ "epoch": 5.714285714285714,
662
+ "grad_norm": 2.3028717041015625,
663
+ "learning_rate": 0.0002,
664
+ "loss": 0.893,
665
+ "step": 880
666
+ },
667
+ {
668
+ "epoch": 5.779220779220779,
669
+ "grad_norm": 2.158668041229248,
670
+ "learning_rate": 0.0002,
671
+ "loss": 0.8455,
672
+ "step": 890
673
+ },
674
+ {
675
+ "epoch": 5.8441558441558445,
676
+ "grad_norm": 2.0822510719299316,
677
+ "learning_rate": 0.0002,
678
+ "loss": 0.8719,
679
+ "step": 900
680
+ },
681
+ {
682
+ "epoch": 5.909090909090909,
683
+ "grad_norm": 2.0678226947784424,
684
+ "learning_rate": 0.0002,
685
+ "loss": 0.8302,
686
+ "step": 910
687
+ },
688
+ {
689
+ "epoch": 5.974025974025974,
690
+ "grad_norm": 1.9154915809631348,
691
+ "learning_rate": 0.0002,
692
+ "loss": 0.8747,
693
+ "step": 920
694
+ },
695
+ {
696
+ "epoch": 6.0,
697
+ "eval_loss": 2.3475306034088135,
698
+ "eval_runtime": 187.3275,
699
+ "eval_samples_per_second": 2.845,
700
+ "eval_steps_per_second": 0.358,
701
+ "step": 924
702
+ },
703
+ {
704
+ "epoch": 6.038961038961039,
705
+ "grad_norm": 2.5734288692474365,
706
+ "learning_rate": 0.0002,
707
+ "loss": 0.6868,
708
+ "step": 930
709
+ },
710
+ {
711
+ "epoch": 6.103896103896104,
712
+ "grad_norm": 2.1251583099365234,
713
+ "learning_rate": 0.0002,
714
+ "loss": 0.581,
715
+ "step": 940
716
+ },
717
+ {
718
+ "epoch": 6.1688311688311686,
719
+ "grad_norm": 2.346284866333008,
720
+ "learning_rate": 0.0002,
721
+ "loss": 0.5784,
722
+ "step": 950
723
+ },
724
+ {
725
+ "epoch": 6.233766233766234,
726
+ "grad_norm": 2.262770175933838,
727
+ "learning_rate": 0.0002,
728
+ "loss": 0.6225,
729
+ "step": 960
730
+ },
731
+ {
732
+ "epoch": 6.298701298701299,
733
+ "grad_norm": 2.5575172901153564,
734
+ "learning_rate": 0.0002,
735
+ "loss": 0.5593,
736
+ "step": 970
737
+ },
738
+ {
739
+ "epoch": 6.363636363636363,
740
+ "grad_norm": 2.811757802963257,
741
+ "learning_rate": 0.0002,
742
+ "loss": 0.6017,
743
+ "step": 980
744
+ },
745
+ {
746
+ "epoch": 6.428571428571429,
747
+ "grad_norm": 2.3052585124969482,
748
+ "learning_rate": 0.0002,
749
+ "loss": 0.6134,
750
+ "step": 990
751
+ },
752
+ {
753
+ "epoch": 6.4935064935064934,
754
+ "grad_norm": 2.2371861934661865,
755
+ "learning_rate": 0.0002,
756
+ "loss": 0.639,
757
+ "step": 1000
758
+ },
759
+ {
760
+ "epoch": 6.558441558441558,
761
+ "grad_norm": 2.974090814590454,
762
+ "learning_rate": 0.0002,
763
+ "loss": 0.629,
764
+ "step": 1010
765
+ },
766
+ {
767
+ "epoch": 6.623376623376624,
768
+ "grad_norm": 3.1924889087677,
769
+ "learning_rate": 0.0002,
770
+ "loss": 0.6068,
771
+ "step": 1020
772
+ },
773
+ {
774
+ "epoch": 6.688311688311688,
775
+ "grad_norm": 2.322031021118164,
776
+ "learning_rate": 0.0002,
777
+ "loss": 0.6519,
778
+ "step": 1030
779
+ },
780
+ {
781
+ "epoch": 6.753246753246753,
782
+ "grad_norm": 4.84075927734375,
783
+ "learning_rate": 0.0002,
784
+ "loss": 0.6218,
785
+ "step": 1040
786
+ },
787
+ {
788
+ "epoch": 6.818181818181818,
789
+ "grad_norm": 2.509589433670044,
790
+ "learning_rate": 0.0002,
791
+ "loss": 0.6521,
792
+ "step": 1050
793
+ },
794
+ {
795
+ "epoch": 6.883116883116883,
796
+ "grad_norm": 2.2627809047698975,
797
+ "learning_rate": 0.0002,
798
+ "loss": 0.692,
799
+ "step": 1060
800
+ },
801
+ {
802
+ "epoch": 6.948051948051948,
803
+ "grad_norm": 2.528601884841919,
804
+ "learning_rate": 0.0002,
805
+ "loss": 0.683,
806
+ "step": 1070
807
+ },
808
+ {
809
+ "epoch": 7.0,
810
+ "eval_loss": 2.6560964584350586,
811
+ "eval_runtime": 187.5894,
812
+ "eval_samples_per_second": 2.841,
813
+ "eval_steps_per_second": 0.357,
814
+ "step": 1078
815
+ }
816
+ ],
817
+ "logging_steps": 10,
818
+ "max_steps": 1232,
819
+ "num_input_tokens_seen": 0,
820
+ "num_train_epochs": 8,
821
+ "save_steps": 200,
822
+ "stateful_callbacks": {
823
+ "TrainerControl": {
824
+ "args": {
825
+ "should_epoch_stop": false,
826
+ "should_evaluate": false,
827
+ "should_log": false,
828
+ "should_save": true,
829
+ "should_training_stop": false
830
+ },
831
+ "attributes": {}
832
+ }
833
+ },
834
+ "total_flos": 4.72969553903616e+16,
835
+ "train_batch_size": 1,
836
+ "trial_name": null,
837
+ "trial_params": null
838
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1078/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36b4f8ab66999c14764da42af0b1d3f87c70ee10ed09cb969b5621d5b7a29a6a
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e9c3f2ec4f8288cc1ee6081b53b05b2abb1d7d46f8efb72e38ca20603f97c34
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3393bede28d0abccd71978988e9467e799fd026cd457f5f2e3b58fb9bf5cc92b
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2874ac51c50bd318f83600cf5deb9dae131acc315311ba94a082af6ef26241d7
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:442644f04018009e339745676d855af49e719afd045348ca5915b5bd0a5436e0
