MilaWang commited on
Commit
98dfce7
·
verified ·
1 Parent(s): 142285d

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/README.md +202 -0
  2. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/adapter_config.json +29 -0
  3. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/adapter_model.safetensors +3 -0
  4. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/README.md +202 -0
  5. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/adapter_config.json +29 -0
  6. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/adapter_model.safetensors +3 -0
  7. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/optimizer.pt +3 -0
  8. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/rng_state.pth +3 -0
  9. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/scheduler.pt +3 -0
  10. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/special_tokens_map.json +24 -0
  11. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/tokenizer.json +0 -0
  12. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/tokenizer.model +3 -0
  13. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/tokenizer_config.json +0 -0
  14. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/trainer_state.json +952 -0
  15. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/training_args.bin +3 -0
  16. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/README.md +202 -0
  17. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/adapter_config.json +29 -0
  18. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/adapter_model.safetensors +3 -0
  19. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/optimizer.pt +3 -0
  20. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/rng_state.pth +3 -0
  21. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/scheduler.pt +3 -0
  22. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/special_tokens_map.json +24 -0
  23. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/tokenizer.json +0 -0
  24. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/tokenizer.model +3 -0
  25. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/tokenizer_config.json +0 -0
  26. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/trainer_state.json +1415 -0
  27. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/training_args.bin +3 -0
  28. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/README.md +202 -0
  29. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/adapter_config.json +29 -0
  30. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/adapter_model.safetensors +3 -0
  31. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/optimizer.pt +3 -0
  32. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/rng_state.pth +3 -0
  33. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/scheduler.pt +3 -0
  34. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/special_tokens_map.json +24 -0
  35. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/tokenizer.json +0 -0
  36. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/tokenizer.model +3 -0
  37. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/tokenizer_config.json +0 -0
  38. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/trainer_state.json +1878 -0
  39. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/training_args.bin +3 -0
  40. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/README.md +202 -0
  41. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/adapter_config.json +29 -0
  42. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/adapter_model.safetensors +3 -0
  43. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/optimizer.pt +3 -0
  44. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/rng_state.pth +3 -0
  45. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/scheduler.pt +3 -0
  46. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/special_tokens_map.json +24 -0
  47. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/tokenizer.json +0 -0
  48. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/tokenizer.model +3 -0
  49. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/tokenizer_config.json +0 -0
  50. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/trainer_state.json +2341 -0
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a44c433d1d2471c754528eab3ff9a4024e4275cb205d77e15461656b50f32278
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18b6554ea4ef6bac2efc86df4685882fdd102ee951a06f539e71f1f62df0309a
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d015481056925fc897a30c15ff6112485e76723a4612ab8b52e6f299169afd1e
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fc5c74ab5028964ebe81887d5bab96bc9b52cbefa368c9bbe87daa5d227f840
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7d569e82154ffde0850754b22a8d297db4e4ea0b3a3e5316f520a7417a43812
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/trainer_state.json ADDED
@@ -0,0 +1,952 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.212496042251587,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-649",
4
+ "epoch": 2.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1298,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.015408320493066256,
13
+ "grad_norm": 0.939333975315094,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.9609,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.030816640986132512,
20
+ "grad_norm": 0.9446700215339661,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5975,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.046224961479198766,
27
+ "grad_norm": 0.7268466353416443,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.5196,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.061633281972265024,
34
+ "grad_norm": 0.8900066018104553,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5021,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.07704160246533127,
41
+ "grad_norm": 4.246077060699463,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4155,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.09244992295839753,
48
+ "grad_norm": 0.7887561321258545,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.4052,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.10785824345146379,
55
+ "grad_norm": 0.6822794675827026,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.215,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.12326656394453005,
62
+ "grad_norm": 0.8871720433235168,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.2524,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.1386748844375963,
69
+ "grad_norm": 0.6524078249931335,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.191,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.15408320493066255,
76
+ "grad_norm": 0.5519863367080688,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.2455,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.1694915254237288,
83
+ "grad_norm": 0.6716212630271912,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.2515,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.18489984591679506,
90
+ "grad_norm": 1.527921199798584,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.2239,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.20030816640986132,
97
+ "grad_norm": 0.6893861293792725,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.2887,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.21571648690292758,
104
+ "grad_norm": 0.5514246821403503,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.1722,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.23112480739599384,
111
+ "grad_norm": 0.5830065608024597,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1946,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.2465331278890601,
118
+ "grad_norm": 0.7411216497421265,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.3105,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.26194144838212635,
125
+ "grad_norm": 0.7470705509185791,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.2008,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2773497688751926,
132
+ "grad_norm": 0.6140725016593933,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.2497,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.29275808936825887,
139
+ "grad_norm": 0.7563071250915527,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.1514,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.3081664098613251,
146
+ "grad_norm": 0.5491266250610352,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.2703,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.3235747303543914,
153
+ "grad_norm": 0.5403220057487488,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.2168,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.3389830508474576,
160
+ "grad_norm": 0.9616869688034058,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.2409,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.3543913713405239,
167
+ "grad_norm": 0.5448639988899231,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.3112,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.3697996918335901,
174
+ "grad_norm": 0.6322043538093567,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.3023,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.3852080123266564,
181
+ "grad_norm": 0.5178093314170837,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.2382,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.40061633281972264,
188
+ "grad_norm": 0.6274669766426086,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.2755,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.41602465331278893,
195
+ "grad_norm": 1.1093109846115112,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.3263,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.43143297380585516,
202
+ "grad_norm": 1.8002032041549683,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.2201,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.44684129429892144,
209
+ "grad_norm": 0.5977614521980286,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.2335,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.4622496147919877,
216
+ "grad_norm": 0.5583769083023071,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.2076,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.4776579352850539,
223
+ "grad_norm": 0.5563502311706543,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.197,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.4930662557781202,
230
+ "grad_norm": 0.9157887101173401,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.164,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.5084745762711864,
237
+ "grad_norm": 0.551705539226532,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.1266,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.5238828967642527,
244
+ "grad_norm": 9.011388778686523,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.2801,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.539291217257319,
251
+ "grad_norm": 0.6527810096740723,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.2024,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.5546995377503852,
258
+ "grad_norm": 1.3121646642684937,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.1424,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.5701078582434514,
265
+ "grad_norm": 0.7247968316078186,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.2555,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.5855161787365177,
272
+ "grad_norm": 0.5430527925491333,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.196,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.600924499229584,
279
+ "grad_norm": 0.6050328612327576,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.1822,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.6163328197226502,
286
+ "grad_norm": 0.49382615089416504,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.2754,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.6317411402157165,
293
+ "grad_norm": 0.5804041624069214,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.2595,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.6471494607087828,
300
+ "grad_norm": 0.524357259273529,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.2926,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.662557781201849,
307
+ "grad_norm": 1.8817486763000488,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.1928,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.6779661016949152,
314
+ "grad_norm": 0.6104950308799744,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.2103,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.6933744221879815,
321
+ "grad_norm": 0.631179928779602,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.2296,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.7087827426810478,
328
+ "grad_norm": 0.6562483310699463,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.1843,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.724191063174114,
335
+ "grad_norm": 0.578336775302887,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.2424,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.7395993836671803,
342
+ "grad_norm": 0.8468874096870422,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.192,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.7550077041602465,
349
+ "grad_norm": 0.7162539958953857,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.2913,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.7704160246533128,
356
+ "grad_norm": 0.7655543684959412,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.2158,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.785824345146379,
363
+ "grad_norm": 0.5711562037467957,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.2637,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.8012326656394453,
370
+ "grad_norm": 0.7273485660552979,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.1277,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.8166409861325116,
377
+ "grad_norm": 0.47050145268440247,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.188,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.8320493066255779,
384
+ "grad_norm": 0.4930959939956665,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.1462,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.847457627118644,
391
+ "grad_norm": 0.553955614566803,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.167,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.8628659476117103,
398
+ "grad_norm": 0.6495056748390198,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.1831,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.8782742681047766,
405
+ "grad_norm": 0.4586578905582428,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.0984,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.8936825885978429,
412
+ "grad_norm": 0.4870392680168152,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.2415,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.9090909090909091,
419
+ "grad_norm": 0.6337013244628906,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.1735,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.9244992295839753,
426
+ "grad_norm": 0.7260186672210693,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.1781,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.9399075500770416,
433
+ "grad_norm": 1.4133737087249756,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.2536,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.9553158705701078,
440
+ "grad_norm": 0.573525071144104,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.2211,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.9707241910631741,
447
+ "grad_norm": 0.8403644561767578,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.11,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.9861325115562404,
454
+ "grad_norm": 0.7665438055992126,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.2932,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 1.0,
461
+ "eval_loss": 1.212496042251587,
462
+ "eval_runtime": 120.3264,
463
+ "eval_samples_per_second": 3.79,
464
+ "eval_steps_per_second": 0.474,
465
+ "step": 649
466
+ },
467
+ {
468
+ "epoch": 1.0015408320493067,
469
+ "grad_norm": 0.6874801516532898,
470
+ "learning_rate": 0.0002,
471
+ "loss": 1.176,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.0169491525423728,
476
+ "grad_norm": 0.6675221920013428,
477
+ "learning_rate": 0.0002,
478
+ "loss": 1.0957,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.0323574730354392,
483
+ "grad_norm": 0.6837265491485596,
484
+ "learning_rate": 0.0002,
485
+ "loss": 1.1616,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.0477657935285054,
490
+ "grad_norm": 0.6796931028366089,
491
+ "learning_rate": 0.0002,
492
+ "loss": 1.045,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.0631741140215716,
497
+ "grad_norm": 0.6596675515174866,
498
+ "learning_rate": 0.0002,
499
+ "loss": 1.0889,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.078582434514638,
504
+ "grad_norm": 0.6630653142929077,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.067,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.0939907550077042,
511
+ "grad_norm": 0.7065498232841492,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.0222,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.1093990755007703,
518
+ "grad_norm": 0.694682240486145,
519
+ "learning_rate": 0.0002,
520
+ "loss": 1.081,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.1248073959938367,
525
+ "grad_norm": 0.8984217047691345,
526
+ "learning_rate": 0.0002,
527
+ "loss": 1.1019,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.140215716486903,
532
+ "grad_norm": 1.0035051107406616,
533
+ "learning_rate": 0.0002,
534
+ "loss": 1.0506,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.1556240369799693,
539
+ "grad_norm": 0.8646948933601379,
540
+ "learning_rate": 0.0002,
541
+ "loss": 1.0502,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.1710323574730355,
546
+ "grad_norm": 0.6287558674812317,
547
+ "learning_rate": 0.0002,
548
+ "loss": 1.0256,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.1864406779661016,
553
+ "grad_norm": 0.6975560784339905,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.051,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.201848998459168,
560
+ "grad_norm": 0.5972192883491516,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.0409,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.2172573189522342,
567
+ "grad_norm": 0.7299932241439819,
568
+ "learning_rate": 0.0002,
569
+ "loss": 1.0837,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.2326656394453004,
574
+ "grad_norm": 0.8376814126968384,
575
+ "learning_rate": 0.0002,
576
+ "loss": 1.1291,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.2480739599383668,
581
+ "grad_norm": 1.117690086364746,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.0809,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.263482280431433,
588
+ "grad_norm": 0.7850839495658875,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.0762,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.2788906009244991,
595
+ "grad_norm": 0.7941734790802002,
596
+ "learning_rate": 0.0002,
597
+ "loss": 1.2278,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.2942989214175655,
602
+ "grad_norm": 0.5682743787765503,
603
+ "learning_rate": 0.0002,
604
+ "loss": 0.9723,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.3097072419106317,
609
+ "grad_norm": 0.7182576060295105,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.0262,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.325115562403698,