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/trainer_state.json ADDED
@@ -0,0 +1,958 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.8057786226272583,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154",
4
+ "epoch": 8.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1232,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.06493506493506493,
13
+ "grad_norm": 0.9856782555580139,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.593,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.12987012987012986,
20
+ "grad_norm": 1.0205717086791992,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.229,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.19480519480519481,
27
+ "grad_norm": 0.7780327200889587,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0632,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.2597402597402597,
34
+ "grad_norm": 0.7994171977043152,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0682,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.3246753246753247,
41
+ "grad_norm": 0.7783251404762268,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.1134,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.38961038961038963,
48
+ "grad_norm": 0.7531919479370117,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.9359,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.45454545454545453,
55
+ "grad_norm": 0.8411881327629089,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8795,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.5194805194805194,
62
+ "grad_norm": 0.7217594385147095,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8772,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.5844155844155844,
69
+ "grad_norm": 0.8530973792076111,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.906,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.6493506493506493,
76
+ "grad_norm": 0.6478861570358276,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8438,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.7142857142857143,
83
+ "grad_norm": 0.6314818263053894,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.801,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.7792207792207793,
90
+ "grad_norm": 0.6279414892196655,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.7333,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.8441558441558441,
97
+ "grad_norm": 0.6663833856582642,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.7779,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.9090909090909091,
104
+ "grad_norm": 0.5576409101486206,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.7262,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.974025974025974,
111
+ "grad_norm": 0.6750475764274597,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.7602,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 1.0,
118
+ "eval_loss": 1.8057786226272583,
119
+ "eval_runtime": 186.6609,
120
+ "eval_samples_per_second": 2.855,
121
+ "eval_steps_per_second": 0.359,
122
+ "step": 154
123
+ },
124
+ {
125
+ "epoch": 1.0389610389610389,
126
+ "grad_norm": 0.5803011655807495,
127
+ "learning_rate": 0.0002,
128
+ "loss": 1.6961,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 1.103896103896104,
133
+ "grad_norm": 0.6350723505020142,
134
+ "learning_rate": 0.0002,
135
+ "loss": 1.7369,
136
+ "step": 170
137
+ },
138
+ {
139
+ "epoch": 1.1688311688311688,
140
+ "grad_norm": 0.7430880069732666,
141
+ "learning_rate": 0.0002,
142
+ "loss": 1.6487,
143
+ "step": 180
144
+ },
145
+ {
146
+ "epoch": 1.2337662337662338,
147
+ "grad_norm": 0.7743862271308899,
148
+ "learning_rate": 0.0002,
149
+ "loss": 1.6922,
150
+ "step": 190
151
+ },
152
+ {
153
+ "epoch": 1.2987012987012987,
154
+ "grad_norm": 0.644690752029419,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.6812,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 1.3636363636363638,
161
+ "grad_norm": 0.6815120577812195,
162
+ "learning_rate": 0.0002,
163
+ "loss": 1.6846,
164
+ "step": 210
165
+ },
166
+ {
167
+ "epoch": 1.4285714285714286,
168
+ "grad_norm": 0.6068838238716125,
169
+ "learning_rate": 0.0002,
170
+ "loss": 1.7777,
171
+ "step": 220
172
+ },
173
+ {
174
+ "epoch": 1.4935064935064934,
175
+ "grad_norm": 0.6361706256866455,
176
+ "learning_rate": 0.0002,
177
+ "loss": 1.6935,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 1.5584415584415585,
182
+ "grad_norm": 0.7081064581871033,
183
+ "learning_rate": 0.0002,
184
+ "loss": 1.7301,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 1.6233766233766234,
189
+ "grad_norm": 0.638526976108551,
190
+ "learning_rate": 0.0002,
191
+ "loss": 1.6151,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 1.6883116883116882,
196
+ "grad_norm": 0.6861023306846619,
197
+ "learning_rate": 0.0002,
198
+ "loss": 1.6573,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.7532467532467533,
203
+ "grad_norm": 0.75590580701828,
204
+ "learning_rate": 0.0002,
205
+ "loss": 1.6843,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.8181818181818183,
210
+ "grad_norm": 0.7851096987724304,
211
+ "learning_rate": 0.0002,
212
+ "loss": 1.7069,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.883116883116883,
217
+ "grad_norm": 0.6292237043380737,
218
+ "learning_rate": 0.0002,
219
+ "loss": 1.7264,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.948051948051948,
224
+ "grad_norm": 0.6913678646087646,
225
+ "learning_rate": 0.0002,
226
+ "loss": 1.7089,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 2.0,
231
+ "eval_loss": 1.8135713338851929,
232
+ "eval_runtime": 187.0663,
233
+ "eval_samples_per_second": 2.849,
234
+ "eval_steps_per_second": 0.358,
235
+ "step": 308
236
+ },
237
+ {
238
+ "epoch": 2.012987012987013,
239
+ "grad_norm": 0.6253831386566162,
240
+ "learning_rate": 0.0002,
241
+ "loss": 1.6608,
242
+ "step": 310
243
+ },
244
+ {
245
+ "epoch": 2.0779220779220777,
246
+ "grad_norm": 0.9163504242897034,
247
+ "learning_rate": 0.0002,
248
+ "loss": 1.5344,
249
+ "step": 320
250
+ },
251
+ {
252
+ "epoch": 2.142857142857143,
253
+ "grad_norm": 0.7300911545753479,
254
+ "learning_rate": 0.0002,
255
+ "loss": 1.4746,
256
+ "step": 330
257
+ },
258
+ {
259
+ "epoch": 2.207792207792208,
260
+ "grad_norm": 0.8673648238182068,
261
+ "learning_rate": 0.0002,
262
+ "loss": 1.4508,
263
+ "step": 340
264
+ },
265
+ {
266
+ "epoch": 2.2727272727272725,
267
+ "grad_norm": 0.8984062671661377,
268
+ "learning_rate": 0.0002,
269
+ "loss": 1.5415,
270
+ "step": 350
271
+ },
272
+ {
273
+ "epoch": 2.3376623376623376,
274
+ "grad_norm": 1.0172897577285767,
275
+ "learning_rate": 0.0002,
276
+ "loss": 1.483,
277
+ "step": 360
278
+ },
279
+ {
280
+ "epoch": 2.4025974025974026,
281
+ "grad_norm": 1.0102241039276123,
282
+ "learning_rate": 0.0002,
283
+ "loss": 1.5222,
284
+ "step": 370
285
+ },
286
+ {
287
+ "epoch": 2.4675324675324677,
288
+ "grad_norm": 0.8766448497772217,
289
+ "learning_rate": 0.0002,
290
+ "loss": 1.4976,
291
+ "step": 380
292
+ },
293
+ {
294
+ "epoch": 2.5324675324675323,
295
+ "grad_norm": 0.8568485379219055,
296
+ "learning_rate": 0.0002,
297
+ "loss": 1.5209,
298
+ "step": 390
299
+ },
300
+ {
301
+ "epoch": 2.5974025974025974,
302
+ "grad_norm": 0.8487656712532043,
303
+ "learning_rate": 0.0002,
304
+ "loss": 1.536,
305
+ "step": 400
306
+ },
307
+ {
308
+ "epoch": 2.6623376623376624,
309
+ "grad_norm": 0.866093099117279,
310
+ "learning_rate": 0.0002,
311
+ "loss": 1.4806,
312
+ "step": 410
313
+ },
314
+ {
315
+ "epoch": 2.7272727272727275,
316
+ "grad_norm": 1.0025275945663452,
317
+ "learning_rate": 0.0002,
318
+ "loss": 1.5116,
319
+ "step": 420
320
+ },
321
+ {
322
+ "epoch": 2.792207792207792,
323
+ "grad_norm": 0.8296443223953247,
324
+ "learning_rate": 0.0002,
325
+ "loss": 1.5332,
326
+ "step": 430
327
+ },
328
+ {
329
+ "epoch": 2.857142857142857,
330
+ "grad_norm": 0.9941014647483826,
331
+ "learning_rate": 0.0002,
332
+ "loss": 1.5849,
333
+ "step": 440
334
+ },
335
+ {
336
+ "epoch": 2.9220779220779223,
337
+ "grad_norm": 0.8613234162330627,
338
+ "learning_rate": 0.0002,
339
+ "loss": 1.6162,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 2.987012987012987,
344
+ "grad_norm": 0.8564832806587219,
345
+ "learning_rate": 0.0002,
346
+ "loss": 1.5041,
347
+ "step": 460
348
+ },
349
+ {
350
+ "epoch": 3.0,
351
+ "eval_loss": 1.8579131364822388,
352
+ "eval_runtime": 187.734,
353
+ "eval_samples_per_second": 2.839,
354
+ "eval_steps_per_second": 0.357,
355
+ "step": 462
356
+ },
357
+ {
358
+ "epoch": 3.051948051948052,
359
+ "grad_norm": 1.0442030429840088,
360
+ "learning_rate": 0.0002,
361
+ "loss": 1.3853,
362
+ "step": 470
363
+ },
364
+ {
365
+ "epoch": 3.116883116883117,
366
+ "grad_norm": 1.243507742881775,
367
+ "learning_rate": 0.0002,
368
+ "loss": 1.2958,
369
+ "step": 480
370
+ },
371
+ {
372
+ "epoch": 3.1818181818181817,
373
+ "grad_norm": 1.338243842124939,
374
+ "learning_rate": 0.0002,
375
+ "loss": 1.3303,
376
+ "step": 490
377
+ },
378
+ {
379
+ "epoch": 3.2467532467532467,
380
+ "grad_norm": 1.3856316804885864,
381
+ "learning_rate": 0.0002,
382
+ "loss": 1.2034,
383
+ "step": 500
384
+ },
385
+ {
386
+ "epoch": 3.311688311688312,
387
+ "grad_norm": 1.3414607048034668,
388
+ "learning_rate": 0.0002,
389
+ "loss": 1.2052,
390
+ "step": 510
391
+ },
392
+ {
393
+ "epoch": 3.3766233766233764,
394
+ "grad_norm": 1.2239990234375,
395
+ "learning_rate": 0.0002,
396
+ "loss": 1.3492,
397
+ "step": 520
398
+ },
399
+ {
400
+ "epoch": 3.4415584415584415,
401
+ "grad_norm": 1.3926455974578857,
402
+ "learning_rate": 0.0002,