616
+ "grad_norm": 0.7436819672584534,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.0801,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.3405238828967643,
623
+ "grad_norm": 0.7665132880210876,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.0705,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.3559322033898304,
630
+ "grad_norm": 1.060669183731079,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.1925,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.3713405238828968,
637
+ "grad_norm": 0.6262772083282471,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.0581,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.386748844375963,
644
+ "grad_norm": 1.010703682899475,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.0934,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.4021571648690292,
651
+ "grad_norm": 0.5669811367988586,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.111,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.4175654853620956,
658
+ "grad_norm": 0.8644649386405945,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.0638,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.4329738058551618,
665
+ "grad_norm": 0.6250067949295044,
666
+ "learning_rate": 0.0002,
667
+ "loss": 1.1973,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.448382126348228,
672
+ "grad_norm": 0.6507946848869324,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.0592,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.4637904468412943,
679
+ "grad_norm": 0.9305022954940796,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.0306,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.4791987673343605,
686
+ "grad_norm": 0.86021888256073,
687
+ "learning_rate": 0.0002,
688
+ "loss": 0.9792,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.494607087827427,
693
+ "grad_norm": 1.1122219562530518,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.0656,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.510015408320493,
700
+ "grad_norm": 0.7431066036224365,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.0745,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.5254237288135593,
707
+ "grad_norm": 1.022744059562683,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.0822,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.5408320493066254,
714
+ "grad_norm": 0.6638363599777222,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.0689,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.5562403697996918,
721
+ "grad_norm": 0.6290505528450012,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.1032,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.5716486902927582,
728
+ "grad_norm": 0.6446037888526917,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.0572,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.5870570107858244,
735
+ "grad_norm": 0.7383618354797363,
736
+ "learning_rate": 0.0002,
737
+ "loss": 1.0814,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.6024653312788906,
742
+ "grad_norm": 3.5893094539642334,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.0643,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.6178736517719567,
749
+ "grad_norm": 0.7388538718223572,
750
+ "learning_rate": 0.0002,
751
+ "loss": 0.9806,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.6332819722650231,
756
+ "grad_norm": 0.7813242077827454,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.1,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.6486902927580893,
763
+ "grad_norm": 0.6643418669700623,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.0463,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.6640986132511557,
770
+ "grad_norm": 0.7817712426185608,
771
+ "learning_rate": 0.0002,
772
+ "loss": 1.0344,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.6795069337442219,
777
+ "grad_norm": 0.8741177916526794,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.0447,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.694915254237288,
784
+ "grad_norm": 0.969813883304596,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.0724,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.7103235747303542,
791
+ "grad_norm": 0.7666333913803101,
792
+ "learning_rate": 0.0002,
793
+ "loss": 0.9887,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.7257318952234206,
798
+ "grad_norm": 0.789859414100647,
799
+ "learning_rate": 0.0002,
800
+ "loss": 0.9159,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.741140215716487,
805
+ "grad_norm": 0.7018347382545471,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.0679,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.7565485362095532,
812
+ "grad_norm": 0.8899882435798645,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.1429,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.7719568567026194,
819
+ "grad_norm": 0.7738426923751831,
820
+ "learning_rate": 0.0002,
821
+ "loss": 0.9214,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.7873651771956856,
826
+ "grad_norm": 1.032209873199463,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.0733,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.802773497688752,
833
+ "grad_norm": 0.7310711741447449,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.0522,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.8181818181818183,
840
+ "grad_norm": 0.8506733775138855,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.0943,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.8335901386748845,
847
+ "grad_norm": 116.00221252441406,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.1349,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.8489984591679507,
854
+ "grad_norm": 0.8819684982299805,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.0595,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.8644067796610169,
861
+ "grad_norm": 0.8846774697303772,
862
+ "learning_rate": 0.0002,
863
+ "loss": 0.995,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.879815100154083,
868
+ "grad_norm": 1.6417866945266724,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.116,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.8952234206471494,
875
+ "grad_norm": 1.1875122785568237,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.044,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.9106317411402158,
882
+ "grad_norm": 0.6520240306854248,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.0322,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.926040061633282,
889
+ "grad_norm": 0.9059738516807556,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.0175,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.9414483821263482,
896
+ "grad_norm": 0.7950983643531799,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.1097,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.9568567026194144,
903
+ "grad_norm": 0.6911653280258179,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.0313,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.9722650231124808,
910
+ "grad_norm": 0.9487978219985962,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.0762,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.9876733436055471,
917
+ "grad_norm": 0.716439425945282,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.1608,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 2.0,
924
+ "eval_loss": 1.215390682220459,
925
+ "eval_runtime": 120.3893,
926
+ "eval_samples_per_second": 3.788,
927
+ "eval_steps_per_second": 0.473,
928
+ "step": 1298
929
+ }
930
+ ],
931
+ "logging_steps": 10,
932
+ "max_steps": 5192,
933
+ "num_input_tokens_seen": 0,
934
+ "num_train_epochs": 8,
935
+ "save_steps": 200,
936
+ "stateful_callbacks": {
937
+ "TrainerControl": {
938
+ "args": {
939
+ "should_epoch_stop": false,
940
+ "should_evaluate": false,
941
+ "should_log": false,
942
+ "should_save": true,
943
+ "should_training_stop": false
944
+ },
945
+ "attributes": {}
946
+ }
947
+ },
948
+ "total_flos": 5.69493952659456e+16,
949
+ "train_batch_size": 1,
950
+ "trial_name": null,
951
+ "trial_params": null
952
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1298/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7da6f114429a9a993fcd6ed877a996e6a07ac3f427895c4f50ec6990a9e85e69
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ede62a76c14ef2734653f04a750f957a6502bcbd37a3e9a3def7b7feabd17df8
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:057d41dd8028c5a7d0a1e2154619d82b686b9ba9a88e1b7dec00d79eeb369fe8
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c004990006f909f350874d51b5b3526213b505cbff24cc2a360d1ec7328a44d7
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84c8aac6917b5c47a13dcb9e0693d6d51edc67202804dc7ba98b606799a8bfab
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/trainer_state.json ADDED
@@ -0,0 +1,1415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.212496042251587,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-649",
4
+ "epoch": 3.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1947,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.015408320493066256,
13
+ "grad_norm": 0.939333975315094,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.9609,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.030816640986132512,
20
+ "grad_norm": 0.9446700215339661,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5975,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.046224961479198766,
27
+ "grad_norm": 0.7268466353416443,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.5196,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.061633281972265024,
34
+ "grad_norm": 0.8900066018104553,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5021,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.07704160246533127,
41
+ "grad_norm": 4.246077060699463,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4155,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.09244992295839753,
48
+ "grad_norm": 0.7887561321258545,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.4052,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.10785824345146379,
55
+ "grad_norm": 0.6822794675827026,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.215,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.12326656394453005,
62
+ "grad_norm": 0.8871720433235168,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.2524,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.1386748844375963,
69
+ "grad_norm": 0.6524078249931335,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.191,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.15408320493066255,
76
+ "grad_norm": 0.5519863367080688,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.2455,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.1694915254237288,
83
+ "grad_norm": 0.6716212630271912,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.2515,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.18489984591679506,
90
+ "grad_norm": 1.527921199798584,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.2239,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.20030816640986132,
97
+ "grad_norm": 0.6893861293792725,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.2887,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.21571648690292758,
104
+ "grad_norm": 0.5514246821403503,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.1722,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.23112480739599384,
111
+ "grad_norm": 0.5830065608024597,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1946,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.2465331278890601,
118
+ "grad_norm": 0.7411216497421265,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.3105,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.26194144838212635,
125
+ "grad_norm": 0.7470705509185791,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.2008,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2773497688751926,
132
+ "grad_norm": 0.6140725016593933,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.2497,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.29275808936825887,
139
+ "grad_norm": 0.7563071250915527,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.1514,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.3081664098613251,
146
+ "grad_norm": 0.5491266250610352,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.2703,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.3235747303543914,
153
+ "grad_norm": 0.5403220057487488,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.2168,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.3389830508474576,
160
+ "grad_norm": 0.9616869688034058,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.2409,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.3543913713405239,
167
+ "grad_norm": 0.5448639988899231,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.3112,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.3697996918335901,
174
+ "grad_norm": 0.6322043538093567,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.3023,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.3852080123266564,
181
+ "grad_norm": 0.5178093314170837,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.2382,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.40061633281972264,
188
+ "grad_norm": 0.6274669766426086,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.2755,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.41602465331278893,
195
+ "grad_norm": 1.1093109846115112,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.3263,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.43143297380585516,
202
+ "grad_norm": 1.8002032041549683,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.2201,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.44684129429892144,
209
+ "grad_norm": 0.5977614521980286,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.2335,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.4622496147919877,
216
+ "grad_norm": 0.5583769083023071,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.2076,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.4776579352850539,
223
+ "grad_norm": 0.5563502311706543,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.197,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.4930662557781202,
230
+ "grad_norm": 0.9157887101173401,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.164,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.5084745762711864,
237
+ "grad_norm": 0.551705539226532,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.1266,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.5238828967642527,
244
+ "grad_norm": 9.011388778686523,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.2801,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.539291217257319,
251
+ "grad_norm": 0.6527810096740723,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.2024,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.5546995377503852,
258
+ "grad_norm": 1.3121646642684937,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.1424,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.5701078582434514,
265
+ "grad_norm": 0.7247968316078186,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.2555,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.5855161787365177,
272
+ "grad_norm": 0.5430527925491333,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.196,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.600924499229584,
279
+ "grad_norm": 0.6050328612327576,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.1822,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.6163328197226502,
286
+ "grad_norm": 0.49382615089416504,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.2754,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.6317411402157165,
293
+ "grad_norm": 0.5804041624069214,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.2595,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.6471494607087828,
300
+ "grad_norm": 0.524357259273529,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.2926,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.662557781201849,
307
+ "grad_norm": 1.8817486763000488,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.1928,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.6779661016949152,
314
+ "grad_norm": 0.6104950308799744,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.2103,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.6933744221879815,
321
+ "grad_norm": 0.631179928779602,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.2296,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.7087827426810478,
328
+ "grad_norm": 0.6562483310699463,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.1843,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.724191063174114,
335
+ "grad_norm": 0.578336775302887,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.2424,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.7395993836671803,
342
+ "grad_norm": 0.8468874096870422,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.192,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.7550077041602465,
349
+ "grad_norm": 0.7162539958953857,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.2913,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.7704160246533128,
356
+ "grad_norm": 0.7655543684959412,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.2158,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.785824345146379,
363
+ "grad_norm": 0.5711562037467957,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.2637,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.8012326656394453,
370
+ "grad_norm": 0.7273485660552979,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.1277,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.8166409861325116,
377
+ "grad_norm": 0.47050145268440247,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.188,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.8320493066255779,
384
+ "grad_norm": 0.4930959939956665,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.1462,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.847457627118644,
391
+ "grad_norm": 0.553955614566803,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.167,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.8628659476117103,
398
+ "grad_norm": 0.6495056748390198,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.1831,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.8782742681047766,
405
+ "grad_norm": 0.4586578905582428,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.0984,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.8936825885978429,
412
+ "grad_norm": 0.4870392680168152,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.2415,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.9090909090909091,
419
+ "grad_norm": 0.6337013244628906,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.1735,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.9244992295839753,
426
+ "grad_norm": 0.7260186672210693,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.1781,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.9399075500770416,
433
+ "grad_norm": 1.4133737087249756,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.2536,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.9553158705701078,
440
+ "grad_norm": 0.573525071144104,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.2211,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.9707241910631741,