403
+ "loss": 1.2586,
404
+ "step": 530
405
+ },
406
+ {
407
+ "epoch": 3.5064935064935066,
408
+ "grad_norm": 1.3495798110961914,
409
+ "learning_rate": 0.0002,
410
+ "loss": 1.2829,
411
+ "step": 540
412
+ },
413
+ {
414
+ "epoch": 3.571428571428571,
415
+ "grad_norm": 1.6570665836334229,
416
+ "learning_rate": 0.0002,
417
+ "loss": 1.3272,
418
+ "step": 550
419
+ },
420
+ {
421
+ "epoch": 3.6363636363636362,
422
+ "grad_norm": 1.2888237237930298,
423
+ "learning_rate": 0.0002,
424
+ "loss": 1.3111,
425
+ "step": 560
426
+ },
427
+ {
428
+ "epoch": 3.7012987012987013,
429
+ "grad_norm": 1.2630363702774048,
430
+ "learning_rate": 0.0002,
431
+ "loss": 1.2834,
432
+ "step": 570
433
+ },
434
+ {
435
+ "epoch": 3.7662337662337664,
436
+ "grad_norm": 1.2843817472457886,
437
+ "learning_rate": 0.0002,
438
+ "loss": 1.2856,
439
+ "step": 580
440
+ },
441
+ {
442
+ "epoch": 3.8311688311688314,
443
+ "grad_norm": 1.1630159616470337,
444
+ "learning_rate": 0.0002,
445
+ "loss": 1.3166,
446
+ "step": 590
447
+ },
448
+ {
449
+ "epoch": 3.896103896103896,
450
+ "grad_norm": 1.2588003873825073,
451
+ "learning_rate": 0.0002,
452
+ "loss": 1.3049,
453
+ "step": 600
454
+ },
455
+ {
456
+ "epoch": 3.961038961038961,
457
+ "grad_norm": 1.1966116428375244,
458
+ "learning_rate": 0.0002,
459
+ "loss": 1.2935,
460
+ "step": 610
461
+ },
462
+ {
463
+ "epoch": 4.0,
464
+ "eval_loss": 1.9952489137649536,
465
+ "eval_runtime": 184.0309,
466
+ "eval_samples_per_second": 2.896,
467
+ "eval_steps_per_second": 0.364,
468
+ "step": 616
469
+ },
470
+ {
471
+ "epoch": 4.025974025974026,
472
+ "grad_norm": 1.4200360774993896,
473
+ "learning_rate": 0.0002,
474
+ "loss": 1.2198,
475
+ "step": 620
476
+ },
477
+ {
478
+ "epoch": 4.090909090909091,
479
+ "grad_norm": 1.5336390733718872,
480
+ "learning_rate": 0.0002,
481
+ "loss": 1.0751,
482
+ "step": 630
483
+ },
484
+ {
485
+ "epoch": 4.1558441558441555,
486
+ "grad_norm": 1.9104152917861938,
487
+ "learning_rate": 0.0002,
488
+ "loss": 1.0175,
489
+ "step": 640
490
+ },
491
+ {
492
+ "epoch": 4.220779220779221,
493
+ "grad_norm": 1.6754790544509888,
494
+ "learning_rate": 0.0002,
495
+ "loss": 1.0111,
496
+ "step": 650
497
+ },
498
+ {
499
+ "epoch": 4.285714285714286,
500
+ "grad_norm": 1.7546768188476562,
501
+ "learning_rate": 0.0002,
502
+ "loss": 1.0242,
503
+ "step": 660
504
+ },
505
+ {
506
+ "epoch": 4.35064935064935,
507
+ "grad_norm": 1.727729320526123,
508
+ "learning_rate": 0.0002,
509
+ "loss": 1.0342,
510
+ "step": 670
511
+ },
512
+ {
513
+ "epoch": 4.415584415584416,
514
+ "grad_norm": 1.7832167148590088,
515
+ "learning_rate": 0.0002,
516
+ "loss": 0.9964,
517
+ "step": 680
518
+ },
519
+ {
520
+ "epoch": 4.48051948051948,
521
+ "grad_norm": 1.7178401947021484,
522
+ "learning_rate": 0.0002,
523
+ "loss": 1.1214,
524
+ "step": 690
525
+ },
526
+ {
527
+ "epoch": 4.545454545454545,
528
+ "grad_norm": 1.5840944051742554,
529
+ "learning_rate": 0.0002,
530
+ "loss": 1.0412,
531
+ "step": 700
532
+ },
533
+ {
534
+ "epoch": 4.6103896103896105,
535
+ "grad_norm": 1.5642529726028442,
536
+ "learning_rate": 0.0002,
537
+ "loss": 1.0194,
538
+ "step": 710
539
+ },
540
+ {
541
+ "epoch": 4.675324675324675,
542
+ "grad_norm": 1.588742733001709,
543
+ "learning_rate": 0.0002,
544
+ "loss": 1.0477,
545
+ "step": 720
546
+ },
547
+ {
548
+ "epoch": 4.740259740259741,
549
+ "grad_norm": 1.6103804111480713,
550
+ "learning_rate": 0.0002,
551
+ "loss": 1.0854,
552
+ "step": 730
553
+ },
554
+ {
555
+ "epoch": 4.805194805194805,
556
+ "grad_norm": 1.5183384418487549,
557
+ "learning_rate": 0.0002,
558
+ "loss": 1.0604,
559
+ "step": 740
560
+ },
561
+ {
562
+ "epoch": 4.87012987012987,
563
+ "grad_norm": 1.3329721689224243,
564
+ "learning_rate": 0.0002,
565
+ "loss": 1.1396,
566
+ "step": 750
567
+ },
568
+ {
569
+ "epoch": 4.935064935064935,
570
+ "grad_norm": 1.8377444744110107,
571
+ "learning_rate": 0.0002,
572
+ "loss": 1.0527,
573
+ "step": 760
574
+ },
575
+ {
576
+ "epoch": 5.0,
577
+ "grad_norm": 1.6057950258255005,
578
+ "learning_rate": 0.0002,
579
+ "loss": 1.0263,
580
+ "step": 770
581
+ },
582
+ {
583
+ "epoch": 5.0,
584
+ "eval_loss": 2.137923240661621,
585
+ "eval_runtime": 186.6056,
586
+ "eval_samples_per_second": 2.856,
587
+ "eval_steps_per_second": 0.359,
588
+ "step": 770
589
+ },
590
+ {
591
+ "epoch": 5.064935064935065,
592
+ "grad_norm": 2.6040709018707275,
593
+ "learning_rate": 0.0002,
594
+ "loss": 0.7818,
595
+ "step": 780
596
+ },
597
+ {
598
+ "epoch": 5.12987012987013,
599
+ "grad_norm": 2.240368366241455,
600
+ "learning_rate": 0.0002,
601
+ "loss": 0.7866,
602
+ "step": 790
603
+ },
604
+ {
605
+ "epoch": 5.194805194805195,
606
+ "grad_norm": 2.5823593139648438,
607
+ "learning_rate": 0.0002,
608
+ "loss": 0.7857,
609
+ "step": 800
610
+ },
611
+ {
612
+ "epoch": 5.259740259740259,
613
+ "grad_norm": 2.326618194580078,
614
+ "learning_rate": 0.0002,
615
+ "loss": 0.7576,
616
+ "step": 810
617
+ },
618
+ {
619
+ "epoch": 5.324675324675325,
620
+ "grad_norm": 1.86579430103302,
621
+ "learning_rate": 0.0002,
622
+ "loss": 0.797,
623
+ "step": 820
624
+ },
625
+ {
626
+ "epoch": 5.3896103896103895,
627
+ "grad_norm": 1.8907891511917114,
628
+ "learning_rate": 0.0002,
629
+ "loss": 0.8163,
630
+ "step": 830
631
+ },
632
+ {
633
+ "epoch": 5.454545454545454,
634
+ "grad_norm": 1.8598380088806152,
635
+ "learning_rate": 0.0002,
636
+ "loss": 0.7802,
637
+ "step": 840
638
+ },
639
+ {
640
+ "epoch": 5.51948051948052,
641
+ "grad_norm": 2.2666990756988525,
642
+ "learning_rate": 0.0002,
643
+ "loss": 0.813,
644
+ "step": 850
645
+ },
646
+ {
647
+ "epoch": 5.584415584415584,
648
+ "grad_norm": 2.06738018989563,
649
+ "learning_rate": 0.0002,
650
+ "loss": 0.8375,
651
+ "step": 860
652
+ },
653
+ {
654
+ "epoch": 5.64935064935065,
655
+ "grad_norm": 2.180816888809204,
656
+ "learning_rate": 0.0002,
657
+ "loss": 0.8116,
658
+ "step": 870
659
+ },
660
+ {
661
+ "epoch": 5.714285714285714,
662
+ "grad_norm": 2.3028717041015625,
663
+ "learning_rate": 0.0002,
664
+ "loss": 0.893,
665
+ "step": 880
666
+ },
667
+ {
668
+ "epoch": 5.779220779220779,
669
+ "grad_norm": 2.158668041229248,
670
+ "learning_rate": 0.0002,
671
+ "loss": 0.8455,
672
+ "step": 890
673
+ },
674
+ {
675
+ "epoch": 5.8441558441558445,
676
+ "grad_norm": 2.0822510719299316,
677
+ "learning_rate": 0.0002,
678
+ "loss": 0.8719,
679
+ "step": 900
680
+ },
681
+ {
682
+ "epoch": 5.909090909090909,
683
+ "grad_norm": 2.0678226947784424,
684
+ "learning_rate": 0.0002,
685
+ "loss": 0.8302,
686
+ "step": 910
687
+ },
688
+ {
689
+ "epoch": 5.974025974025974,
690
+ "grad_norm": 1.9154915809631348,
691
+ "learning_rate": 0.0002,
692
+ "loss": 0.8747,
693
+ "step": 920
694
+ },
695
+ {
696
+ "epoch": 6.0,
697
+ "eval_loss": 2.3475306034088135,
698
+ "eval_runtime": 187.3275,
699
+ "eval_samples_per_second": 2.845,
700
+ "eval_steps_per_second": 0.358,
701
+ "step": 924
702
+ },
703
+ {
704
+ "epoch": 6.038961038961039,
705
+ "grad_norm": 2.5734288692474365,
706
+ "learning_rate": 0.0002,
707
+ "loss": 0.6868,
708
+ "step": 930
709
+ },
710
+ {
711
+ "epoch": 6.103896103896104,
712
+ "grad_norm": 2.1251583099365234,
713
+ "learning_rate": 0.0002,
714
+ "loss": 0.581,
715
+ "step": 940
716
+ },
717
+ {
718
+ "epoch": 6.1688311688311686,
719
+ "grad_norm": 2.346284866333008,
720
+ "learning_rate": 0.0002,
721
+ "loss": 0.5784,
722
+ "step": 950
723
+ },
724
+ {
725
+ "epoch": 6.233766233766234,
726
+ "grad_norm": 2.262770175933838,
727
+ "learning_rate": 0.0002,
728
+ "loss": 0.6225,
729
+ "step": 960
730
+ },
731
+ {
732
+ "epoch": 6.298701298701299,
733
+ "grad_norm": 2.5575172901153564,
734
+ "learning_rate": 0.0002,
735
+ "loss": 0.5593,
736
+ "step": 970
737
+ },
738
+ {
739
+ "epoch": 6.363636363636363,
740
+ "grad_norm": 2.811757802963257,
741
+ "learning_rate": 0.0002,
742
+ "loss": 0.6017,
743
+ "step": 980
744
+ },
745
+ {
746
+ "epoch": 6.428571428571429,
747
+ "grad_norm": 2.3052585124969482,
748
+ "learning_rate": 0.0002,
749
+ "loss": 0.6134,
750
+ "step": 990
751
+ },
752
+ {
753
+ "epoch": 6.4935064935064934,
754
+ "grad_norm": 2.2371861934661865,
755
+ "learning_rate": 0.0002,
756
+ "loss": 0.639,
757
+ "step": 1000
758
+ },
759
+ {
760
+ "epoch": 6.558441558441558,
761
+ "grad_norm": 2.974090814590454,
762
+ "learning_rate": 0.0002,
763
+ "loss": 0.629,
764
+ "step": 1010
765
+ },
766
+ {
767
+ "epoch": 6.623376623376624,
768
+ "grad_norm": 3.1924889087677,
769
+ "learning_rate": 0.0002,
770
+ "loss": 0.6068,
771
+ "step": 1020
772
+ },
773
+ {
774
+ "epoch": 6.688311688311688,
775
+ "grad_norm": 2.322031021118164,
776
+ "learning_rate": 0.0002,
777
+ "loss": 0.6519,
778
+ "step": 1030
779
+ },
780
+ {
781
+ "epoch": 6.753246753246753,
782
+ "grad_norm": 4.84075927734375,
783
+ "learning_rate": 0.0002,
784
+ "loss": 0.6218,
785
+ "step": 1040
786
+ },
787
+ {
788
+ "epoch": 6.818181818181818,
789
+ "grad_norm": 2.509589433670044,
790
+ "learning_rate": 0.0002,
791
+ "loss": 0.6521,
792
+ "step": 1050
793
+ },
794
+ {
795
+ "epoch": 6.883116883116883,
796
+ "grad_norm": 2.2627809047698975,
797
+ "learning_rate": 0.0002,
798
+ "loss": 0.692,
799
+ "step": 1060
800
+ },
801
+ {
802
+ "epoch": 6.948051948051948,
803
+ "grad_norm": 2.528601884841919,
804
+ "learning_rate": 0.0002,
805
+ "loss": 0.683,
806
+ "step": 1070
807
+ },
808
+ {
809
+ "epoch": 7.0,
810
+ "eval_loss": 2.6560964584350586,
811
+ "eval_runtime": 187.5894,
812
+ "eval_samples_per_second": 2.841,
813
+ "eval_steps_per_second": 0.357,
814
+ "step": 1078
815
+ },
816
+ {
817
+ "epoch": 7.012987012987013,
818