447
+ "grad_norm": 0.8403644561767578,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.11,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.9861325115562404,
454
+ "grad_norm": 0.7665438055992126,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.2932,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 1.0,
461
+ "eval_loss": 1.212496042251587,
462
+ "eval_runtime": 120.3264,
463
+ "eval_samples_per_second": 3.79,
464
+ "eval_steps_per_second": 0.474,
465
+ "step": 649
466
+ },
467
+ {
468
+ "epoch": 1.0015408320493067,
469
+ "grad_norm": 0.6874801516532898,
470
+ "learning_rate": 0.0002,
471
+ "loss": 1.176,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.0169491525423728,
476
+ "grad_norm": 0.6675221920013428,
477
+ "learning_rate": 0.0002,
478
+ "loss": 1.0957,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.0323574730354392,
483
+ "grad_norm": 0.6837265491485596,
484
+ "learning_rate": 0.0002,
485
+ "loss": 1.1616,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.0477657935285054,
490
+ "grad_norm": 0.6796931028366089,
491
+ "learning_rate": 0.0002,
492
+ "loss": 1.045,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.0631741140215716,
497
+ "grad_norm": 0.6596675515174866,
498
+ "learning_rate": 0.0002,
499
+ "loss": 1.0889,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.078582434514638,
504
+ "grad_norm": 0.6630653142929077,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.067,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.0939907550077042,
511
+ "grad_norm": 0.7065498232841492,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.0222,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.1093990755007703,
518
+ "grad_norm": 0.694682240486145,
519
+ "learning_rate": 0.0002,
520
+ "loss": 1.081,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.1248073959938367,
525
+ "grad_norm": 0.8984217047691345,
526
+ "learning_rate": 0.0002,
527
+ "loss": 1.1019,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.140215716486903,
532
+ "grad_norm": 1.0035051107406616,
533
+ "learning_rate": 0.0002,
534
+ "loss": 1.0506,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.1556240369799693,
539
+ "grad_norm": 0.8646948933601379,
540
+ "learning_rate": 0.0002,
541
+ "loss": 1.0502,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.1710323574730355,
546
+ "grad_norm": 0.6287558674812317,
547
+ "learning_rate": 0.0002,
548
+ "loss": 1.0256,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.1864406779661016,
553
+ "grad_norm": 0.6975560784339905,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.051,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.201848998459168,
560
+ "grad_norm": 0.5972192883491516,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.0409,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.2172573189522342,
567
+ "grad_norm": 0.7299932241439819,
568
+ "learning_rate": 0.0002,
569
+ "loss": 1.0837,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.2326656394453004,
574
+ "grad_norm": 0.8376814126968384,
575
+ "learning_rate": 0.0002,
576
+ "loss": 1.1291,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.2480739599383668,
581
+ "grad_norm": 1.117690086364746,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.0809,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.263482280431433,
588
+ "grad_norm": 0.7850839495658875,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.0762,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.2788906009244991,
595
+ "grad_norm": 0.7941734790802002,
596
+ "learning_rate": 0.0002,
597
+ "loss": 1.2278,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.2942989214175655,
602
+ "grad_norm": 0.5682743787765503,
603
+ "learning_rate": 0.0002,
604
+ "loss": 0.9723,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.3097072419106317,
609
+ "grad_norm": 0.7182576060295105,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.0262,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.325115562403698,
616
+ "grad_norm": 0.7436819672584534,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.0801,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.3405238828967643,
623
+ "grad_norm": 0.7665132880210876,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.0705,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.3559322033898304,
630
+ "grad_norm": 1.060669183731079,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.1925,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.3713405238828968,
637
+ "grad_norm": 0.6262772083282471,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.0581,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.386748844375963,
644
+ "grad_norm": 1.010703682899475,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.0934,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.4021571648690292,
651
+ "grad_norm": 0.5669811367988586,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.111,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.4175654853620956,
658
+ "grad_norm": 0.8644649386405945,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.0638,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.4329738058551618,
665
+ "grad_norm": 0.6250067949295044,
666
+ "learning_rate": 0.0002,
667
+ "loss": 1.1973,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.448382126348228,
672
+ "grad_norm": 0.6507946848869324,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.0592,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.4637904468412943,
679
+ "grad_norm": 0.9305022954940796,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.0306,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.4791987673343605,
686
+ "grad_norm": 0.86021888256073,
687
+ "learning_rate": 0.0002,
688
+ "loss": 0.9792,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.494607087827427,
693
+ "grad_norm": 1.1122219562530518,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.0656,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.510015408320493,
700
+ "grad_norm": 0.7431066036224365,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.0745,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.5254237288135593,
707
+ "grad_norm": 1.022744059562683,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.0822,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.5408320493066254,
714
+ "grad_norm": 0.6638363599777222,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.0689,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.5562403697996918,
721
+ "grad_norm": 0.6290505528450012,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.1032,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.5716486902927582,
728
+ "grad_norm": 0.6446037888526917,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.0572,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.5870570107858244,
735
+ "grad_norm": 0.7383618354797363,
736
+ "learning_rate": 0.0002,
737
+ "loss": 1.0814,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.6024653312788906,
742
+ "grad_norm": 3.5893094539642334,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.0643,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.6178736517719567,
749
+ "grad_norm": 0.7388538718223572,
750
+ "learning_rate": 0.0002,
751
+ "loss": 0.9806,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.6332819722650231,
756
+ "grad_norm": 0.7813242077827454,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.1,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.6486902927580893,
763
+ "grad_norm": 0.6643418669700623,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.0463,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.6640986132511557,
770
+ "grad_norm": 0.7817712426185608,
771
+ "learning_rate": 0.0002,
772
+ "loss": 1.0344,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.6795069337442219,
777
+ "grad_norm": 0.8741177916526794,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.0447,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.694915254237288,
784
+ "grad_norm": 0.969813883304596,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.0724,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.7103235747303542,
791
+ "grad_norm": 0.7666333913803101,
792
+ "learning_rate": 0.0002,
793
+ "loss": 0.9887,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.7257318952234206,
798
+ "grad_norm": 0.789859414100647,
799
+ "learning_rate": 0.0002,
800
+ "loss": 0.9159,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.741140215716487,
805
+ "grad_norm": 0.7018347382545471,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.0679,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.7565485362095532,
812
+ "grad_norm": 0.8899882435798645,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.1429,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.7719568567026194,
819
+ "grad_norm": 0.7738426923751831,
820
+ "learning_rate": 0.0002,
821
+ "loss": 0.9214,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.7873651771956856,
826
+ "grad_norm": 1.032209873199463,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.0733,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.802773497688752,
833
+ "grad_norm": 0.7310711741447449,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.0522,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.8181818181818183,
840
+ "grad_norm": 0.8506733775138855,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.0943,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.8335901386748845,
847
+ "grad_norm": 116.00221252441406,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.1349,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.8489984591679507,
854
+ "grad_norm": 0.8819684982299805,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.0595,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.8644067796610169,
861
+ "grad_norm": 0.8846774697303772,
862
+ "learning_rate": 0.0002,
863
+ "loss": 0.995,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.879815100154083,
868
+ "grad_norm": 1.6417866945266724,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.116,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.8952234206471494,
875
+ "grad_norm": 1.1875122785568237,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.044,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.9106317411402158,
882
+ "grad_norm": 0.6520240306854248,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.0322,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.926040061633282,
889
+ "grad_norm": 0.9059738516807556,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.0175,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.9414483821263482,
896
+ "grad_norm": 0.7950983643531799,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.1097,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.9568567026194144,
903
+ "grad_norm": 0.6911653280258179,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.0313,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.9722650231124808,
910
+ "grad_norm": 0.9487978219985962,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.0762,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.9876733436055471,
917
+ "grad_norm": 0.716439425945282,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.1608,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 2.0,
924
+ "eval_loss": 1.215390682220459,
925
+ "eval_runtime": 120.3893,
926
+ "eval_samples_per_second": 3.788,
927
+ "eval_steps_per_second": 0.473,
928
+ "step": 1298
929
+ },
930
+ {
931
+ "epoch": 2.0030816640986133,
932
+ "grad_norm": 0.7292942404747009,
933
+ "learning_rate": 0.0002,
934
+ "loss": 1.0205,
935
+ "step": 1300
936
+ },
937
+ {
938
+ "epoch": 2.0184899845916795,
939
+ "grad_norm": 0.8386905789375305,
940
+ "learning_rate": 0.0002,
941
+ "loss": 0.8264,
942
+ "step": 1310
943
+ },
944
+ {
945
+ "epoch": 2.0338983050847457,
946
+ "grad_norm": 1.114105224609375,
947
+ "learning_rate": 0.0002,
948
+ "loss": 0.7925,
949
+ "step": 1320
950
+ },
951
+ {
952
+ "epoch": 2.049306625577812,
953
+ "grad_norm": 1.068211317062378,
954
+ "learning_rate": 0.0002,
955
+ "loss": 0.8673,
956
+ "step": 1330
957
+ },
958
+ {
959
+ "epoch": 2.0647149460708785,
960
+ "grad_norm": 0.8620569109916687,
961
+ "learning_rate": 0.0002,
962
+ "loss": 0.8883,
963
+ "step": 1340
964
+ },
965
+ {
966
+ "epoch": 2.0801232665639446,
967
+ "grad_norm": 0.8984315991401672,
968
+ "learning_rate": 0.0002,
969
+ "loss": 0.8949,
970
+ "step": 1350
971
+ },
972
+ {
973
+ "epoch": 2.095531587057011,
974
+ "grad_norm": 1.0469365119934082,
975
+ "learning_rate": 0.0002,
976
+ "loss": 0.8992,
977
+ "step": 1360
978
+ },
979
+ {
980
+ "epoch": 2.110939907550077,
981
+ "grad_norm": 0.9392943978309631,
982
+ "learning_rate": 0.0002,
983
+ "loss": 0.8053,
984
+ "step": 1370
985
+ },
986
+ {
987
+ "epoch": 2.126348228043143,
988
+ "grad_norm": 1.2067331075668335,
989
+ "learning_rate": 0.0002,
990
+ "loss": 0.8791,
991
+ "step": 1380
992
+ },
993
+ {
994
+ "epoch": 2.1417565485362093,
995
+ "grad_norm": 0.8019351363182068,
996
+ "learning_rate": 0.0002,
997
+ "loss": 0.7925,
998
+ "step": 1390
999
+ },
1000
+ {
1001
+ "epoch": 2.157164869029276,
1002
+ "grad_norm": 0.9445130228996277,
1003
+ "learning_rate": 0.0002,
1004
+ "loss": 0.8669,
1005
+ "step": 1400
1006
+ },
1007
+ {
1008
+ "epoch": 2.172573189522342,
1009
+ "grad_norm": 0.9806232452392578,
1010
+ "learning_rate": 0.0002,
1011
+ "loss": 0.8293,
1012
+ "step": 1410
1013
+ },
1014
+ {
1015
+ "epoch": 2.1879815100154083,
1016
+ "grad_norm": 1.2135679721832275,
1017
+ "learning_rate": 0.0002,
1018
+ "loss": 0.8499,
1019
+ "step": 1420
1020
+ },
1021
+ {
1022
+ "epoch": 2.2033898305084745,
1023
+ "grad_norm": 1.1036803722381592,
1024
+ "learning_rate": 0.0002,
1025
+ "loss": 0.8908,
1026
+ "step": 1430
1027
+ },
1028
+ {
1029
+ "epoch": 2.2187981510015407,
1030
+ "grad_norm": 0.9235773086547852,
1031
+ "learning_rate": 0.0002,
1032
+ "loss": 0.9725,
1033
+ "step": 1440
1034
+ },
1035
+ {
1036
+ "epoch": 2.2342064714946073,
1037
+ "grad_norm": 1.0520254373550415,
1038
+ "learning_rate": 0.0002,
1039
+ "loss": 0.8176,
1040
+ "step": 1450
1041
+ },
1042
+ {
1043
+ "epoch": 2.2496147919876734,
1044
+ "grad_norm": 1.0121252536773682,
1045
+ "learning_rate": 0.0002,
1046
+ "loss": 0.9138,
1047
+ "step": 1460
1048
+ },
1049
+ {
1050
+ "epoch": 2.2650231124807396,
1051
+ "grad_norm": 1.0718834400177002,
1052
+ "learning_rate": 0.0002,
1053
+ "loss": 0.8722,
1054
+ "step": 1470
1055
+ },
1056
+ {
1057
+ "epoch": 2.280431432973806,
1058
+ "grad_norm": 1.1842551231384277,
1059
+ "learning_rate": 0.0002,
1060
+ "loss": 0.8295,
1061
+ "step": 1480
1062
+ },
1063
+ {
1064
+ "epoch": 2.295839753466872,
1065
+ "grad_norm": 1.2985937595367432,
1066
+ "learning_rate": 0.0002,
1067
+ "loss": 0.8706,
1068
+ "step": 1490
1069
+ },
1070
+ {
1071
+ "epoch": 2.3112480739599386,
1072
+ "grad_norm": 2.0254523754119873,
1073
+ "learning_rate": 0.0002,
1074
+ "loss": 0.873,
1075
+ "step": 1500
1076
+ },
1077
+ {
1078
+ "epoch": 2.3266563944530048,
1079
+ "grad_norm": 1.1501885652542114,
1080
+ "learning_rate": 0.0002,
1081
+ "loss": 0.8569,
1082
+ "step": 1510
1083
+ },
1084
+ {
1085
+ "epoch": 2.342064714946071,
1086
+ "grad_norm": 1.1277996301651,
1087
+ "learning_rate": 0.0002,
1088
+ "loss": 0.9394,
1089
+ "step": 1520
1090
+ },
1091
+ {
1092
+ "epoch": 2.357473035439137,
1093
+ "grad_norm": 0.9330579042434692,
1094
+ "learning_rate": 0.0002,
1095
+ "loss": 0.8856,
1096
+ "step": 1530
1097
+ },
1098
+ {
1099
+ "epoch": 2.3728813559322033,
1100
+ "grad_norm": 1.3631645441055298,
1101
+ "learning_rate": 0.0002,
1102
+ "loss": 0.8679,
1103
+ "step": 1540
1104
+ },
1105
+ {
1106
+ "epoch": 2.3882896764252695,
1107
+ "grad_norm": 1.070383071899414,
1108
+ "learning_rate": 0.0002,
1109
+ "loss": 0.8644,
1110
+ "step": 1550
1111
+ },
1112
+ {
1113
+ "epoch": 2.403697996918336,
1114
+ "grad_norm": 1.5154823064804077,
1115
+ "learning_rate": 0.0002,
1116
+ "loss": 0.9235,
1117
+ "step": 1560
1118
+ },
1119
+ {
1120
+ "epoch": 2.4191063174114023,
1121
+ "grad_norm": 0.8797892332077026,
1122
+ "learning_rate": 0.0002,
1123
+ "loss": 0.9778,
1124
+ "step": 1570
1125
+ },
1126
+ {
1127
+ "epoch": 2.4345146379044684,
1128
+ "grad_norm": 1.0940500497817993,
1129
+ "learning_rate": 0.0002,
1130
+ "loss": 0.8952,
1131
+ "step": 1580
1132
+ },
1133
+ {
1134
+ "epoch": 2.4499229583975346,
1135
+ "grad_norm": 1.6111960411071777,
1136
+ "learning_rate": 0.0002,
1137
+ "loss": 0.9352,
1138
+ "step": 1590
1139
+ },
1140
+ {
1141
+ "epoch": 2.4653312788906008,
1142
+ "grad_norm": 0.9618533849716187,
1143
+ "learning_rate": 0.0002,
1144
+ "loss": 0.8462,
1145
+ "step": 1600
1146
+ },
1147
+ {
1148
+ "epoch": 2.480739599383667,
1149
+ "grad_norm": 1.3644909858703613,
1150
+ "learning_rate": 0.0002,
1151
+ "loss": 0.7929,
1152
+ "step": 1610
1153
+ },
1154
+ {
1155
+ "epoch": 2.4961479198767336,
1156
+ "grad_norm": 0.9000744223594666,
1157
+ "learning_rate": 0.0002,
1158
+ "loss": 0.8482,
1159
+ "step": 1620
1160
+ },
1161
+ {
1162
+ "epoch": 2.5115562403697997,
1163
+ "grad_norm": 1.2393828630447388,
1164
+ "learning_rate": 0.0002,
1165
+ "loss": 0.9031,
1166
+ "step": 1630
1167
+ },
1168
+ {
1169
+ "epoch": 2.526964560862866,
1170
+ "grad_norm": 1.231459617614746,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 0.8986,
1173
+ "step": 1640
1174
+ },
1175
+ {
1176
+ "epoch": 2.542372881355932,
1177
+ "grad_norm": 1.605279564857483,
1178
+ "learning_rate": 0.0002,
1179
+ "loss": 0.8904,
1180
+ "step": 1650
1181
+ },
1182
+ {
1183
+ "epoch": 2.5577812018489983,
1184
+ "grad_norm": 0.9993997812271118,
1185
+ "learning_rate": 0.0002,
1186
+ "loss": 0.9044,
1187
+ "step": 1660
1188
+ },
1189
+ {
1190
+ "epoch": 2.573189522342065,
1191
+ "grad_norm": 0.8446758985519409,
1192
+ "learning_rate": 0.0002,
1193
+ "loss": 0.8079,
1194
+ "step": 1670
1195
+ },
1196
+ {
1197
+ "epoch": 2.588597842835131,
1198
+ "grad_norm": 0.9734597206115723,
1199
+ "learning_rate": 0.0002,
1200
+ "loss": 0.8295,
1201
+ "step": 1680
1202
+ },
1203
+ {
1204
+ "epoch": 2.6040061633281972,
1205
+ "grad_norm": 0.9620639681816101,
1206
+ "learning_rate": 0.0002,
1207
+ "loss": 0.8905,
1208
+ "step": 1690
1209
+ },
1210
+ {
1211
+ "epoch": 2.6194144838212634,
1212
+ "grad_norm": 1.2597887516021729,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 0.893,
1215
+ "step": 1700
1216
+ },
1217
+ {
1218
+ "epoch": 2.6348228043143296,
1219
+ "grad_norm": 0.9959160685539246,
1220
+ "learning_rate": 0.0002,
1221
+ "loss": 0.8567,
1222
+ "step": 1710
1223
+ },
1224
+ {
1225
+ "epoch": 2.650231124807396,
1226
+ "grad_norm": 1.729129672050476,
1227
+ "learning_rate": 0.0002,
1228
+ "loss": 0.7528,
1229
+ "step": 1720
1230
+ },
1231
+ {
1232
+ "epoch": 2.6656394453004624,
1233
+ "grad_norm": 0.8466572761535645,
1234
+ "learning_rate": 0.0002,
1235
+ "loss": 0.8859,
1236
+ "step": 1730
1237
+ },
1238
+ {
1239
+ "epoch": 2.6810477657935285,
1240
+ "grad_norm": 0.9277077913284302,
1241
+ "learning_rate": 0.0002,
1242
+ "loss": 0.9075,
1243
+ "step": 1740
1244
+ },
1245
+ {
1246
+ "epoch": 2.6964560862865947,
1247
+ "grad_norm": 1.1184828281402588,
1248
+ "learning_rate": 0.0002,
1249
+ "loss": 0.8168,
1250
+ "step": 1750
1251
+ },
1252
+ {
1253
+ "epoch": 2.711864406779661,
1254
+ "grad_norm": 1.0716012716293335,
1255
+ "learning_rate": 0.0002,
1256
+ "loss": 0.9063,
1257
+ "step": 1760
1258
+ },
1259
+ {
1260
+ "epoch": 2.7272727272727275,
1261
+ "grad_norm": 1.8334401845932007,
1262
+ "learning_rate": 0.0002,
1263
+ "loss": 0.9066,
1264
+ "step": 1770