+ "grad_norm": 2.4132769107818604,
819
+ "learning_rate": 0.0002,
820
+ "loss": 0.617,
821
+ "step": 1080
822
+ },
823
+ {
824
+ "epoch": 7.077922077922078,
825
+ "grad_norm": 2.721569776535034,
826
+ "learning_rate": 0.0002,
827
+ "loss": 0.4511,
828
+ "step": 1090
829
+ },
830
+ {
831
+ "epoch": 7.142857142857143,
832
+ "grad_norm": 2.276289939880371,
833
+ "learning_rate": 0.0002,
834
+ "loss": 0.4225,
835
+ "step": 1100
836
+ },
837
+ {
838
+ "epoch": 7.207792207792208,
839
+ "grad_norm": 2.400822401046753,
840
+ "learning_rate": 0.0002,
841
+ "loss": 0.4147,
842
+ "step": 1110
843
+ },
844
+ {
845
+ "epoch": 7.2727272727272725,
846
+ "grad_norm": 3.4264252185821533,
847
+ "learning_rate": 0.0002,
848
+ "loss": 0.445,
849
+ "step": 1120
850
+ },
851
+ {
852
+ "epoch": 7.337662337662338,
853
+ "grad_norm": 1.8684237003326416,
854
+ "learning_rate": 0.0002,
855
+ "loss": 0.4551,
856
+ "step": 1130
857
+ },
858
+ {
859
+ "epoch": 7.402597402597403,
860
+ "grad_norm": 2.1616084575653076,
861
+ "learning_rate": 0.0002,
862
+ "loss": 0.4907,
863
+ "step": 1140
864
+ },
865
+ {
866
+ "epoch": 7.467532467532467,
867
+ "grad_norm": 2.7231879234313965,
868
+ "learning_rate": 0.0002,
869
+ "loss": 0.4833,
870
+ "step": 1150
871
+ },
872
+ {
873
+ "epoch": 7.532467532467533,
874
+ "grad_norm": 2.375119924545288,
875
+ "learning_rate": 0.0002,
876
+ "loss": 0.4904,
877
+ "step": 1160
878
+ },
879
+ {
880
+ "epoch": 7.597402597402597,
881
+ "grad_norm": 2.4779438972473145,
882
+ "learning_rate": 0.0002,
883
+ "loss": 0.4785,
884
+ "step": 1170
885
+ },
886
+ {
887
+ "epoch": 7.662337662337662,
888
+ "grad_norm": 2.5369439125061035,
889
+ "learning_rate": 0.0002,
890
+ "loss": 0.4899,
891
+ "step": 1180
892
+ },
893
+ {
894
+ "epoch": 7.7272727272727275,
895
+ "grad_norm": 3.769383430480957,
896
+ "learning_rate": 0.0002,
897
+ "loss": 0.4517,
898
+ "step": 1190
899
+ },
900
+ {
901
+ "epoch": 7.792207792207792,
902
+ "grad_norm": 2.8356423377990723,
903
+ "learning_rate": 0.0002,
904
+ "loss": 0.4765,
905
+ "step": 1200
906
+ },
907
+ {
908
+ "epoch": 7.857142857142857,
909
+ "grad_norm": 2.4924838542938232,
910
+ "learning_rate": 0.0002,
911
+ "loss": 0.4691,
912
+ "step": 1210
913
+ },
914
+ {
915
+ "epoch": 7.922077922077922,
916
+ "grad_norm": 3.033877372741699,
917
+ "learning_rate": 0.0002,
918
+ "loss": 0.5528,
919
+ "step": 1220
920
+ },
921
+ {
922
+ "epoch": 7.987012987012987,
923
+ "grad_norm": 3.1925995349884033,
924
+ "learning_rate": 0.0002,
925
+ "loss": 0.4878,
926
+ "step": 1230
927
+ },
928
+ {
929
+ "epoch": 8.0,
930
+ "eval_loss": 2.8629283905029297,
931
+ "eval_runtime": 181.6642,
932
+ "eval_samples_per_second": 2.934,
933
+ "eval_steps_per_second": 0.369,
934
+ "step": 1232
935
+ }
936
+ ],
937
+ "logging_steps": 10,
938
+ "max_steps": 1232,
939
+ "num_input_tokens_seen": 0,
940
+ "num_train_epochs": 8,
941
+ "save_steps": 200,
942
+ "stateful_callbacks": {
943
+ "TrainerControl": {
944
+ "args": {
945
+ "should_epoch_stop": false,
946
+ "should_evaluate": false,
947
+ "should_log": false,
948
+ "should_save": true,
949
+ "should_training_stop": true
950
+ },
951
+ "attributes": {}
952
+ }
953
+ },
954
+ "total_flos": 5.40536633032704e+16,
955
+ "train_batch_size": 1,
956
+ "trial_name": null,
957
+ "trial_params": null
958
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-1232/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36b4f8ab66999c14764da42af0b1d3f87c70ee10ed09cb969b5621d5b7a29a6a
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b15ba179d52b965afc887dcefa50ef00275d51afaf4596b021f286670ab61f5b
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b949ec7402119acf3f11237aba79cbce87de941357a1e7d96da79d0167f3e7df
3
+ size 55532538
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfd4673cebc5e0872b7629775f8f031fc1840ff362a0059c8a2f6b2e6839b924
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:def102553842dd9e7c89cc4a95ebc89894127a7edcd68c689fae3bed677e6e12
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/trainer_state.json ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.8057786226272583,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154",
4
+ "epoch": 1.0,
5
+ "eval_steps": 10,
6
+ "global_step": 154,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.06493506493506493,
13
+ "grad_norm": 0.9856782555580139,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.593,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.12987012987012986,
20
+ "grad_norm": 1.0205717086791992,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.229,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.19480519480519481,
27
+ "grad_norm": 0.7780327200889587,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0632,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.2597402597402597,
34
+ "grad_norm": 0.7994171977043152,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0682,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.3246753246753247,
41
+ "grad_norm": 0.7783251404762268,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.1134,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.38961038961038963,
48
+ "grad_norm": 0.7531919479370117,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.9359,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.45454545454545453,
55
+ "grad_norm": 0.8411881327629089,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8795,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.5194805194805194,
62
+ "grad_norm": 0.7217594385147095,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8772,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.5844155844155844,
69
+ "grad_norm": 0.8530973792076111,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.906,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.6493506493506493,
76
+ "grad_norm": 0.6478861570358276,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8438,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.7142857142857143,
83
+ "grad_norm": 0.6314818263053894,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.801,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.7792207792207793,
90
+ "grad_norm": 0.6279414892196655,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.7333,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.8441558441558441,
97
+ "grad_norm": 0.6663833856582642,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.7779,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.9090909090909091,
104
+ "grad_norm": 0.5576409101486206,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.7262,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.974025974025974,
111
+ "grad_norm": 0.6750475764274597,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.7602,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 1.0,
118
+ "eval_loss": 1.8057786226272583,
119
+ "eval_runtime": 186.6609,
120
+ "eval_samples_per_second": 2.855,
121
+ "eval_steps_per_second": 0.359,
122
+ "step": 154
123
+ }
124
+ ],
125
+ "logging_steps": 10,
126
+ "max_steps": 1232,
127
+ "num_input_tokens_seen": 0,
128
+ "num_train_epochs": 8,
129
+ "save_steps": 200,
130
+ "stateful_callbacks": {
131
+ "TrainerControl": {
132
+ "args": {
133
+ "should_epoch_stop": false,
134
+ "should_evaluate": false,
135
+ "should_log": false,
136
+ "should_save": true,
137
+ "should_training_stop": false
138
+ },
139
+ "attributes": {}
140
+ }
141
+ },
142
+ "total_flos": 6756707912908800.0,
143
+ "train_batch_size": 1,
144
+ "trial_name": null,
145
+ "trial_params": null
146
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36b4f8ab66999c14764da42af0b1d3f87c70ee10ed09cb969b5621d5b7a29a6a
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84451b02b2f9ca9a1685a28f9cdec8c703a0fc6f1a4aa1da65bf19fee974c0f3
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96691d13ebaaf50530b8292912e331bd17a4aae7f2cf0981bd1add29c2eead7a
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7a30edc965bc8b4b0ae846821608a54a6428c8dad6c4f817d834245b2dc188c
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da1e6ce4563fb7c39319687090a034259cf8a2d7fdc85c19a6037693718b36f9
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-308/trainer_state.json ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.8057786226272583,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.1-num-702-sd-4/checkpoint-154",
4
+ "epoch": 2.0,
5
+ "eval_steps": 10,
6
+ "global_step": 308,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.06493506493506493,
13
+ "grad_norm": 0.9856782555580139,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.593,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.12987012987012986,
20
+ "grad_norm": 1.0205717086791992,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.229,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.19480519480519481,
27
+ "grad_norm": 0.7780327200889587,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0632,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.2597402597402597,
34
+ "grad_norm": 0.7994171977043152,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0682,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.3246753246753247,
41
+ "grad_norm": 0.7783251404762268,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.1134,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.38961038961038963,
48
+ "grad_norm": 0.7531919479370117,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.9359,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.45454545454545453,
55
+ "grad_norm": 0.8411881327629089,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8795,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.5194805194805194,