1265
+ },
1266
+ {
1267
+ "epoch": 2.7426810477657937,
1268
+ "grad_norm": 1.032091736793518,
1269
+ "learning_rate": 0.0002,
1270
+ "loss": 0.8721,
1271
+ "step": 1780
1272
+ },
1273
+ {
1274
+ "epoch": 2.75808936825886,
1275
+ "grad_norm": 1.0596864223480225,
1276
+ "learning_rate": 0.0002,
1277
+ "loss": 0.9065,
1278
+ "step": 1790
1279
+ },
1280
+ {
1281
+ "epoch": 2.773497688751926,
1282
+ "grad_norm": 0.9625331163406372,
1283
+ "learning_rate": 0.0002,
1284
+ "loss": 0.8729,
1285
+ "step": 1800
1286
+ },
1287
+ {
1288
+ "epoch": 2.788906009244992,
1289
+ "grad_norm": 1.1381267309188843,
1290
+ "learning_rate": 0.0002,
1291
+ "loss": 0.8942,
1292
+ "step": 1810
1293
+ },
1294
+ {
1295
+ "epoch": 2.8043143297380584,
1296
+ "grad_norm": 1.0851205587387085,
1297
+ "learning_rate": 0.0002,
1298
+ "loss": 0.8753,
1299
+ "step": 1820
1300
+ },
1301
+ {
1302
+ "epoch": 2.8197226502311246,
1303
+ "grad_norm": 0.9770793914794922,
1304
+ "learning_rate": 0.0002,
1305
+ "loss": 0.8532,
1306
+ "step": 1830
1307
+ },
1308
+ {
1309
+ "epoch": 2.835130970724191,
1310
+ "grad_norm": 1.067268967628479,
1311
+ "learning_rate": 0.0002,
1312
+ "loss": 0.8686,
1313
+ "step": 1840
1314
+ },
1315
+ {
1316
+ "epoch": 2.8505392912172574,
1317
+ "grad_norm": 1.0252294540405273,
1318
+ "learning_rate": 0.0002,
1319
+ "loss": 0.8931,
1320
+ "step": 1850
1321
+ },
1322
+ {
1323
+ "epoch": 2.8659476117103235,
1324
+ "grad_norm": 1.442360281944275,
1325
+ "learning_rate": 0.0002,
1326
+ "loss": 0.9265,
1327
+ "step": 1860
1328
+ },
1329
+ {
1330
+ "epoch": 2.8813559322033897,
1331
+ "grad_norm": 0.8977653384208679,
1332
+ "learning_rate": 0.0002,
1333
+ "loss": 0.8893,
1334
+ "step": 1870
1335
+ },
1336
+ {
1337
+ "epoch": 2.896764252696456,
1338
+ "grad_norm": 1.0946455001831055,
1339
+ "learning_rate": 0.0002,
1340
+ "loss": 0.8779,
1341
+ "step": 1880
1342
+ },
1343
+ {
1344
+ "epoch": 2.9121725731895225,
1345
+ "grad_norm": 0.9993954300880432,
1346
+ "learning_rate": 0.0002,
1347
+ "loss": 0.8775,
1348
+ "step": 1890
1349
+ },
1350
+ {
1351
+ "epoch": 2.9275808936825887,
1352
+ "grad_norm": 1.1941032409667969,
1353
+ "learning_rate": 0.0002,
1354
+ "loss": 0.8004,
1355
+ "step": 1900
1356
+ },
1357
+ {
1358
+ "epoch": 2.942989214175655,
1359
+ "grad_norm": 1.5158019065856934,
1360
+ "learning_rate": 0.0002,
1361
+ "loss": 0.8862,
1362
+ "step": 1910
1363
+ },
1364
+ {
1365
+ "epoch": 2.958397534668721,
1366
+ "grad_norm": 1.4000548124313354,
1367
+ "learning_rate": 0.0002,
1368
+ "loss": 0.9363,
1369
+ "step": 1920
1370
+ },
1371
+ {
1372
+ "epoch": 2.973805855161787,
1373
+ "grad_norm": 0.9906305074691772,
1374
+ "learning_rate": 0.0002,
1375
+ "loss": 0.8666,
1376
+ "step": 1930
1377
+ },
1378
+ {
1379
+ "epoch": 2.989214175654854,
1380
+ "grad_norm": 1.7382938861846924,
1381
+ "learning_rate": 0.0002,
1382
+ "loss": 0.8434,
1383
+ "step": 1940
1384
+ },
1385
+ {
1386
+ "epoch": 3.0,
1387
+ "eval_loss": 1.2514833211898804,
1388
+ "eval_runtime": 119.8709,
1389
+ "eval_samples_per_second": 3.804,
1390
+ "eval_steps_per_second": 0.476,
1391
+ "step": 1947
1392
+ }
1393
+ ],
1394
+ "logging_steps": 10,
1395
+ "max_steps": 5192,
1396
+ "num_input_tokens_seen": 0,
1397
+ "num_train_epochs": 8,
1398
+ "save_steps": 200,
1399
+ "stateful_callbacks": {
1400
+ "TrainerControl": {
1401
+ "args": {
1402
+ "should_epoch_stop": false,
1403
+ "should_evaluate": false,
1404
+ "should_log": false,
1405
+ "should_save": true,
1406
+ "should_training_stop": false
1407
+ },
1408
+ "attributes": {}
1409
+ }
1410
+ },
1411
+ "total_flos": 8.54240928989184e+16,
1412
+ "train_batch_size": 1,
1413
+ "trial_name": null,
1414
+ "trial_params": null
1415
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-1947/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7da6f114429a9a993fcd6ed877a996e6a07ac3f427895c4f50ec6990a9e85e69
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdfd727c0fdda5e35ef04166620a4ae2e1e0ee99c352b3802122990177ab3f6f
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4fa6fe25b3b146361946d8a416b27b7c69623b52190c1afbb42f0c3f195cb67
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3cd4d7b01ac2d9db58f0da5efa0ca40fad30eed1aa4628a83d2f6f773589ef7
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30efe1d0afc5640279320794cade4d996759e229c72d2184c501c3f8130e7fa7
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/trainer_state.json ADDED
@@ -0,0 +1,1878 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.212496042251587,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-649",
4
+ "epoch": 4.0,
5
+ "eval_steps": 10,
6
+ "global_step": 2596,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.015408320493066256,
13
+ "grad_norm": 0.939333975315094,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.9609,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.030816640986132512,
20
+ "grad_norm": 0.9446700215339661,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5975,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.046224961479198766,
27
+ "grad_norm": 0.7268466353416443,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.5196,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.061633281972265024,
34
+ "grad_norm": 0.8900066018104553,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5021,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.07704160246533127,
41
+ "grad_norm": 4.246077060699463,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4155,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.09244992295839753,
48
+ "grad_norm": 0.7887561321258545,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.4052,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.10785824345146379,
55
+ "grad_norm": 0.6822794675827026,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.215,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.12326656394453005,
62
+ "grad_norm": 0.8871720433235168,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.2524,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.1386748844375963,
69
+ "grad_norm": 0.6524078249931335,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.191,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.15408320493066255,
76
+ "grad_norm": 0.5519863367080688,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.2455,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.1694915254237288,
83
+ "grad_norm": 0.6716212630271912,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.2515,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.18489984591679506,
90
+ "grad_norm": 1.527921199798584,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.2239,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.20030816640986132,
97
+ "grad_norm": 0.6893861293792725,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.2887,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.21571648690292758,
104
+ "grad_norm": 0.5514246821403503,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.1722,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.23112480739599384,
111
+ "grad_norm": 0.5830065608024597,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1946,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.2465331278890601,
118
+ "grad_norm": 0.7411216497421265,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.3105,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.26194144838212635,
125
+ "grad_norm": 0.7470705509185791,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.2008,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2773497688751926,
132
+ "grad_norm": 0.6140725016593933,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.2497,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.29275808936825887,
139
+ "grad_norm": 0.7563071250915527,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.1514,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.3081664098613251,
146
+ "grad_norm": 0.5491266250610352,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.2703,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.3235747303543914,
153
+ "grad_norm": 0.5403220057487488,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.2168,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.3389830508474576,
160
+ "grad_norm": 0.9616869688034058,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.2409,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.3543913713405239,
167
+ "grad_norm": 0.5448639988899231,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.3112,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.3697996918335901,
174
+ "grad_norm": 0.6322043538093567,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.3023,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.3852080123266564,
181
+ "grad_norm": 0.5178093314170837,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.2382,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.40061633281972264,
188
+ "grad_norm": 0.6274669766426086,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.2755,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.41602465331278893,
195
+ "grad_norm": 1.1093109846115112,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.3263,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.43143297380585516,
202
+ "grad_norm": 1.8002032041549683,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.2201,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.44684129429892144,
209
+ "grad_norm": 0.5977614521980286,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.2335,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.4622496147919877,
216
+ "grad_norm": 0.5583769083023071,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.2076,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.4776579352850539,
223
+ "grad_norm": 0.5563502311706543,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.197,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.4930662557781202,
230
+ "grad_norm": 0.9157887101173401,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.164,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.5084745762711864,
237
+ "grad_norm": 0.551705539226532,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.1266,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.5238828967642527,
244
+ "grad_norm": 9.011388778686523,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.2801,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.539291217257319,
251
+ "grad_norm": 0.6527810096740723,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.2024,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.5546995377503852,
258
+ "grad_norm": 1.3121646642684937,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.1424,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.5701078582434514,
265
+ "grad_norm": 0.7247968316078186,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.2555,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.5855161787365177,
272
+ "grad_norm": 0.5430527925491333,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.196,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.600924499229584,
279
+ "grad_norm": 0.6050328612327576,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.1822,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.6163328197226502,
286
+ "grad_norm": 0.49382615089416504,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.2754,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.6317411402157165,
293
+ "grad_norm": 0.5804041624069214,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.2595,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.6471494607087828,
300
+ "grad_norm": 0.524357259273529,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.2926,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.662557781201849,
307
+ "grad_norm": 1.8817486763000488,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.1928,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.6779661016949152,
314
+ "grad_norm": 0.6104950308799744,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.2103,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.6933744221879815,
321
+ "grad_norm": 0.631179928779602,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.2296,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.7087827426810478,
328
+ "grad_norm": 0.6562483310699463,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.1843,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.724191063174114,
335
+ "grad_norm": 0.578336775302887,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.2424,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.7395993836671803,
342
+ "grad_norm": 0.8468874096870422,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.192,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.7550077041602465,
349
+ "grad_norm": 0.7162539958953857,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.2913,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.7704160246533128,
356
+ "grad_norm": 0.7655543684959412,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.2158,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.785824345146379,
363
+ "grad_norm": 0.5711562037467957,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.2637,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.8012326656394453,
370
+ "grad_norm": 0.7273485660552979,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.1277,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.8166409861325116,
377
+ "grad_norm": 0.47050145268440247,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.188,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.8320493066255779,
384
+ "grad_norm": 0.4930959939956665,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.1462,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.847457627118644,
391
+ "grad_norm": 0.553955614566803,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.167,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.8628659476117103,
398
+ "grad_norm": 0.6495056748390198,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.1831,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.8782742681047766,
405
+ "grad_norm": 0.4586578905582428,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.0984,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.8936825885978429,
412
+ "grad_norm": 0.4870392680168152,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.2415,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.9090909090909091,
419
+ "grad_norm": 0.6337013244628906,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.1735,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.9244992295839753,
426
+ "grad_norm": 0.7260186672210693,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.1781,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.9399075500770416,
433
+ "grad_norm": 1.4133737087249756,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.2536,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.9553158705701078,
440
+ "grad_norm": 0.573525071144104,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.2211,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.9707241910631741,
447
+ "grad_norm": 0.8403644561767578,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.11,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.9861325115562404,
454
+ "grad_norm": 0.7665438055992126,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.2932,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 1.0,
461
+ "eval_loss": 1.212496042251587,
462
+ "eval_runtime": 120.3264,
463
+ "eval_samples_per_second": 3.79,
464
+ "eval_steps_per_second": 0.474,
465
+ "step": 649
466
+ },
467
+ {
468
+ "epoch": 1.0015408320493067,
469
+ "grad_norm": 0.6874801516532898,
470
+ "learning_rate": 0.0002,
471
+ "loss": 1.176,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.0169491525423728,
476
+ "grad_norm": 0.6675221920013428,
477
+ "learning_rate": 0.0002,
478
+ "loss": 1.0957,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.0323574730354392,
483
+ "grad_norm": 0.6837265491485596,
484
+ "learning_rate": 0.0002,
485
+ "loss": 1.1616,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.0477657935285054,
490
+ "grad_norm": 0.6796931028366089,
491
+ "learning_rate": 0.0002,
492
+ "loss": 1.045,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.0631741140215716,
497
+ "grad_norm": 0.6596675515174866,
498
+ "learning_rate": 0.0002,
499
+ "loss": 1.0889,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.078582434514638,
504
+ "grad_norm": 0.6630653142929077,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.067,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.0939907550077042,
511
+ "grad_norm": 0.7065498232841492,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.0222,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.1093990755007703,
518
+ "grad_norm": 0.694682240486145,
519
+ "learning_rate": 0.0002,
520
+ "loss": 1.081,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.1248073959938367,
525
+ "grad_norm": 0.8984217047691345,
526
+ "learning_rate": 0.0002,
527
+ "loss": 1.1019,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.140215716486903,
532
+ "grad_norm": 1.0035051107406616,
533
+ "learning_rate": 0.0002,
534
+ "loss": 1.0506,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.1556240369799693,
539
+ "grad_norm": 0.8646948933601379,
540
+ "learning_rate": 0.0002,
541
+ "loss": 1.0502,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.1710323574730355,
546
+ "grad_norm": 0.6287558674812317,
547
+ "learning_rate": 0.0002,
548
+ "loss": 1.0256,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.1864406779661016,
553
+ "grad_norm": 0.6975560784339905,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.051,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.201848998459168,
560
+ "grad_norm": 0.5972192883491516,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.0409,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.2172573189522342,
567
+ "grad_norm": 0.7299932241439819,
568
+ "learning_rate": 0.0002,
569
+ "loss": 1.0837,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.2326656394453004,
574
+ "grad_norm": 0.8376814126968384,
575
+ "learning_rate": 0.0002,
576
+ "loss": 1.1291,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.2480739599383668,
581
+ "grad_norm": 1.117690086364746,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.0809,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.263482280431433,
588
+ "grad_norm": 0.7850839495658875,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.0762,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.2788906009244991,
595
+ "grad_norm": 0.7941734790802002,
596
+ "learning_rate": 0.0002,
597
+ "loss": 1.2278,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.2942989214175655,
602
+ "grad_norm": 0.5682743787765503,
603
+ "learning_rate": 0.0002,
604
+ "loss": 0.9723,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.3097072419106317,
609
+ "grad_norm": 0.7182576060295105,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.0262,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.325115562403698,
616
+ "grad_norm": 0.7436819672584534,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.0801,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.3405238828967643,
623
+ "grad_norm": 0.7665132880210876,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.0705,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.3559322033898304,
630
+ "grad_norm": 1.060669183731079,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.1925,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.3713405238828968,
637
+ "grad_norm": 0.6262772083282471,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.0581,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.386748844375963,
644
+ "grad_norm": 1.010703682899475,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.0934,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.4021571648690292,
651
+ "grad_norm": 0.5669811367988586,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.111,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.4175654853620956,
658
+ "grad_norm": 0.8644649386405945,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.0638,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.4329738058551618,
665
+ "grad_norm": 0.6250067949295044,
666
+ "learning_rate": 0.0002,
667
+ "loss": 1.1973,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.448382126348228,
672
+ "grad_norm": 0.6507946848869324,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.0592,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.4637904468412943,
679
+ "grad_norm": 0.9305022954940796,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.0306,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.4791987673343605,
686
+ "grad_norm": 0.86021888256073,
687
+ "learning_rate": 0.0002,
688
+ "loss": 0.9792,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.494607087827427,
693
+ "grad_norm": 1.1122219562530518,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.0656,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.510015408320493,
700
+ "grad_norm": 0.7431066036224365,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.0745,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.5254237288135593,
707
+ "grad_norm": 1.022744059562683,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.0822,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.5408320493066254,
714
+ "grad_norm": 0.6638363599777222,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.0689,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.5562403697996918,
721
+ "grad_norm": 0.6290505528450012,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.1032,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.5716486902927582,
728
+ "grad_norm": 0.6446037888526917,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.0572,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.5870570107858244,
735
+ "grad_norm": 0.7383618354797363,
736
+ "learning_rate": 0.0002,
737
+ "loss": 1.0814,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.6024653312788906,
742
+ "grad_norm": 3.5893094539642334,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.0643,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.6178736517719567,
749
+ "grad_norm": 0.7388538718223572,
750
+ "learning_rate": 0.0002,
751
+ "loss": 0.9806,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.6332819722650231,
756
+ "grad_norm": 0.7813242077827454,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.1,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.6486902927580893,
763
+ "grad_norm": 0.6643418669700623,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.0463,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.6640986132511557,
770
+ "grad_norm": 0.7817712426185608,
771
+ "learning_rate": 0.0002,
772
+ "loss": 1.0344,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.6795069337442219,
777
+ "grad_norm": 0.8741177916526794,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.0447,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.694915254237288,
784
+ "grad_norm": 0.969813883304596,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.0724,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.7103235747303542,
791
+ "grad_norm": 0.7666333913803101,
792
+ "learning_rate": 0.0002,
793
+ "loss": 0.9887,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.7257318952234206,
798
+ "grad_norm": 0.789859414100647,
799
+ "learning_rate": 0.0002,
800
+ "loss": 0.9159,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.741140215716487,
805
+ "grad_norm": 0.7018347382545471,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.0679,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.7565485362095532,
812
+ "grad_norm": 0.8899882435798645,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.1429,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.7719568567026194,
819
+ "grad_norm": 0.7738426923751831,
820
+ "learning_rate": 0.0002,
821
+ "loss": 0.9214,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.7873651771956856,
826
+ "grad_norm": 1.032209873199463,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.0733,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.802773497688752,
833
+ "grad_norm": 0.7310711741447449,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.0522,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.8181818181818183,
840
+ "grad_norm": 0.8506733775138855,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.0943,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.8335901386748845,
847
+ "grad_norm": 116.00221252441406,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.1349,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.8489984591679507,
854
+ "grad_norm": 0.8819684982299805,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.0595,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.8644067796610169,
861
+ "grad_norm": 0.8846774697303772,
862
+ "learning_rate": 0.0002,
863
+ "loss": 0.995,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.879815100154083,
868
+ "grad_norm": 1.6417866945266724,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.116,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.8952234206471494,
875
+ "grad_norm": 1.1875122785568237,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.044,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.9106317411402158,
882
+ "grad_norm": 0.6520240306854248,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.0322,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.926040061633282,
889
+ "grad_norm": 0.9059738516807556,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.0175,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.9414483821263482,
896
+ "grad_norm": 0.7950983643531799,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.1097,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.9568567026194144,
903
+ "grad_norm": 0.6911653280258179,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.0313,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.9722650231124808,
910
+ "grad_norm": 0.9487978219985962,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.0762,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.9876733436055471,
917
+ "grad_norm": 0.716439425945282,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.1608,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 2.0,
924
+ "eval_loss": 1.215390682220459,
925
+ "eval_runtime": 120.3893,
926
+ "eval_samples_per_second": 3.788,
927
+ "eval_steps_per_second": 0.473,
928
+ "step": 1298
929
+ },
930
+ {
931
+ "epoch": 2.0030816640986133,
932
+ "grad_norm": 0.7292942404747009,
933
+ "learning_rate": 0.0002,
934
+ "loss": 1.0205,
935
+ "step": 1300
936
+ },
937
+ {
938
+ "epoch": 2.0184899845916795,
939
+ "grad_norm": 0.8386905789375305,
940
+ "learning_rate": 0.0002,
941
+ "loss": 0.8264,
942
+ "step": 1310
943
+ },
944
+ {
945
+ "epoch": 2.0338983050847457,
946
+ "grad_norm": 1.114105224609375,
947
+ "learning_rate": 0.0002,
948
+ "loss": 0.7925,
949
+ "step": 1320
950
+ },
951
+ {
952
+ "epoch": 2.049306625577812,
953
+ "grad_norm": 1.068211317062378,
954
+ "learning_rate": 0.0002,
955
+ "loss": 0.8673,
956
+ "step": 1330
957
+ },
958
+ {
959
+ "epoch": 2.0647149460708785,
960
+ "grad_norm": 0.8620569109916687,
961
+ "learning_rate": 0.0002,
962
+ "loss": 0.8883,
963
+ "step": 1340
964
+ },
965
+ {
966
+ "epoch": 2.0801232665639446,
967
+ "grad_norm": 0.8984315991401672,
968
+ "learning_rate": 0.0002,
969
+ "loss": 0.8949,
970
+ "step": 1350
971
+ },
972
+ {
973
+ "epoch": 2.095531587057011,
974
+ "grad_norm": 1.0469365119934082,
975
+ "learning_rate": 0.0002,
976
+ "loss": 0.8992,
977
+ "step": 1360
978
+ },
979
+ {
980
+ "epoch": 2.110939907550077,
981
+ "grad_norm": 0.9392943978309631,
982
+ "learning_rate": 0.0002,
983
+ "loss": 0.8053,
984
+ "step": 1370
985
+ },
986
+ {
987
+ "epoch": 2.126348228043143,
988
+ "grad_norm": 1.2067331075668335,
989
+ "learning_rate": 0.0002,
990
+ "loss": 0.8791,
991
+ "step": 1380
992
+ },
993
+ {
994
+ "epoch": 2.1417565485362093,
995
+ "grad_norm": 0.8019351363182068,
996
+ "learning_rate": 0.0002,
997
+ "loss": 0.7925,
998
+ "step": 1390
999
+ },
1000
+ {
1001
+ "epoch": 2.157164869029276,
1002
+ "grad_norm": 0.9445130228996277,
1003
+ "learning_rate": 0.0002,
1004
+ "loss": 0.8669,
1005
+ "step": 1400
1006
+ },
1007
+ {
1008
+ "epoch": 2.172573189522342,
1009
+ "grad_norm": 0.9806232452392578,
1010
+ "learning_rate": 0.0002,
1011
+ "loss": 0.8293,
1012
+ "step": 1410
1013
+ },
1014
+ {
1015
+ "epoch": 2.1879815100154083,
1016
+ "grad_norm": 1.2135679721832275,
1017
+ "learning_rate": 0.0002,
1018
+ "loss": 0.8499,
1019
+ "step": 1420
1020
+ },
1021
+ {
1022
+ "epoch": 2.2033898305084745,
1023
+ "grad_norm": 1.1036803722381592,
1024
+ "learning_rate": 0.0002,
1025
+ "loss": 0.8908,
1026
+ "step": 1430
1027
+ },
1028
+ {
1029
+ "epoch": 2.2187981510015407,
1030
+ "grad_norm": 0.9235773086547852,
1031
+ "learning_rate": 0.0002,
1032
+ "loss": 0.9725,
1033
+ "step": 1440
1034
+ },
1035
+ {
1036
+ "epoch": 2.2342064714946073,
1037
+ "grad_norm": 1.0520254373550415,
1038
+ "learning_rate": 0.0002,
1039
+ "loss": 0.8176,
1040
+ "step": 1450
1041
+ },
1042
+ {
1043
+ "epoch": 2.2496147919876734,
1044
+ "grad_norm": 1.0121252536773682,
1045
+ "learning_rate": 0.0002,
1046
+ "loss": 0.9138,
1047
+ "step": 1460
1048
+ },
1049
+ {
1050
+ "epoch": 2.2650231124807396,
1051
+ "grad_norm": 1.0718834400177002,
1052
+ "learning_rate": 0.0002,
1053
+ "loss": 0.8722,
1054
+ "step": 1470
1055
+ },
1056
+ {
1057
+ "epoch": 2.280431432973806,
1058
+ "grad_norm": 1.1842551231384277,
1059
+ "learning_rate": 0.0002,
1060
+ "loss": 0.8295,
1061
+ "step": 1480
1062
+ },
1063
+ {
1064
+ "epoch": 2.295839753466872,
1065
+ "grad_norm": 1.2985937595367432,
1066
+ "learning_rate": 0.0002,
1067
+ "loss": 0.8706,
1068
+ "step": 1490
1069
+ },
1070
+ {
1071
+ "epoch": 2.3112480739599386,
1072
+ "grad_norm": 2.0254523754119873,
1073
+ "learning_rate": 0.0002,
1074
+ "loss": 0.873,
1075
+ "step": 1500
1076
+ },
1077
+ {
1078
+ "epoch": 2.3266563944530048,
1079
+ "grad_norm": 1.1501885652542114,
1080
+ "learning_rate": 0.0002,
1081
+ "loss": 0.8569,
1082
+ "step": 1510
1083
+ },
1084
+ {
1085
+ "epoch": 2.342064714946071,
1086
+ "grad_norm": 1.1277996301651,
1087
+ "learning_rate": 0.0002,
1088
+ "loss": 0.9394,
1089
+ "step": 1520
1090
+ },
1091
+ {
1092
+ "epoch": 2.357473035439137,
1093
+ "grad_norm": 0.9330579042434692,
1094
+ "learning_rate": 0.0002,
1095
+ "loss": 0.8856,
1096
+ "step": 1530
1097
+ },
1098
+ {
1099
+ "epoch": 2.3728813559322033,
1100
+ "grad_norm": 1.3631645441055298,
1101
+ "learning_rate": 0.0002,
1102
+ "loss": 0.8679,
1103
+ "step": 1540
1104
+ },
1105
+ {
1106
+ "epoch": 2.3882896764252695,
1107
+ "grad_norm": 1.070383071899414,
1108
+ "learning_rate": 0.0002,
1109
+ "loss": 0.8644,
1110
+ "step": 1550
1111
+ },
1112
+ {
1113
+ "epoch": 2.403697996918336,
1114
+ "grad_norm": 1.5154823064804077,
1115
+ "learning_rate": 0.0002,
1116
+ "loss": 0.9235,
1117
+ "step": 1560
1118
+ },
1119
+ {
1120
+ "epoch": 2.4191063174114023,
1121
+ "grad_norm": 0.8797892332077026,
1122
+ "learning_rate": 0.0002,
1123
+ "loss": 0.9778,
1124
+ "step": 1570
1125
+ },
1126
+ {
1127
+ "epoch": 2.4345146379044684,
1128
+ "grad_norm": 1.0940500497817993,
1129
+ "learning_rate": 0.0002,
1130
+ "loss": 0.8952,
1131
+ "step": 1580
1132
+ },
1133
+ {
1134
+ "epoch": 2.4499229583975346,
1135
+ "grad_norm": 1.6111960411071777,
1136
+ "learning_rate": 0.0002,
1137
+ "loss": 0.9352,
1138
+ "step": 1590
1139
+ },
1140
+ {
1141
+ "epoch": 2.4653312788906008,
1142
+ "grad_norm": 0.9618533849716187,
1143
+ "learning_rate": 0.0002,
1144
+ "loss": 0.8462,
1145
+ "step": 1600
1146
+ },
1147
+ {
1148
+ "epoch": 2.480739599383667,
1149
+ "grad_norm": 1.3644909858703613,
1150
+ "learning_rate": 0.0002,
1151
+ "loss": 0.7929,
1152
+ "step": 1610
1153
+ },
1154
+ {
1155
+ "epoch": 2.4961479198767336,
1156
+ "grad_norm": 0.9000744223594666,
1157
+ "learning_rate": 0.0002,
1158
+ "loss": 0.8482,
1159
+ "step": 1620
1160
+ },
1161
+ {
1162
+ "epoch": 2.5115562403697997,
1163
+ "grad_norm": 1.2393828630447388,
1164
+ "learning_rate": 0.0002,
1165
+ "loss": 0.9031,
1166
+ "step": 1630
1167
+ },
1168
+ {
1169
+ "epoch": 2.526964560862866,
1170
+ "grad_norm": 1.231459617614746,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 0.8986,
1173
+ "step": 1640
1174
+ },
1175
+ {
1176
+ "epoch": 2.542372881355932,
1177
+ "grad_norm": 1.605279564857483,
1178
+ "learning_rate": 0.0002,
1179
+ "loss": 0.8904,
1180
+ "step": 1650
1181
+ },
1182
+ {
1183
+ "epoch": 2.5577812018489983,
1184
+ "grad_norm": 0.9993997812271118,
1185
+ "learning_rate": 0.0002,
1186
+ "loss": 0.9044,
1187
+ "step": 1660
1188
+ },
1189
+ {
1190
+ "epoch": 2.573189522342065,
1191
+ "grad_norm": 0.8446758985519409,
1192
+ "learning_rate": 0.0002,
1193
+ "loss": 0.8079,
1194
+ "step": 1670
1195
+ },
1196
+ {
1197
+ "epoch": 2.588597842835131,
1198
+ "grad_norm": 0.9734597206115723,
1199
+ "learning_rate": 0.0002,
1200
+ "loss": 0.8295,
1201
+ "step": 1680
1202
+ },
1203
+ {
1204
+ "epoch": 2.6040061633281972,
1205
+ "grad_norm": 0.9620639681816101,
1206
+ "learning_rate": 0.0002,
1207
+ "loss": 0.8905,
1208
+ "step": 1690
1209
+ },
1210
+ {
1211
+ "epoch": 2.6194144838212634,
1212
+ "grad_norm": 1.2597887516021729,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 0.893,
1215
+ "step": 1700
1216
+ },
1217
+ {
1218
+ "epoch": 2.6348228043143296,
1219
+ "grad_norm": 0.9959160685539246,
1220
+ "learning_rate": 0.0002,
1221
+ "loss": 0.8567,
1222
+ "step": 1710
1223
+ },
1224
+ {
1225
+ "epoch": 2.650231124807396,
1226
+ "grad_norm": 1.729129672050476,
1227
+ "learning_rate": 0.0002,
1228
+ "loss": 0.7528,
1229
+ "step": 1720
1230
+ },
1231
+ {
1232
+ "epoch": 2.6656394453004624,
1233
+ "grad_norm": 0.8466572761535645,
1234
+ "learning_rate": 0.0002,
1235
+ "loss": 0.8859,
1236
+ "step": 1730
1237
+ },
1238
+ {
1239
+ "epoch": 2.6810477657935285,
1240
+ "grad_norm": 0.9277077913284302,
1241
+ "learning_rate": 0.0002,
1242
+ "loss": 0.9075,
1243
+ "step": 1740
1244
+ },
1245
+ {
1246
+ "epoch": 2.6964560862865947,
1247
+ "grad_norm": 1.1184828281402588,
1248
+ "learning_rate": 0.0002,
1249
+ "loss": 0.8168,
1250
+ "step": 1750
1251
+ },
1252
+ {
1253
+ "epoch": 2.711864406779661,
1254
+ "grad_norm": 1.0716012716293335,
1255
+ "learning_rate": 0.0002,
1256
+ "loss": 0.9063,
1257
+ "step": 1760
1258
+ },
1259
+ {
1260
+ "epoch": 2.7272727272727275,
1261
+ "grad_norm": 1.8334401845932007,
1262
+ "learning_rate": 0.0002,
1263
+ "loss": 0.9066,
1264
+ "step": 1770
1265
+ },
1266
+ {
1267
+ "epoch": 2.7426810477657937,
1268
+ "grad_norm": 1.032091736793518,
1269
+ "learning_rate": 0.0002,
1270
+ "loss": 0.8721,
1271
+ "step": 1780
1272
+ },
1273
+ {
1274
+ "epoch": 2.75808936825886,
1275
+ "grad_norm": 1.0596864223480225,
1276
+ "learning_rate": 0.0002,
1277
+ "loss": 0.9065,
1278
+ "step": 1790
1279
+ },
1280
+ {
1281
+ "epoch": 2.773497688751926,
1282
+ "grad_norm": 0.9625331163406372,
1283
+ "learning_rate": 0.0002,
1284
+ "loss": 0.8729,
1285
+ "step": 1800
1286
+ },
1287
+ {
1288
+ "epoch": 2.788906009244992,
1289
+ "grad_norm": 1.1381267309188843,
1290
+ "learning_rate": 0.0002,
1291
+ "loss": 0.8942,
1292
+ "step": 1810
1293
+ },
1294
+ {
1295
+ "epoch": 2.8043143297380584,
1296
+ "grad_norm": 1.0851205587387085,
1297
+ "learning_rate": 0.0002,
1298
+ "loss": 0.8753,
1299
+ "step": 1820
1300
+ },
1301
+ {
1302
+ "epoch": 2.8197226502311246,
1303
+ "grad_norm": 0.9770793914794922,
1304
+ "learning_rate": 0.0002,
1305
+ "loss": 0.8532,
1306
+ "step": 1830
1307
+ },
1308
+ {
1309
+ "epoch": 2.835130970724191,
1310
+ "grad_norm": 1.067268967628479,
1311
+ "learning_rate": 0.0002,
1312
+ "loss": 0.8686,
1313
+ "step": 1840
1314
+ },
1315
+ {
1316
+ "epoch": 2.8505392912172574,
1317
+ "grad_norm": 1.0252294540405273,
1318
+ "learning_rate": 0.0002,
1319
+ "loss": 0.8931,
1320
+ "step": 1850
1321
+ },
1322
+ {
1323
+ "epoch": 2.8659476117103235,
1324
+ "grad_norm": 1.442360281944275,
1325
+ "learning_rate": 0.0002,
1326
+ "loss": 0.9265,
1327
+ "step": 1860
1328
+ },
1329
+ {
1330
+ "epoch": 2.8813559322033897,
1331
+ "grad_norm": 0.8977653384208679,
1332
+ "learning_rate": 0.0002,
1333
+ "loss": 0.8893,
1334
+ "step": 1870
1335
+ },
1336
+ {
1337
+ "epoch": 2.896764252696456,
1338
+ "grad_norm": 1.0946455001831055,
1339
+ "learning_rate": 0.0002,
1340
+ "loss": 0.8779,
1341
+ "step": 1880
1342
+ },
1343
+ {
1344
+ "epoch": 2.9121725731895225,
1345
+ "grad_norm": 0.9993954300880432,
1346
+ "learning_rate": 0.0002,
1347
+ "loss": 0.8775,
1348
+ "step": 1890
1349
+ },
1350
+ {
1351
+ "epoch": 2.9275808936825887,
1352
+ "grad_norm": 1.1941032409667969,
1353
+ "learning_rate": 0.0002,
1354
+ "loss": 0.8004,
1355
+ "step": 1900
1356
+ },
1357
+ {
1358
+ "epoch": 2.942989214175655,
1359
+ "grad_norm": 1.5158019065856934,
1360
+ "learning_rate": 0.0002,
1361
+ "loss": 0.8862,
1362
+ "step": 1910
1363
+ },
1364
+ {
1365
+ "epoch": 2.958397534668721,
1366
+ "grad_norm": 1.4000548124313354,
1367
+ "learning_rate": 0.0002,
1368
+ "loss": 0.9363,
1369
+ "step": 1920
1370
+ },
1371
+ {
1372
+ "epoch": 2.973805855161787,
1373
+ "grad_norm": 0.9906305074691772,
1374
+ "learning_rate": 0.0002,
1375
+ "loss": 0.8666,
1376
+ "step": 1930
1377
+ },
1378
+ {
1379
+ "epoch": 2.989214175654854,
1380
+ "grad_norm": 1.7382938861846924,
1381
+ "learning_rate": 0.0002,
1382
+ "loss": 0.8434,
1383
+ "step": 1940
1384
+ },
1385
+ {
1386
+ "epoch": 3.0,
1387
+ "eval_loss": 1.2514833211898804,
1388
+ "eval_runtime": 119.8709,
1389
+ "eval_samples_per_second": 3.804,
1390
+ "eval_steps_per_second": 0.476,
1391
+ "step": 1947
1392
+ },
1393
+ {
1394
+ "epoch": 3.00462249614792,
1395
+ "grad_norm": 0.9265438318252563,
1396
+ "learning_rate": 0.0002,
1397
+ "loss": 0.8099,
1398
+ "step": 1950
1399
+ },
1400
+ {
1401
+ "epoch": 3.020030816640986,
1402
+ "grad_norm": 1.2885810136795044,
1403
+ "learning_rate": 0.0002,
1404
+ "loss": 0.6058,
1405
+ "step": 1960
1406
+ },
1407
+ {
1408
+ "epoch": 3.0354391371340523,
1409
+ "grad_norm": 1.150202751159668,
1410
+ "learning_rate": 0.0002,
1411
+ "loss": 0.6065,
1412
+ "step": 1970
1413
+ },
1414
+ {
1415
+ "epoch": 3.0508474576271185,
1416
+ "grad_norm": 1.4145002365112305,
1417
+ "learning_rate": 0.0002,
1418
+ "loss": 0.7225,
1419
+ "step": 1980
1420
+ },
1421
+ {
1422
+ "epoch": 3.066255778120185,
1423
+ "grad_norm": 1.3523074388504028,
1424
+ "learning_rate": 0.0002,
1425
+ "loss": 0.6403,
1426
+ "step": 1990
1427
+ },
1428
+ {
1429
+ "epoch": 3.0816640986132513,
1430
+ "grad_norm": 1.4055354595184326,
1431
+ "learning_rate": 0.0002,
1432
+ "loss": 0.6784,
1433
+ "step": 2000
1434
+ },
1435
+ {
1436
+ "epoch": 3.0970724191063175,
1437
+ "grad_norm": 1.3167393207550049,
1438
+ "learning_rate": 0.0002,
1439
+ "loss": 0.617,
1440
+ "step": 2010
1441
+ },
1442
+ {
1443
+ "epoch": 3.1124807395993837,
1444
+ "grad_norm": 0.8515956997871399,
1445
+ "learning_rate": 0.0002,
1446
+ "loss": 0.6228,
1447
+ "step": 2020
1448