62
+ "grad_norm": 0.7217594385147095,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8772,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.5844155844155844,
69
+ "grad_norm": 0.8530973792076111,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.906,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.6493506493506493,
76
+ "grad_norm": 0.6478861570358276,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8438,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.7142857142857143,
83
+ "grad_norm": 0.6314818263053894,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.801,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.7792207792207793,
90
+ "grad_norm": 0.6279414892196655,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.7333,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.8441558441558441,
97
+ "grad_norm": 0.6663833856582642,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.7779,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.9090909090909091,
104
+ "grad_norm": 0.5576409101486206,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.7262,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.974025974025974,
111
+ "grad_norm": 0.6750475764274597,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.7602,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 1.0,
118
+ "eval_loss": 1.8057786226272583,
119
+ "eval_runtime": 186.6609,
120
+ "eval_samples_per_second": 2.855,
121
+ "eval_steps_per_second": 0.359,
122
+ "step": 154
123
+ },
124
+ {
125
+ "epoch": 1.0389610389610389,
126
+ "grad_norm": 0.5803011655807495,
127
+ "learning_rate": 0.0002,
128
+ "loss": 1.6961,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 1.103896103896104,
133
+ "grad_norm": 0.6350723505020142,
134
+ "learning_rate": 0.0002,
135
+ "loss": 1.7369,
136
+ "step": 170
137
+ },
138
+ {
139
+ "epoch": 1.1688311688311688,
140
+ "grad_norm": 0.7430880069732666,
141
+ "learning_rate": 0.0002,
142
+ "loss": 1.6487,
143
+ "step": 180
144
+ },
145
+ {
146
+ "epoch": 1.2337662337662338,
147
+ "grad_norm": 0.7743862271308899,
148
+ "learning_rate": 0.0002,
149
+ "loss": 1.6922,
150
+ "step": 190
151
+ },
152
+ {
153
+ "epoch": 1.2987012987012987,
154
+ "grad_norm": 0.644690752029419,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.6812,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 1.3636363636363638,
161
+ "grad_norm": 0.6815120577812195,
162
+ "learning_rate": 0.0002,
163
+ "loss": 1.6846,
164
+ "step": 210
165
+ },
166
+ {
167
+ "epoch": 1.4285714285714286,
168
+ "grad_norm": 0.6068838238716125,
169
+ "learning_rate": 0.0002,
170
+ "loss": 1.7777,
171
+ "step": 220
172
+ },
173
+ {
174
+ "epoch": 1.4935064935064934,
175
+ "grad_norm": 0.6361706256866455,
176
+ "learning_rate": 0.0002,
177
+ "loss": 1.6935,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 1.5584415584415585,
182
+ "grad_norm": 0.7081064581871033,
183
+ "learning_rate": 0.0002,
184
+ "loss": 1.7301,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 1.6233766233766234,
189
+ "grad_norm": 0.638526976108551,
190
+ "learning_rate": 0.0002,
191
+ "loss": 1.6151,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 1.6883116883116882,
196
+ "grad_norm": 0.6861023306846619,
197
+ "learning_rate": 0.0002,
198
+ "loss": 1.6573,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.7532467532467533,
203
+ "grad_norm": 0.75590580701828,
204
+ "learning_rate": 0.0002,
205
+ "loss": 1.6843,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.8181818181818183,
210
+ "grad_norm": 0.7851096987724304,
211
+ "learning_rate": 0.0002,
212
+ "loss": 1.7069,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.883116883116883,
217
+ "grad_norm": 0.6292237043380737,
218
+ "learning_rate": 0.0002,
219
+ "loss": 1.7264,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.948051948051948,
224
+ "grad_norm": 0.6913678646087646,
225
+ "learning_rate": 0.0002,
226
+ "loss": 1.7089,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 2.0,
231
+ "eval_loss": 1.8135713338851929,
232
+ "eval_runtime": 187.0663,
233
+ "eval_samples_per_second": 2.849,
234
+ "eval_steps_per_second": 0.358,
235
+ "step": 308
236
+ }
237
+ ],
238
+ "logging_steps": 10,
239
+ "max_steps": 1232,
240
+ "num_input_tokens_seen": 0,
241
+ "num_train_epochs": 8,
242
+ "save_steps": 200,
243
+ "stateful_callbacks": {
244
+ "TrainerControl": {
245
+ "args": {
246
+ "should_epoch_stop": false,
247
+ "should_evaluate": false,
248
+ "should_log": false,
249
+ "should_save": true,
250
+ "should_training_stop": false
251
+ },
252
+ "attributes": {}
253
+ }
254
+ },
255
+ "total_flos": 1.35134158258176e+16,
256
+ "train_batch_size": 1,
257
+ "trial_name": null,
258
+ "trial_params": null
259
+ }