+ },
1449
+ {
1450
+ "epoch": 3.12788906009245,
1451
+ "grad_norm": 1.596145510673523,
1452
+ "learning_rate": 0.0002,
1453
+ "loss": 0.722,
1454
+ "step": 2030
1455
+ },
1456
+ {
1457
+ "epoch": 3.143297380585516,
1458
+ "grad_norm": 1.3406099081039429,
1459
+ "learning_rate": 0.0002,
1460
+ "loss": 0.6582,
1461
+ "step": 2040
1462
+ },
1463
+ {
1464
+ "epoch": 3.1587057010785826,
1465
+ "grad_norm": 1.5566312074661255,
1466
+ "learning_rate": 0.0002,
1467
+ "loss": 0.661,
1468
+ "step": 2050
1469
+ },
1470
+ {
1471
+ "epoch": 3.174114021571649,
1472
+ "grad_norm": 1.060834288597107,
1473
+ "learning_rate": 0.0002,
1474
+ "loss": 0.648,
1475
+ "step": 2060
1476
+ },
1477
+ {
1478
+ "epoch": 3.189522342064715,
1479
+ "grad_norm": 1.534487247467041,
1480
+ "learning_rate": 0.0002,
1481
+ "loss": 0.7131,
1482
+ "step": 2070
1483
+ },
1484
+ {
1485
+ "epoch": 3.204930662557781,
1486
+ "grad_norm": 1.4387457370758057,
1487
+ "learning_rate": 0.0002,
1488
+ "loss": 0.6465,
1489
+ "step": 2080
1490
+ },
1491
+ {
1492
+ "epoch": 3.2203389830508473,
1493
+ "grad_norm": 1.6553950309753418,
1494
+ "learning_rate": 0.0002,
1495
+ "loss": 0.651,
1496
+ "step": 2090
1497
+ },
1498
+ {
1499
+ "epoch": 3.2357473035439135,
1500
+ "grad_norm": 1.4905112981796265,
1501
+ "learning_rate": 0.0002,
1502
+ "loss": 0.6329,
1503
+ "step": 2100
1504
+ },
1505
+ {
1506
+ "epoch": 3.25115562403698,
1507
+ "grad_norm": 1.5865840911865234,
1508
+ "learning_rate": 0.0002,
1509
+ "loss": 0.6835,
1510
+ "step": 2110
1511
+ },
1512
+ {
1513
+ "epoch": 3.2665639445300463,
1514
+ "grad_norm": 1.7313302755355835,
1515
+ "learning_rate": 0.0002,
1516
+ "loss": 0.65,
1517
+ "step": 2120
1518
+ },
1519
+ {
1520
+ "epoch": 3.2819722650231125,
1521
+ "grad_norm": 1.3718984127044678,
1522
+ "learning_rate": 0.0002,
1523
+ "loss": 0.6401,
1524
+ "step": 2130
1525
+ },
1526
+ {
1527
+ "epoch": 3.2973805855161786,
1528
+ "grad_norm": 1.4081032276153564,
1529
+ "learning_rate": 0.0002,
1530
+ "loss": 0.6794,
1531
+ "step": 2140
1532
+ },
1533
+ {
1534
+ "epoch": 3.312788906009245,
1535
+ "grad_norm": 1.2884169816970825,
1536
+ "learning_rate": 0.0002,
1537
+ "loss": 0.7119,
1538
+ "step": 2150
1539
+ },
1540
+ {
1541
+ "epoch": 3.3281972265023114,
1542
+ "grad_norm": 1.0338295698165894,
1543
+ "learning_rate": 0.0002,
1544
+ "loss": 0.6476,
1545
+ "step": 2160
1546
+ },
1547
+ {
1548
+ "epoch": 3.3436055469953776,
1549
+ "grad_norm": 1.5023012161254883,
1550
+ "learning_rate": 0.0002,
1551
+ "loss": 0.6544,
1552
+ "step": 2170
1553
+ },
1554
+ {
1555
+ "epoch": 3.3590138674884438,
1556
+ "grad_norm": 1.1718626022338867,
1557
+ "learning_rate": 0.0002,
1558
+ "loss": 0.6606,
1559
+ "step": 2180
1560
+ },
1561
+ {
1562
+ "epoch": 3.37442218798151,
1563
+ "grad_norm": 1.1776877641677856,
1564
+ "learning_rate": 0.0002,
1565
+ "loss": 0.6734,
1566
+ "step": 2190
1567
+ },
1568
+ {
1569
+ "epoch": 3.389830508474576,
1570
+ "grad_norm": 1.1330585479736328,
1571
+ "learning_rate": 0.0002,
1572
+ "loss": 0.6301,
1573
+ "step": 2200
1574
+ },
1575
+ {
1576
+ "epoch": 3.4052388289676427,
1577
+ "grad_norm": 2.024857997894287,
1578
+ "learning_rate": 0.0002,
1579
+ "loss": 0.7051,
1580
+ "step": 2210
1581
+ },
1582
+ {
1583
+ "epoch": 3.420647149460709,
1584
+ "grad_norm": 1.3598058223724365,
1585
+ "learning_rate": 0.0002,
1586
+ "loss": 0.7233,
1587
+ "step": 2220
1588
+ },
1589
+ {
1590
+ "epoch": 3.436055469953775,
1591
+ "grad_norm": 1.3725299835205078,
1592
+ "learning_rate": 0.0002,
1593
+ "loss": 0.6943,
1594
+ "step": 2230
1595
+ },
1596
+ {
1597
+ "epoch": 3.4514637904468413,
1598
+ "grad_norm": 1.1065977811813354,
1599
+ "learning_rate": 0.0002,
1600
+ "loss": 0.6871,
1601
+ "step": 2240
1602
+ },
1603
+ {
1604
+ "epoch": 3.4668721109399074,
1605
+ "grad_norm": 1.5074089765548706,
1606
+ "learning_rate": 0.0002,
1607
+ "loss": 0.6628,
1608
+ "step": 2250
1609
+ },
1610
+ {
1611
+ "epoch": 3.482280431432974,
1612
+ "grad_norm": 1.114187479019165,
1613
+ "learning_rate": 0.0002,
1614
+ "loss": 0.6847,
1615
+ "step": 2260
1616
+ },
1617
+ {
1618
+ "epoch": 3.4976887519260402,
1619
+ "grad_norm": 1.5719729661941528,
1620
+ "learning_rate": 0.0002,
1621
+ "loss": 0.6934,
1622
+ "step": 2270
1623
+ },
1624
+ {
1625
+ "epoch": 3.5130970724191064,
1626
+ "grad_norm": 1.2377736568450928,
1627
+ "learning_rate": 0.0002,
1628
+ "loss": 0.7264,
1629
+ "step": 2280
1630
+ },
1631
+ {
1632
+ "epoch": 3.5285053929121726,
1633
+ "grad_norm": 1.4295454025268555,
1634
+ "learning_rate": 0.0002,
1635
+ "loss": 0.6777,
1636
+ "step": 2290
1637
+ },
1638
+ {
1639
+ "epoch": 3.5439137134052388,
1640
+ "grad_norm": 0.9240845441818237,
1641
+ "learning_rate": 0.0002,
1642
+ "loss": 0.6465,
1643
+ "step": 2300
1644
+ },
1645
+ {
1646
+ "epoch": 3.559322033898305,
1647
+ "grad_norm": 1.5270299911499023,
1648
+ "learning_rate": 0.0002,
1649
+ "loss": 0.6627,
1650
+ "step": 2310
1651
+ },
1652
+ {
1653
+ "epoch": 3.574730354391371,
1654
+ "grad_norm": 1.2820508480072021,
1655
+ "learning_rate": 0.0002,
1656
+ "loss": 0.7018,
1657
+ "step": 2320
1658
+ },
1659
+ {
1660
+ "epoch": 3.5901386748844377,
1661
+ "grad_norm": 1.2932546138763428,
1662
+ "learning_rate": 0.0002,
1663
+ "loss": 0.7225,
1664
+ "step": 2330
1665
+ },
1666
+ {
1667
+ "epoch": 3.605546995377504,
1668
+ "grad_norm": 1.3201853036880493,
1669
+ "learning_rate": 0.0002,
1670
+ "loss": 0.6815,
1671
+ "step": 2340
1672
+ },
1673
+ {
1674
+ "epoch": 3.62095531587057,
1675
+ "grad_norm": 1.7489187717437744,
1676
+ "learning_rate": 0.0002,
1677
+ "loss": 0.6842,
1678
+ "step": 2350
1679
+ },
1680
+ {
1681
+ "epoch": 3.6363636363636362,
1682
+ "grad_norm": 1.2384065389633179,
1683
+ "learning_rate": 0.0002,
1684
+ "loss": 0.7468,
1685
+ "step": 2360
1686
+ },
1687
+ {
1688
+ "epoch": 3.6517719568567024,
1689
+ "grad_norm": 1.0870963335037231,
1690
+ "learning_rate": 0.0002,
1691
+ "loss": 0.6978,
1692
+ "step": 2370
1693
+ },
1694
+ {
1695
+ "epoch": 3.667180277349769,
1696
+ "grad_norm": 1.4325937032699585,
1697
+ "learning_rate": 0.0002,
1698
+ "loss": 0.6214,
1699
+ "step": 2380
1700
+ },
1701
+ {
1702
+ "epoch": 3.682588597842835,
1703
+ "grad_norm": 1.3232696056365967,
1704
+ "learning_rate": 0.0002,
1705
+ "loss": 0.6737,
1706
+ "step": 2390
1707
+ },
1708
+ {
1709
+ "epoch": 3.6979969183359014,
1710
+ "grad_norm": 1.409141182899475,
1711
+ "learning_rate": 0.0002,
1712
+ "loss": 0.6643,
1713
+ "step": 2400
1714
+ },
1715
+ {
1716
+ "epoch": 3.7134052388289676,
1717
+ "grad_norm": 1.4707226753234863,
1718
+ "learning_rate": 0.0002,
1719
+ "loss": 0.7069,
1720
+ "step": 2410
1721
+ },
1722
+ {
1723
+ "epoch": 3.7288135593220337,
1724
+ "grad_norm": 1.3888318538665771,
1725
+ "learning_rate": 0.0002,
1726
+ "loss": 0.678,
1727
+ "step": 2420
1728
+ },
1729
+ {
1730
+ "epoch": 3.7442218798151004,
1731
+ "grad_norm": 1.4682821035385132,
1732
+ "learning_rate": 0.0002,
1733
+ "loss": 0.6718,
1734
+ "step": 2430
1735
+ },
1736
+ {
1737
+ "epoch": 3.7596302003081665,
1738
+ "grad_norm": 1.2217520475387573,
1739
+ "learning_rate": 0.0002,
1740
+ "loss": 0.7593,
1741
+ "step": 2440
1742
+ },
1743
+ {
1744
+ "epoch": 3.7750385208012327,
1745
+ "grad_norm": 1.3346893787384033,
1746
+ "learning_rate": 0.0002,
1747
+ "loss": 0.6912,
1748
+ "step": 2450
1749
+ },
1750
+ {
1751
+ "epoch": 3.790446841294299,
1752
+ "grad_norm": 1.4342081546783447,
1753
+ "learning_rate": 0.0002,
1754
+ "loss": 0.609,
1755
+ "step": 2460
1756
+ },
1757
+ {
1758
+ "epoch": 3.805855161787365,
1759
+ "grad_norm": 1.5921152830123901,
1760
+ "learning_rate": 0.0002,
1761
+ "loss": 0.6985,
1762
+ "step": 2470
1763
+ },
1764
+ {
1765
+ "epoch": 3.8212634822804317,
1766
+ "grad_norm": 1.7322826385498047,
1767
+ "learning_rate": 0.0002,
1768
+ "loss": 0.6751,
1769
+ "step": 2480
1770
+ },
1771
+ {
1772
+ "epoch": 3.836671802773498,
1773
+ "grad_norm": 1.478434681892395,
1774
+ "learning_rate": 0.0002,
1775
+ "loss": 0.6862,
1776
+ "step": 2490
1777
+ },
1778
+ {
1779
+ "epoch": 3.852080123266564,
1780
+ "grad_norm": 1.3945757150650024,
1781
+ "learning_rate": 0.0002,
1782
+ "loss": 0.6983,
1783
+ "step": 2500
1784
+ },
1785
+ {
1786
+ "epoch": 3.86748844375963,
1787
+ "grad_norm": 1.584877848625183,
1788
+ "learning_rate": 0.0002,
1789
+ "loss": 0.7439,
1790
+ "step": 2510
1791
+ },
1792
+ {
1793
+ "epoch": 3.8828967642526964,
1794
+ "grad_norm": 1.6307404041290283,
1795
+ "learning_rate": 0.0002,
1796
+ "loss": 0.7049,
1797
+ "step": 2520
1798
+ },
1799
+ {
1800
+ "epoch": 3.898305084745763,
1801
+ "grad_norm": 1.4129183292388916,
1802
+ "learning_rate": 0.0002,
1803
+ "loss": 0.6823,
1804
+ "step": 2530
1805
+ },
1806
+ {
1807
+ "epoch": 3.9137134052388287,
1808
+ "grad_norm": 1.7380712032318115,
1809
+ "learning_rate": 0.0002,
1810
+ "loss": 0.7092,
1811
+ "step": 2540
1812
+ },
1813
+ {
1814
+ "epoch": 3.9291217257318953,
1815
+ "grad_norm": 1.4169772863388062,
1816
+ "learning_rate": 0.0002,
1817
+ "loss": 0.7277,
1818
+ "step": 2550
1819
+ },
1820
+ {
1821
+ "epoch": 3.9445300462249615,
1822
+ "grad_norm": 2.520665168762207,
1823
+ "learning_rate": 0.0002,
1824
+ "loss": 0.7369,
1825
+ "step": 2560
1826
+ },
1827
+ {
1828
+ "epoch": 3.9599383667180277,
1829
+ "grad_norm": 1.2402763366699219,
1830
+ "learning_rate": 0.0002,
1831
+ "loss": 0.7815,
1832
+ "step": 2570
1833
+ },
1834
+ {
1835
+ "epoch": 3.975346687211094,
1836
+ "grad_norm": 1.5902904272079468,
1837
+ "learning_rate": 0.0002,
1838
+ "loss": 0.8077,
1839
+ "step": 2580
1840
+ },
1841
+ {
1842
+ "epoch": 3.99075500770416,
1843
+ "grad_norm": 2.2361271381378174,
1844
+ "learning_rate": 0.0002,
1845
+ "loss": 0.7272,
1846
+ "step": 2590
1847
+ },
1848
+ {
1849
+ "epoch": 4.0,
1850
+ "eval_loss": 1.324176549911499,
1851
+ "eval_runtime": 119.304,
1852
+ "eval_samples_per_second": 3.822,
1853
+ "eval_steps_per_second": 0.478,
1854
+ "step": 2596
1855
+ }
1856
+ ],
1857
+ "logging_steps": 10,
1858
+ "max_steps": 5192,
1859
+ "num_input_tokens_seen": 0,
1860
+ "num_train_epochs": 8,
1861
+ "save_steps": 200,
1862
+ "stateful_callbacks": {
1863
+ "TrainerControl": {
1864
+ "args": {
1865
+ "should_epoch_stop": false,
1866
+ "should_evaluate": false,
1867
+ "should_log": false,
1868
+ "should_save": true,
1869
+ "should_training_stop": false
1870
+ },
1871
+ "attributes": {}
1872
+ }
1873
+ },
1874
+ "total_flos": 1.138987905318912e+17,
1875
+ "train_batch_size": 1,
1876
+ "trial_name": null,
1877
+ "trial_params": null
1878
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-2596/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7da6f114429a9a993fcd6ed877a996e6a07ac3f427895c4f50ec6990a9e85e69
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8376e6e852b7a35775bba9f9cd253c6c6f96a59156be0bf4c000538317cc0f1
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2715435ab6c945a12d58e85524c47e8057658981a8747ff049d1d279f6e69bb4
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8807b75eef001623ea445effcb3a4d71a34cccbc985a8af64b260a098158c92f
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43c37addf4b9e6833afbd9789c9c585b9832ff3d163740236c8ce47c5bdb61ee
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-3245/trainer_state.json ADDED
@@ -0,0 +1,2341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.212496042251587,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-3923-sd-1/checkpoint-649",
4
+ "epoch": 5.0,
5
+ "eval_steps": 10,
6
+ "global_step": 3245,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.015408320493066256,
13
+ "grad_norm": 0.939333975315094,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.9609,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.030816640986132512,
20
+ "grad_norm": 0.9446700215339661,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5975,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.046224961479198766,
27
+ "grad_norm": 0.7268466353416443,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.5196,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.061633281972265024,
34
+ "grad_norm": 0.8900066018104553,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5021,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.07704160246533127,
41
+ "grad_norm": 4.246077060699463,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4155,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.09244992295839753,
48
+ "grad_norm": 0.7887561321258545,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.4052,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.10785824345146379,
55
+ "grad_norm": 0.6822794675827026,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.215,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.12326656394453005,
62
+ "grad_norm": 0.8871720433235168,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.2524,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.1386748844375963,
69
+ "grad_norm": 0.6524078249931335,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.191,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.15408320493066255,
76
+ "grad_norm": 0.5519863367080688,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.2455,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.1694915254237288,
83
+ "grad_norm": 0.6716212630271912,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.2515,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.18489984591679506,
90
+ "grad_norm": 1.527921199798584,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.2239,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.20030816640986132,
97
+ "grad_norm": 0.6893861293792725,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.2887,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.21571648690292758,
104
+ "grad_norm": 0.5514246821403503,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.1722,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.23112480739599384,
111
+ "grad_norm": 0.5830065608024597,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1946,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.2465331278890601,
118
+ "grad_norm": 0.7411216497421265,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.3105,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.26194144838212635,
125
+ "grad_norm": 0.7470705509185791,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.2008,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2773497688751926,
132
+ "grad_norm": 0.6140725016593933,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.2497,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.29275808936825887,
139
+ "grad_norm": 0.7563071250915527,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.1514,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.3081664098613251,
146
+ "grad_norm": 0.5491266250610352,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.2703,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.3235747303543914,
153
+ "grad_norm": 0.5403220057487488,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.2168,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.3389830508474576,
160
+ "grad_norm": 0.9616869688034058,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.2409,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.3543913713405239,
167
+ "grad_norm": 0.5448639988899231,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.3112,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.3697996918335901,
174
+ "grad_norm": 0.6322043538093567,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.3023,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.3852080123266564,
181
+ "grad_norm": 0.5178093314170837,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.2382,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.40061633281972264,
188
+ "grad_norm": 0.6274669766426086,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.2755,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.41602465331278893,
195
+ "grad_norm": 1.1093109846115112,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.3263,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.43143297380585516,
202
+ "grad_norm": 1.8002032041549683,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.2201,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.44684129429892144,
209
+ "grad_norm": 0.5977614521980286,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.2335,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.4622496147919877,
216
+ "grad_norm": 0.5583769083023071,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.2076,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.4776579352850539,
223
+ "grad_norm": 0.5563502311706543,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.197,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.4930662557781202,
230
+ "grad_norm": 0.9157887101173401,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.164,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.5084745762711864,
237
+ "grad_norm": 0.551705539226532,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.1266,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.5238828967642527,
244
+ "grad_norm": 9.011388778686523,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.2801,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.539291217257319,
251
+ "grad_norm": 0.6527810096740723,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.2024,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.5546995377503852,
258
+ "grad_norm": 1.3121646642684937,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.1424,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.5701078582434514,
265
+ "grad_norm": 0.7247968316078186,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.2555,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.5855161787365177,
272
+ "grad_norm": 0.5430527925491333,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.196,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.600924499229584,
279
+ "grad_norm": 0.6050328612327576,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.1822,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.6163328197226502,
286
+ "grad_norm": 0.49382615089416504,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.2754,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.6317411402157165,
293
+ "grad_norm": 0.5804041624069214,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.2595,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.6471494607087828,
300
+ "grad_norm": 0.524357259273529,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.2926,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.662557781201849,
307
+ "grad_norm": 1.8817486763000488,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.1928,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.6779661016949152,
314
+ "grad_norm": 0.6104950308799744,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.2103,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.6933744221879815,
321
+ "grad_norm": 0.631179928779602,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.2296,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.7087827426810478,
328
+ "grad_norm": 0.6562483310699463,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.1843,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.724191063174114,
335
+ "grad_norm": 0.578336775302887,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.2424,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.7395993836671803,
342
+ "grad_norm": 0.8468874096870422,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.192,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.7550077041602465,
349
+ "grad_norm": 0.7162539958953857,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.2913,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.7704160246533128,
356
+ "grad_norm": 0.7655543684959412,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.2158,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.785824345146379,
363
+ "grad_norm": 0.5711562037467957,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.2637,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.8012326656394453,
370
+ "grad_norm": 0.7273485660552979,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.1277,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.8166409861325116,
377
+ "grad_norm": 0.47050145268440247,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.188,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.8320493066255779,
384
+ "grad_norm": 0.4930959939956665,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.1462,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.847457627118644,
391
+ "grad_norm": 0.553955614566803,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.167,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.8628659476117103,
398
+ "grad_norm": 0.6495056748390198,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.1831,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.8782742681047766,
405
+ "grad_norm": 0.4586578905582428,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.0984,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.8936825885978429,
412
+ "grad_norm": 0.4870392680168152,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.2415,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.9090909090909091,
419
+ "grad_norm": 0.6337013244628906,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.1735,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.9244992295839753,
426
+ "grad_norm": 0.7260186672210693,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.1781,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.9399075500770416,
433
+ "grad_norm": 1.4133737087249756,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.2536,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.9553158705701078,
440
+ "grad_norm": 0.573525071144104,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.2211,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.9707241910631741,
447
+ "grad_norm": 0.8403644561767578,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.11,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.9861325115562404,
454
+ "grad_norm": 0.7665438055992126,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.2932,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 1.0,
461
+ "eval_loss": 1.212496042251587,
462
+ "eval_runtime": 120.3264,
463
+ "eval_samples_per_second": 3.79,
464
+ "eval_steps_per_second": 0.474,
465
+ "step": 649
466
+ },
467
+ {
468
+ "epoch": 1.0015408320493067,
469
+ "grad_norm": 0.6874801516532898,
470
+ "learning_rate": 0.0002,
471
+ "loss": 1.176,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.0169491525423728,
476
+ "grad_norm": 0.6675221920013428,
477
+ "learning_rate": 0.0002,
478
+ "loss": 1.0957,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.0323574730354392,
483
+ "grad_norm": 0.6837265491485596,
484
+ "learning_rate": 0.0002,
485
+ "loss": 1.1616,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.0477657935285054,
490
+ "grad_norm": 0.6796931028366089,
491
+ "learning_rate": 0.0002,
492
+ "loss": 1.045,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.0631741140215716,
497
+ "grad_norm": 0.6596675515174866,
498
+ "learning_rate": 0.0002,
499
+ "loss": 1.0889,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.078582434514638,
504
+ "grad_norm": 0.6630653142929077,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.067,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.0939907550077042,
511
+ "grad_norm": 0.7065498232841492,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.0222,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.1093990755007703,
518
+ "grad_norm": 0.694682240486145,
519
+ "learning_rate": 0.0002,
520
+ "loss": 1.081,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.1248073959938367,
525
+ "grad_norm": 0.8984217047691345,
526
+ "learning_rate": 0.0002,
527
+ "loss": 1.1019,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.140215716486903,
532
+ "grad_norm": 1.0035051107406616,
533
+ "learning_rate": 0.0002,
534
+ "loss": 1.0506,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.1556240369799693,
539
+ "grad_norm": 0.8646948933601379,
540
+ "learning_rate": 0.0002,
541
+ "loss": 1.0502,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.1710323574730355,
546
+ "grad_norm": 0.6287558674812317,
547
+ "learning_rate": 0.0002,
548
+ "loss": 1.0256,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.1864406779661016,
553
+ "grad_norm": 0.6975560784339905,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.051,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.201848998459168,
560
+ "grad_norm": 0.5972192883491516,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.0409,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.2172573189522342,
567
+ "grad_norm": 0.7299932241439819,
568
+ "learning_rate": 0.0002,
569
+ "loss": 1.0837,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.2326656394453004,
574
+ "grad_norm": 0.8376814126968384,
575
+ "learning_rate": 0.0002,
576
+ "loss": 1.1291,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.2480739599383668,
581
+ "grad_norm": 1.117690086364746,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.0809,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.263482280431433,
588
+ "grad_norm": 0.7850839495658875,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.0762,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.2788906009244991,
595
+ "grad_norm": 0.7941734790802002,
596
+ "learning_rate": 0.0002,
597
+ "loss": 1.2278,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.2942989214175655,
602
+ "grad_norm": 0.5682743787765503,
603
+ "learning_rate": 0.0002,
604
+ "loss": 0.9723,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.3097072419106317,
609
+ "grad_norm": 0.7182576060295105,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.0262,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.325115562403698,
616
+ "grad_norm": 0.7436819672584534,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.0801,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.3405238828967643,
623
+ "grad_norm": 0.7665132880210876,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.0705,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.3559322033898304,
630
+ "grad_norm": 1.060669183731079,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.1925,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.3713405238828968,
637
+ "grad_norm": 0.6262772083282471,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.0581,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.386748844375963,
644
+ "grad_norm": 1.010703682899475,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.0934,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.4021571648690292,
651
+ "grad_norm": 0.5669811367988586,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.111,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.4175654853620956,
658
+ "grad_norm": 0.8644649386405945,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.0638,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.4329738058551618,
665
+ "grad_norm": 0.6250067949295044,
666
+ "learning_rate": 0.0002,
667
+ "loss": 1.1973,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.448382126348228,
672
+ "grad_norm": 0.6507946848869324,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.0592,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.4637904468412943,
679
+ "grad_norm": 0.9305022954940796,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.0306,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.4791987673343605,
686
+ "grad_norm": 0.86021888256073,
687
+ "learning_rate": 0.0002,
688
+ "loss": 0.9792,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.494607087827427,
693
+ "grad_norm": 1.1122219562530518,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.0656,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.510015408320493,
700
+ "grad_norm": 0.7431066036224365,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.0745,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.5254237288135593,
707
+ "grad_norm": 1.022744059562683,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.0822,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.5408320493066254,
714
+ "grad_norm": 0.6638363599777222,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.0689,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.5562403697996918,
721
+ "grad_norm": 0.6290505528450012,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.1032,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.5716486902927582,
728
+ "grad_norm": 0.6446037888526917,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.0572,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.5870570107858244,
735
+ "grad_norm": 0.7383618354797363,
736
+ "learning_rate": 0.0002,
737
+ "loss": 1.0814,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.6024653312788906,
742
+ "grad_norm": 3.5893094539642334,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.0643,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.6178736517719567,
749
+ "grad_norm": 0.7388538718223572,
750
+ "learning_rate": 0.0002,
751
+ "loss": 0.9806,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.6332819722650231,
756
+ "grad_norm": 0.7813242077827454,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.1,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.6486902927580893,
763
+ "grad_norm": 0.6643418669700623,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.0463,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.6640986132511557,
770
+ "grad_norm": 0.7817712426185608,
771
+ "learning_rate": 0.0002,
772
+ "loss": 1.0344,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.6795069337442219,
777
+ "grad_norm": 0.8741177916526794,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.0447,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.694915254237288,
784
+ "grad_norm": 0.969813883304596,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.0724,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.7103235747303542,
791
+ "grad_norm": 0.7666333913803101,
792
+ "learning_rate": 0.0002,
793
+ "loss": 0.9887,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.7257318952234206,
798
+ "grad_norm": 0.789859414100647,
799
+ "learning_rate": 0.0002,
800
+ "loss": 0.9159,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.741140215716487,
805
+ "grad_norm": 0.7018347382545471,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.0679,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.7565485362095532,
812
+ "grad_norm": 0.8899882435798645,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.1429,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.7719568567026194,
819
+ "grad_norm": 0.7738426923751831,
820
+ "learning_rate": 0.0002,
821
+ "loss": 0.9214,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.7873651771956856,
826
+ "grad_norm": 1.032209873199463,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.0733,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.802773497688752,
833
+ "grad_norm": 0.7310711741447449,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.0522,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.8181818181818183,
840
+ "grad_norm": 0.8506733775138855,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.0943,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.8335901386748845,
847
+ "grad_norm": 116.00221252441406,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.1349,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.8489984591679507,
854
+ "grad_norm": 0.8819684982299805,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.0595,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.8644067796610169,
861
+ "grad_norm": 0.8846774697303772,
862
+ "learning_rate": 0.0002,
863
+ "loss": 0.995,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.879815100154083,
868
+ "grad_norm": 1.6417866945266724,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.116,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.8952234206471494,
875
+ "grad_norm": 1.1875122785568237,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.044,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.9106317411402158,
882
+ "grad_norm": 0.6520240306854248,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.0322,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.926040061633282,
889
+ "grad_norm": 0.9059738516807556,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.0175,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.9414483821263482,
896
+ "grad_norm": 0.7950983643531799,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.1097,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.9568567026194144,
903
+ "grad_norm": 0.6911653280258179,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.0313,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.9722650231124808,
910
+ "grad_norm": 0.9487978219985962,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.0762,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.9876733436055471,
917
+ "grad_norm": 0.716439425945282,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.1608,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 2.0,
924
+ "eval_loss": 1.215390682220459,
925
+ "eval_runtime": 120.3893,
926
+ "eval_samples_per_second": 3.788,
927
+ "eval_steps_per_second": 0.473,
928
+ "step": 1298
929
+ },
930
+ {
931
+ "epoch": 2.0030816640986133,
932
+ "grad_norm": 0.7292942404747009,
933
+ "learning_rate": 0.0002,
934
+ "loss": 1.0205,
935
+ "step": 1300
936
+ },
937
+ {
938
+ "epoch": 2.0184899845916795,
939
+ "grad_norm": 0.8386905789375305,
940
+ "learning_rate": 0.0002,
941
+ "loss": 0.8264,
942
+ "step": 1310
943
+ },
944
+ {
945
+ "epoch": 2.0338983050847457,
946
+ "grad_norm": 1.114105224609375,
947
+ "learning_rate": 0.0002,
948
+ "loss": 0.7925,
949
+ "step": 1320
950
+ },
951
+ {
952
+ "epoch": 2.049306625577812,
953
+ "grad_norm": 1.068211317062378,
954
+ "learning_rate": 0.0002,
955
+ "loss": 0.8673,
956
+ "step": 1330
957
+ },
958
+ {
959
+ "epoch": 2.0647149460708785,
960
+ "grad_norm": 0.8620569109916687,
961
+ "learning_rate": 0.0002,
962
+ "loss": 0.8883,
963
+ "step": 1340
964
+ },
965
+ {
966
+ "epoch": 2.0801232665639446,
967
+ "grad_norm": 0.8984315991401672,
968
+ "learning_rate": 0.0002,
969
+ "loss": 0.8949,
970
+ "step": 1350
971
+ },
972
+ {
973
+ "epoch": 2.095531587057011,
974
+ "grad_norm": 1.0469365119934082,
975
+ "learning_rate": 0.0002,
976
+ "loss": 0.8992,
977
+ "step": 1360
978
+ },
979
+ {
980
+ "epoch": 2.110939907550077,
981
+ "grad_norm": 0.9392943978309631,
982
+ "learning_rate": 0.0002,
983
+ "loss": 0.8053,
984
+ "step": 1370
985
+ },
986
+ {
987
+ "epoch": 2.126348228043143,
988
+ "grad_norm": 1.2067331075668335,
989
+ "learning_rate": 0.0002,
990
+ "loss": 0.8791,
991
+ "step": 1380
992
+ },
993
+ {
994
+ "epoch": 2.1417565485362093,
995
+ "grad_norm": 0.8019351363182068,
996
+ "learning_rate": 0.0002,
997
+ "loss": 0.7925,
998
+ "step": 1390
999
+ },
1000
+ {
1001
+ "epoch": 2.157164869029276,
1002
+ "grad_norm": 0.9445130228996277,
1003
+ "learning_rate": 0.0002,
1004
+ "loss": 0.8669,
1005
+ "step": 1400
1006
+ },
1007
+ {
1008
+ "epoch": 2.172573189522342,
1009
+ "grad_norm": 0.9806232452392578,
1010
+ "learning_rate": 0.0002,
1011
+ "loss": 0.8293,
1012
+ "step": 1410
1013
+ },
1014
+ {
1015
+ "epoch": 2.1879815100154083,
1016
+ "grad_norm": 1.2135679721832275,
1017
+ "learning_rate": 0.0002,
1018
+ "loss": 0.8499,
1019
+ "step": 1420
1020
+ },
1021
+ {
1022
+ "epoch": 2.2033898305084745,
1023
+ "grad_norm": 1.1036803722381592,
1024
+ "learning_rate": 0.0002,
1025
+ "loss": 0.8908,
1026
+ "step": 1430
1027
+ },
1028
+ {
1029
+ "epoch": 2.2187981510015407,
1030
+ "grad_norm": 0.9235773086547852,
1031
+ "learning_rate": 0.0002,
1032
+ "loss": 0.9725,
1033
+ "step": 1440
1034
+ },
1035
+ {
1036
+ "epoch": 2.2342064714946073,
1037
+ "grad_norm": 1.0520254373550415,
1038
+ "learning_rate": 0.0002,
1039
+ "loss": 0.8176,
1040
+ "step": 1450
1041
+ },
1042
+ {
1043
+ "epoch": 2.2496147919876734,
1044
+ "grad_norm": 1.0121252536773682,
1045
+ "learning_rate": 0.0002,
1046
+ "loss": 0.9138,
1047
+ "step": 1460
1048
+ },
1049
+ {
1050
+ "epoch": 2.2650231124807396,
1051
+ "grad_norm": 1.0718834400177002,
1052
+ "learning_rate": 0.0002,
1053
+ "loss": 0.8722,
1054
+ "step": 1470
1055
+ },
1056
+ {
1057
+ "epoch": 2.280431432973806,
1058
+ "grad_norm": 1.1842551231384277,
1059
+ "learning_rate": 0.0002,
1060
+ "loss": 0.8295,
1061
+ "step": 1480
1062
+ },
1063
+ {
1064
+ "epoch": 2.295839753466872,
1065
+ "grad_norm": 1.2985937595367432,
1066
+ "learning_rate": 0.0002,
1067
+ "loss": 0.8706,
1068
+ "step": 1490
1069
+ },
1070
+ {
1071
+ "epoch": 2.3112480739599386,
1072
+ "grad_norm": 2.0254523754119873,
1073
+ "learning_rate": 0.0002,
1074
+ "loss": 0.873,
1075
+ "step": 1500
1076
+ },
1077
+ {
1078
+ "epoch": 2.3266563944530048,
1079
+ "grad_norm": 1.1501885652542114,
1080
+ "learning_rate": 0.0002,
1081
+ "loss": 0.8569,
1082
+ "step": 1510
1083
+ },
1084
+ {
1085
+ "epoch": 2.342064714946071,
1086
+ "grad_norm": 1.1277996301651,
1087
+ "learning_rate": 0.0002,
1088
+ "loss": 0.9394,
1089
+ "step": 1520
1090
+ },
1091
+ {
1092
+ "epoch": 2.357473035439137,
1093
+ "grad_norm": 0.9330579042434692,
1094
+ "learning_rate": 0.0002,
1095
+ "loss": 0.8856,
1096
+ "step": 1530
1097
+ },
1098
+ {
1099
+ "epoch": 2.3728813559322033,
1100
+ "grad_norm": 1.3631645441055298,
1101
+ "learning_rate": 0.0002,
1102
+ "loss": 0.8679,
1103
+ "step": 1540
1104
+ },
1105
+ {
1106
+ "epoch": 2.3882896764252695,
1107
+ "grad_norm": 1.070383071899414,
1108
+ "learning_rate": 0.0002,
1109
+ "loss": 0.8644,
1110
+ "step": 1550
1111
+ },
1112
+ {
1113
+ "epoch": 2.403697996918336,
1114
+ "grad_norm": 1.5154823064804077,
1115
+ "learning_rate": 0.0002,
1116
+ "loss": 0.9235,
1117
+ "step": 1560
1118
+ },
1119
+ {
1120
+ "epoch": 2.4191063174114023,
1121
+ "grad_norm": 0.8797892332077026,
1122
+ "learning_rate": 0.0002,
1123
+ "loss": 0.9778,
1124
+ "step": 1570
1125
+ },
1126
+ {
1127
+ "epoch": 2.4345146379044684,
1128
+ "grad_norm": 1.0940500497817993,
1129
+ "learning_rate": 0.0002,
1130
+ "loss": 0.8952,
1131
+ "step": 1580
1132
+ },
1133
+ {
1134
+ "epoch": 2.4499229583975346,
1135
+ "grad_norm": 1.6111960411071777,
1136
+ "learning_rate": 0.0002,
1137
+ "loss": 0.9352,
1138
+ "step": 1590
1139
+ },
1140
+ {
1141
+ "epoch": 2.4653312788906008,
1142
+ "grad_norm": 0.9618533849716187,
1143
+ "learning_rate": 0.0002,
1144
+ "loss": 0.8462,
1145
+ "step": 1600
1146
+ },
1147
+ {
1148
+ "epoch": 2.480739599383667,
1149
+ "grad_norm": 1.3644909858703613,
1150
+ "learning_rate": 0.0002,
1151
+ "loss": 0.7929,
1152
+ "step": 1610
1153
+ },
1154
+ {
1155
+ "epoch": 2.4961479198767336,
1156
+ "grad_norm": 0.9000744223594666,
1157
+ "learning_rate": 0.0002,
1158
+ "loss": 0.8482,
1159
+ "step": 1620
1160
+ },
1161
+ {
1162
+ "epoch": 2.5115562403697997,
1163
+ "grad_norm": 1.2393828630447388,
1164
+ "learning_rate": 0.0002,
1165
+ "loss": 0.9031,
1166
+ "step": 1630
1167
+ },
1168
+ {
1169
+ "epoch": 2.526964560862866,
1170
+ "grad_norm": 1.231459617614746,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 0.8986,
1173
+ "step": 1640
1174
+ },
1175
+ {
1176
+ "epoch": 2.542372881355932,
1177
+ "grad_norm": 1.605279564857483,
1178
+ "learning_rate": 0.0002,
1179
+ "loss": 0.8904,
1180
+ "step": 1650
1181
+ },
1182
+ {
1183
+ "epoch": 2.5577812018489983,
1184
+ "grad_norm": 0.9993997812271118,
1185
+ "learning_rate": 0.0002,
1186
+ "loss": 0.9044,
1187
+ "step": 1660
1188
+ },
1189
+ {
1190
+ "epoch": 2.573189522342065,
1191
+ "grad_norm": 0.8446758985519409,
1192
+ "learning_rate": 0.0002,
1193
+ "loss": 0.8079,
1194
+ "step": 1670
1195
+ },
1196
+ {
1197
+ "epoch": 2.588597842835131,
1198
+ "grad_norm": 0.9734597206115723,
1199
+ "learning_rate": 0.0002,
1200
+ "loss": 0.8295,
1201
+ "step": 1680
1202
+ },
1203
+ {
1204
+ "epoch": 2.6040061633281972,
1205
+ "grad_norm": 0.9620639681816101,
1206
+ "learning_rate": 0.0002,
1207
+ "loss": 0.8905,
1208
+ "step": 1690
1209
+ },
1210
+ {
1211
+ "epoch": 2.6194144838212634,
1212
+ "grad_norm": 1.2597887516021729,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 0.893,
1215
+ "step": 1700
1216
+ },
1217
+ {
1218
+ "epoch": 2.6348228043143296,
1219
+ "grad_norm": 0.9959160685539246,
1220
+ "learning_rate": 0.0002,
1221
+ "loss": 0.8567,
1222
+ "step": 1710
1223
+ },
1224
+ {
1225
+ "epoch": 2.650231124807396,
1226
+ "grad_norm": 1.729129672050476,
1227
+ "learning_rate": 0.0002,
1228
+ "loss": 0.7528,
1229
+ "step": 1720
1230
+ },
1231
+ {
1232
+ "epoch": 2.6656394453004624,
1233
+ "grad_norm": 0.8466572761535645,
1234
+ "learning_rate": 0.0002,
1235
+ "loss": 0.8859,
1236
+ "step": 1730
1237
+ },
1238
+ {
1239
+ "epoch": 2.6810477657935285,
1240
+ "grad_norm": 0.9277077913284302,
1241
+ "learning_rate": 0.0002,
1242
+ "loss": 0.9075,
1243
+ "step": 1740
1244
+ },
1245
+ {
1246
+ "epoch": 2.6964560862865947,
1247
+ "grad_norm": 1.1184828281402588,
1248
+ "learning_rate": 0.0002,
1249
+ "loss": 0.8168,
1250
+ "step": 1750
1251
+ },
1252
+ {
1253
+ "epoch": 2.711864406779661,
1254
+ "grad_norm": 1.0716012716293335,
1255
+ "learning_rate": 0.0002,
1256
+ "loss": 0.9063,
1257
+ "step": 1760
1258
+ },
1259
+ {
1260
+ "epoch": 2.7272727272727275,
1261
+ "grad_norm": 1.8334401845932007,
1262
+ "learning_rate": 0.0002,
1263
+ "loss": 0.9066,
1264
+ "step": 1770
1265
+ },
1266
+ {
1267
+ "epoch": 2.7426810477657937,
1268
+ "grad_norm": 1.032091736793518,
1269
+ "learning_rate": 0.0002,
1270
+ "loss": 0.8721,
1271
+ "step": 1780
1272
+ },
1273
+ {
1274
+ "epoch": 2.75808936825886,
1275
+ "grad_norm": 1.0596864223480225,
1276
+ "learning_rate": 0.0002,
1277
+ "loss": 0.9065,
1278
+ "step": 1790
1279
+ },
1280
+ {
1281
+ "epoch": 2.773497688751926,
1282
+ "grad_norm": 0.9625331163406372,
1283
+ "learning_rate": 0.0002,
1284
+ "loss": 0.8729,
1285
+ "step": 1800
1286
+ },
1287
+ {
1288
+ "epoch": 2.788906009244992,
1289
+ "grad_norm": 1.1381267309188843,
1290
+ "learning_rate": 0.0002,
1291
+ "loss": 0.8942,
1292
+ "step": 1810
1293
+ },
1294
+ {
1295
+ "epoch": 2.8043143297380584,
1296
+ "grad_norm": 1.0851205587387085,
1297
+ "learning_rate": 0.0002,
1298
+ "loss": 0.8753,
1299
+ "step": 1820
1300
+ },
1301
+ {
1302
+ "epoch": 2.8197226502311246,
1303
+ "grad_norm": 0.9770793914794922,
1304
+ "learning_rate": 0.0002,
1305
+ "loss": 0.8532,
1306
+ "step": 1830
1307
+ },
1308
+ {
1309
+ "epoch": 2.835130970724191,
1310
+ "grad_norm": 1.067268967628479,
1311
+ "learning_rate": 0.0002,
1312
+ "loss": 0.8686,
1313
+ "step": 1840
1314
+ },
1315
+ {
1316
+ "epoch": 2.8505392912172574,
1317
+ "grad_norm": 1.0252294540405273,
1318
+ "learning_rate": 0.0002,
1319
+ "loss": 0.8931,
1320
+ "step": 1850
1321
+ },
1322
+ {
1323
+ "epoch": 2.8659476117103235,
1324
+ "grad_norm": 1.442360281944275,
1325
+ "learning_rate": 0.0002,
1326
+ "loss": 0.9265,
1327
+ "step": 1860
1328
+ },
1329
+ {
1330
+ "epoch": 2.8813559322033897,
1331
+ "grad_norm": 0.8977653384208679,
1332
+ "learning_rate": 0.0002,
1333
+ "loss": 0.8893,
1334
+ "step": 1870
1335
+ },
1336
+ {
1337
+ "epoch": 2.896764252696456,
1338
+ "grad_norm": 1.0946455001831055,
1339
+ "learning_rate": 0.0002,
1340
+ "loss": 0.8779,
1341
+ "step": 1880
1342
+ },
1343
+ {
1344
+ "epoch": 2.9121725731895225,
1345
+ "grad_norm": 0.9993954300880432,
1346
+ "learning_rate": 0.0002,
1347
+ "loss": 0.8775,
1348
+ "step": 1890
1349
+ },
1350
+ {
1351
+ "epoch": 2.9275808936825887,
1352
+ "grad_norm": 1.1941032409667969,
1353
+ "learning_rate": 0.0002,
1354
+ "loss": 0.8004,
1355
+ "step": 1900
1356
+ },
1357
+ {
1358
+ "epoch": 2.942989214175655,
1359
+ "grad_norm": 1.5158019065856934,
1360
+ "learning_rate": 0.0002,
1361
+ "loss": 0.8862,
1362
+ "step": 1910
1363
+ },
1364
+ {
1365
+ "epoch": 2.958397534668721,
1366
+ "grad_norm": 1.4000548124313354,
1367
+ "learning_rate": 0.0002,
1368
+ "loss": 0.9363,
1369
+ "step": 1920
1370
+ },
1371
+ {
1372
+ "epoch": 2.973805855161787,
1373
+ "grad_norm": 0.9906305074691772,
1374
+ "learning_rate": 0.0002,
1375
+ "loss": 0.8666,
1376
+ "step": 1930
1377
+ },
1378
+ {
1379
+ "epoch": 2.989214175654854,
1380
+ "grad_norm": 1.7382938861846924,
1381
+ "learning_rate": 0.0002,
1382
+ "loss": 0.8434,
1383
+ "step": 1940
1384
+ },
1385
+ {
1386
+ "epoch": 3.0,
1387
+ "eval_loss": 1.2514833211898804,
1388
+ "eval_runtime": 119.8709,
1389
+ "eval_samples_per_second": 3.804,
1390
+ "eval_steps_per_second": 0.476,
1391
+ "step": 1947
1392
+ },
1393
+ {
1394
+ "epoch": 3.00462249614792,
1395
+ "grad_norm": 0.9265438318252563,
1396
+ "learning_rate": 0.0002,
1397
+ "loss": 0.8099,
1398
+ "step": 1950
1399
+ },
1400
+ {
1401
+ "epoch": 3.020030816640986,
1402
+ "grad_norm": 1.2885810136795044,
1403
+ "learning_rate": 0.0002,
1404
+ "loss": 0.6058,
1405
+ "step": 1960
1406
+ },
1407
+ {
1408
+ "epoch": 3.0354391371340523,
1409
+ "grad_norm": 1.150202751159668,
1410
+ "learning_rate": 0.0002,
1411
+ "loss": 0.6065,
1412
+ "step": 1970
1413
+ },
1414
+ {
1415
+ "epoch": 3.0508474576271185,
1416
+ "grad_norm": 1.4145002365112305,
1417
+ "learning_rate": 0.0002,
1418
+ "loss": 0.7225,
1419
+ "step": 1980
1420
+ },
1421
+ {
1422
+ "epoch": 3.066255778120185,
1423
+ "grad_norm": 1.3523074388504028,
1424
+ "learning_rate": 0.0002,
1425
+ "loss": 0.6403,
1426
+ "step": 1990
1427
+ },
1428
+ {
1429
+ "epoch": 3.0816640986132513,
1430
+ "grad_norm": 1.4055354595184326,
1431
+ "learning_rate": 0.0002,
1432
+ "loss": 0.6784,
1433
+ "step": 2000
1434
+ },
1435
+ {
1436
+ "epoch": 3.0970724191063175,
1437
+ "grad_norm": 1.3167393207550049,
1438
+ "learning_rate": 0.0002,
1439
+ "loss": 0.617,
1440
+ "step": 2010
1441
+ },
1442
+ {
1443
+ "epoch": 3.1124807395993837,
1444
+ "grad_norm": 0.8515956997871399,
1445
+ "learning_rate": 0.0002,
1446
+ "loss": 0.6228,
1447
+ "step": 2020
1448
+ },
1449
+ {
1450
+ "epoch": 3.12788906009245,
1451
+ "grad_norm": 1.596145510673523,
1452
+ "learning_rate": 0.0002,
1453
+ "loss": 0.722,
1454
+ "step": 2030
1455
+ },
1456
+ {
1457
+ "epoch": 3.143297380585516,
1458
+ "grad_norm": 1.3406099081039429,
1459
+ "learning_rate": 0.0002,
1460
+ "loss": 0.6582,
1461
+ "step": 2040
1462
+ },
1463
+ {
1464
+ "epoch": 3.1587057010785826,
1465
+ "grad_norm": 1.5566312074661255,
1466
+ "learning_rate": 0.0002,
1467
+ "loss": 0.661,
1468
+ "step": 2050
1469
+ },
1470
+ {
1471
+ "epoch": 3.174114021571649,
1472
+ "grad_norm": 1.060834288597107,
1473
+ "learning_rate": 0.0002,
1474
+ "loss": 0.648,
1475
+ "step": 2060
1476
+ },
1477
+ {
1478
+ "epoch": 3.189522342064715,
1479
+ "grad_norm": 1.534487247467041,
1480
+ "learning_rate": 0.0002,
1481
+ "loss": 0.7131,
1482
+ "step": 2070
1483
+ },
1484
+ {
1485
+ "epoch": 3.204930662557781,
1486
+ "grad_norm": 1.4387457370758057,
1487
+ "learning_rate": 0.0002,
1488
+ "loss": 0.6465,
1489
+ "step": 2080
1490
+ },
1491
+ {
1492
+ "epoch": 3.2203389830508473,
1493
+ "grad_norm": 1.6553950309753418,
1494
+ "learning_rate": 0.0002,
1495
+ "loss": 0.651,
1496
+ "step": 2090
1497
+ },
1498
+ {
1499
+ "epoch": 3.2357473035439135,
1500
+ "grad_norm": 1.4905112981796265,
1501
+ "learning_rate": 0.0002,
1502
+ "loss": 0.6329,
1503
+ "step": 2100
1504
+ },
1505
+ {
1506
+ "epoch": 3.25115562403698,
1507
+ "grad_norm": 1.5865840911865234,
1508
+ "learning_rate": 0.0002,
1509
+ "loss": 0.6835,
1510
+ "step": 2110
1511
+ },
1512
+ {
1513
+ "epoch": 3.2665639445300463,
1514
+ "grad_norm": 1.7313302755355835,
1515
+ "learning_rate": 0.0002,
1516
+ "loss": 0.65,
1517
+ "step": 2120
1518
+ },
1519
+ {
1520
+ "epoch": 3.2819722650231125,
1521
+ "grad_norm": 1.3718984127044678,
1522
+ "learning_rate": 0.0002,
1523
+ "loss": 0.6401,
1524
+ "step": 2130
1525
+ },
1526
+ {
1527
+ "epoch": 3.2973805855161786,
1528
+ "grad_norm": 1.4081032276153564,
1529
+ "learning_rate": 0.0002,
1530
+ "loss": 0.6794,
1531
+ "step": 2140
1532
+ },
1533
+ {
1534
+ "epoch": 3.312788906009245,
1535
+ "grad_norm": 1.2884169816970825,
1536
+ "learning_rate": 0.0002,
1537
+ "loss": 0.7119,
1538
+ "step": 2150
1539
+ },
1540
+ {
1541
+ "epoch": 3.3281972265023114,
1542
+ "grad_norm": 1.0338295698165894,
1543
+ "learning_rate": 0.0002,
1544
+ "loss": 0.6476,
1545
+ "step": 2160
1546
+ },
1547
+ {
1548
+ "epoch": 3.3436055469953776,
1549
+ "grad_norm": 1.5023012161254883,
1550
+ "learning_rate": 0.0002,
1551
+ "loss": 0.6544,
1552
+ "step": 2170
1553
+ },
1554
+ {
1555
+ "epoch": 3.3590138674884438,
1556
+ "grad_norm": 1.1718626022338867,
1557
+ "learning_rate": 0.0002,
1558
+ "loss": 0.6606,
1559
+ "step": 2180
1560
+ },
1561
+ {
1562
+ "epoch": 3.37442218798151,
1563
+ "grad_norm": 1.1776877641677856,
1564
+ "learning_rate": 0.0002,
1565
+ "loss": 0.6734,
1566
+ "step": 2190
1567
+ },
1568
+ {
1569
+ "epoch": 3.389830508474576,
1570
+ "grad_norm": 1.1330585479736328,
1571
+ "learning_rate": 0.0002,
1572
+ "loss": 0.6301,
1573
+ "step": 2200
1574
+ },
1575
+ {
1576
+ "epoch": 3.4052388289676427,
1577
+ "grad_norm": 2.024857997894287,
1578
+ "learning_rate": 0.0002,
1579
+ "loss": 0.7051,
1580
+ "step": 2210
1581
+ },
1582
+ {
1583
+ "epoch": 3.420647149460709,
1584
+ "grad_norm": 1.3598058223724365,
1585
+ "learning_rate": 0.0002,
1586
+ "loss": 0.7233,
1587
+ "step": 2220
1588
+ },
1589
+ {
1590
+ "epoch": 3.436055469953775,
1591
+ "grad_norm": 1.3725299835205078,
1592
+ "learning_rate": 0.0002,
1593
+ "loss": 0.6943,
1594
+ "step": 2230
1595
+ },
1596
+ {
1597
+ "epoch": 3.4514637904468413,
1598
+ "grad_norm": 1.1065977811813354,
1599
+ "learning_rate": 0.0002,
1600
+ "loss": 0.6871,
1601
+ "step": 2240
1602
+ },
1603
+ {
1604
+ "epoch": 3.4668721109399074,
1605
+ "grad_norm": 1.5074089765548706,
1606
+ "learning_rate": 0.0002,
1607
+ "loss": 0.6628,
1608
+ "step": 2250
1609
+ },
1610
+ {
1611
+ "epoch": 3.482280431432974,
1612
+ "grad_norm": 1.114187479019165,
1613
+ "learning_rate": 0.0002,
1614
+ "loss": 0.6847,
1615
+ "step": 2260
1616
+ },
1617
+ {
1618
+ "epoch": 3.4976887519260402,
1619
+ "grad_norm": 1.5719729661941528,
1620
+ "learning_rate": 0.0002,
1621
+ "loss": 0.6934,
1622
+ "step": 2270
1623
+ },
1624
+ {
1625
+ "epoch": 3.5130970724191064,
1626
+ "grad_norm": 1.2377736568450928,
1627
+ "learning_rate": 0.0002,
1628
+ "loss": 0.7264,
1629
+ "step": 2280
1630
+ },
1631
+ {
1632
+ "epoch": 3.5285053929121726,
1633
+ "grad_norm": 1.4295454025268555,
1634
+ "learning_rate": 0.0002,
1635
+ "loss": 0.6777,
1636
+ "step": 2290
1637
+ },
1638
+ {
1639
+ "epoch": 3.5439137134052388,
1640
+ "grad_norm": 0.9240845441818237,
1641
+ "learning_rate": 0.0002,
1642
+ "loss": 0.6465,
1643
+ "step": 2300
1644
+ },
1645
+ {
1646
+ "epoch": 3.559322033898305,
1647
+ "grad_norm": 1.5270299911499023,
1648
+ "learning_rate": 0.0002,
1649
+ "loss": 0.6627,
1650
+ "step": 2310
1651
+ },
1652
+ {
1653
+ "epoch": 3.574730354391371,
1654
+ "grad_norm": 1.2820508480072021,
1655
+ "learning_rate": 0.0002,
1656
+ "loss": 0.7018,
1657
+ "step": 2320
1658
+ },
1659
+ {
1660
+ "epoch": 3.5901386748844377,
1661
+ "grad_norm": 1.2932546138763428,
1662
+ "learning_rate": 0.0002,
1663
+ "loss": 0.7225,
1664
+ "step": 2330
1665
+ },
1666
+ {
1667
+ "epoch": 3.605546995377504,
1668
+ "grad_norm": 1.3201853036880493,
1669
+ "learning_rate": 0.0002,
1670
+ "loss": 0.6815,
1671
+ "step": 2340
1672
+ },
1673
+ {
1674
+ "epoch": 3.62095531587057,
1675
+ "grad_norm": 1.7489187717437744,
1676
+ "learning_rate": 0.0002,
1677
+ "loss": 0.6842,
1678
+ "step": 2350
1679
+ },
1680
+ {
1681
+ "epoch": 3.6363636363636362,
1682
+ "grad_norm": 1.2384065389633179,
1683
+ "learning_rate": 0.0002,
1684
+ "loss": 0.7468,
1685
+ "step": 2360
1686
+ },
1687
+ {
1688
+ "epoch": 3.6517719568567024,
1689
+ "grad_norm": 1.0870963335037231,
1690
+ "learning_rate": 0.0002,
1691
+ "loss": 0.6978,
1692
+ "step": 2370
1693
+ },
1694
+ {
1695
+ "epoch": 3.667180277349769,
1696
+ "grad_norm": 1.4325937032699585,
1697
+ "learning_rate": 0.0002,
1698
+ "loss": 0.6214,
1699
+ "step": 2380
1700
+ },
1701
+ {
1702
+ "epoch": 3.682588597842835,
1703
+ "grad_norm": 1.3232696056365967,
1704
+ "learning_rate": 0.0002,
1705
+ "loss": 0.6737,
1706
+ "step": 2390
1707
+ },
1708
+ {
1709
+ "epoch": 3.6979969183359014,
1710
+ "grad_norm": 1.409141182899475,
1711
+ "learning_rate": 0.0002,
1712
+ "loss": 0.6643,
1713
+ "step": 2400
1714
+ },
1715
+ {
1716
+ "epoch": 3.7134052388289676,
1717
+ "grad_norm": 1.4707226753234863,
1718
+ "learning_rate": 0.0002,
1719
+ "loss": 0.7069,
1720
+ "step": 2410
1721
+ },
1722
+ {
1723
+ "epoch": 3.7288135593220337,
1724
+ "grad_norm": 1.3888318538665771,
1725
+ "learning_rate": 0.0002,
1726
+ "loss": 0.678,
1727
+ "step": 2420
1728
+ },
1729
+ {
1730
+ "epoch": 3.7442218798151004,
1731
+ "grad_norm": 1.4682821035385132,
1732
+ "learning_rate": 0.0002,
1733
+ "loss": 0.6718,
1734
+ "step": 2430
1735
+ },
1736
+ {
1737
+ "epoch": 3.7596302003081665,
1738
+ "grad_norm": 1.2217520475387573,
1739
+ "learning_rate": 0.0002,
1740
+ "loss": 0.7593,
1741
+ "step": 2440
1742
+ },
1743
+ {
1744
+ "epoch": 3.7750385208012327,
1745
+ "grad_norm": 1.3346893787384033,
1746
+ "learning_rate": 0.0002,
1747
+ "loss": 0.6912,
1748
+ "step": 2450
1749
+ },
1750
+ {
1751
+ "epoch": 3.790446841294299,
1752
+ "grad_norm": 1.4342081546783447,
1753
+ "learning_rate": 0.0002,
1754
+ "loss": 0.609,
1755
+ "step": 2460
1756
+ },
1757
+ {
1758
+ "epoch": 3.805855161787365,
1759
+ "grad_norm": 1.5921152830123901,
1760
+ "learning_rate": 0.0002,
1761
+ "loss": 0.6985,
1762
+ "step": 2470
1763
+ },
1764
+ {
1765
+ "epoch": 3.8212634822804317,
1766
+ "grad_norm": 1.7322826385498047,
1767
+ "learning_rate": 0.0002,
1768
+ "loss": 0.6751,
1769
+ "step": 2480
1770
+ },
1771
+ {
1772
+ "epoch": 3.836671802773498,
1773
+ "grad_norm": 1.478434681892395,
1774
+ "learning_rate": 0.0002,
1775
+ "loss": 0.6862,
1776
+ "step": 2490
1777
+ },
1778
+ {
1779
+ "epoch": 3.852080123266564,
1780
+ "grad_norm": 1.3945757150650024,
1781
+ "learning_rate": 0.0002,
1782
+ "loss": 0.6983,
1783
+ "step": 2500
1784
+ },
1785
+ {
1786
+ "epoch": 3.86748844375963,
1787
+ "grad_norm": 1.584877848625183,
1788
+ "learning_rate": 0.0002,
1789
+ "loss": 0.7439,
1790
+ "step": 2510
1791
+ },
1792
+ {
1793
+ "epoch": 3.8828967642526964,
1794
+ "grad_norm": 1.6307404041290283,
1795
+ "learning_rate": 0.0002,
1796
+ "loss": 0.7049,
1797
+ "step": 2520
1798
+ },
1799
+ {
1800
+ "epoch": 3.898305084745763,
1801
+ "grad_norm": 1.4129183292388916,
1802
+ "learning_rate": 0.0002,
1803
+ "loss": 0.6823,
1804
+ "step": 2530
1805
+ },
1806
+ {
1807
+ "epoch": 3.9137134052388287,
1808
+ "grad_norm": 1.7380712032318115,
1809
+ "learning_rate": 0.0002,
1810
+ "loss": 0.7092,
1811
+ "step": 2540
1812
+ },
1813
+ {
1814
+ "epoch": 3.9291217257318953,
1815
+ "grad_norm": 1.4169772863388062,
1816
+ "learning_rate": 0.0002,
1817
+ "loss": 0.7277,
1818
+ "step": 2550
1819
+ },
1820
+ {
1821
+ "epoch": 3.9445300462249615,
1822
+ "grad_norm": 2.520665168762207,
1823
+ "learning_rate": 0.0002,
1824
+ "loss": 0.7369,
1825
+ "step": 2560
1826
+ },
1827
+ {
1828
+ "epoch": 3.9599383667180277,
1829
+ "grad_norm": 1.2402763366699219,
1830
+ "learning_rate": 0.0002,
1831
+ "loss": 0.7815,
1832
+ "step": 2570
1833
+ },
1834
+ {
1835
+ "epoch": 3.975346687211094,
1836
+ "grad_norm": 1.5902904272079468,
1837
+ "learning_rate": 0.0002,
1838
+ "loss": 0.8077,
1839
+ "step": 2580
1840
+ },
1841
+ {
1842
+ "epoch": 3.99075500770416,
1843
+ "grad_norm": 2.2361271381378174,
1844
+ "learning_rate": 0.0002,
1845
+ "loss": 0.7272,
1846
+ "step": 2590
1847
+ },
1848
+ {
1849
+ "epoch": 4.0,
1850
+ "eval_loss": 1.324176549911499,
1851
+ "eval_runtime": 119.304,
1852
+ "eval_samples_per_second": 3.822,
1853
+ "eval_steps_per_second": 0.478,
1854
+ "step": 2596
1855
+ },
1856
+ {
1857
+ "epoch": 4.006163328197227,
1858
+ "grad_norm": 0.8134178519248962,
1859
+ "learning_rate": 0.0002,
1860
+ "loss": 0.6403,
1861
+ "step": 2600
1862
+ },
1863
+ {
1864
+ "epoch": 4.021571648690292,
1865
+ "grad_norm": 20.112083435058594,
1866
+ "learning_rate": 0.0002,
1867
+ "loss": 0.4955,
1868
+ "step": 2610
1869
+ },
1870
+ {
1871
+ "epoch": 4.036979969183359,
1872
+ "grad_norm": 18.01171875,
1873
+ "learning_rate": 0.0002,
1874
+ "loss": 0.5607,
1875
+ "step": 2620
1876
+ },
1877
+ {
1878
+ "epoch": 4.052388289676426,
1879
+ "grad_norm": 1.770273208618164,
1880
+ "learning_rate": 0.0002,
1881
+ "loss": 0.4889,
1882
+ "step": 2630
1883
+ },
1884
+ {
1885
+ "epoch": 4.067796610169491,
1886
+ "grad_norm": 1.943787932395935,
1887
+ "learning_rate": 0.0002,
1888
+ "loss": 0.5359,
1889
+ "step": 2640
1890
+ },
1891
+ {
1892
+ "epoch": 4.083204930662558,
1893
+ "grad_norm": 1.9997365474700928,
1894
+ "learning_rate": 0.0002,
1895
+ "loss": 0.5,
1896
+ "step": 2650
1897
+ },
1898
+ {
1899
+ "epoch": 4.098613251155624,
1900
+ "grad_norm": 1.3823848962783813,
1901
+ "learning_rate": 0.0002,
1902
+ "loss": 0.5365,
1903
+ "step": 2660
1904
+ },
1905
+ {
1906
+ "epoch": 4.11402157164869,
1907
+ "grad_norm": 1.4237934350967407,
1908
+ "learning_rate": 0.0002,
1909
+ "loss": 0.5,
1910
+ "step": 2670
1911
+ },
1912
+ {
1913
+ "epoch": 4.129429892141757,
1914
+ "grad_norm": 1.6521705389022827,
1915
+ "learning_rate": 0.0002,
1916
+ "loss": 0.5579,
1917
+ "step": 2680
1918
+ },
1919
+ {
1920
+ "epoch": 4.144838212634823,
1921
+ "grad_norm": 1.2283433675765991,
1922
+ "learning_rate": 0.0002,
1923
+ "loss": 0.5014,
1924
+ "step": 2690
1925
+ },
1926
+ {
1927
+ "epoch": 4.160246533127889,
1928
+ "grad_norm": 1.6849380731582642,
1929
+ "learning_rate": 0.0002,
1930
+ "loss": 0.4952,
1931
+ "step": 2700
1932
+ },
1933
+ {
1934
+ "epoch": 4.175654853620955,
1935
+ "grad_norm": 2.493161678314209,
1936
+ "learning_rate": 0.0002,
1937
+ "loss": 0.4974,
1938
+ "step": 2710
1939
+ },
1940
+ {
1941
+ "epoch": 4.191063174114022,
1942
+ "grad_norm": 1.4243499040603638,
1943
+ "learning_rate": 0.0002,
1944
+ "loss": 0.502,
1945
+ "step": 2720
1946
+ },
1947
+ {
1948
+ "epoch": 4.206471494607088,
1949
+ "grad_norm": 2.471060037612915,
1950
+ "learning_rate": 0.0002,
1951
+ "loss": 0.5069,
1952
+ "step": 2730
1953
+ },
1954
+ {
1955
+ "epoch": 4.221879815100154,
1956
+ "grad_norm": 1.5935828685760498,
1957
+ "learning_rate": 0.0002,
1958
+ "loss": 0.4757,
1959
+ "step": 2740
1960
+ },
1961
+ {
1962
+ "epoch": 4.237288135593221,
1963
+ "grad_norm": 2.989623785018921,
1964
+ "learning_rate": 0.0002,
1965
+ "loss": 0.5223,
1966
+ "step": 2750
1967
+ },
1968
+ {
1969
+ "epoch": 4.252696456086286,
1970
+ "grad_norm": 1.7323458194732666,
1971
+ "learning_rate": 0.0002,
1972
+ "loss": 0.5262,
1973
+ "step": 2760
1974
+ },
1975
+ {
1976
+ "epoch": 4.268104776579353,
1977
+ "grad_norm": 1.6325395107269287,
1978
+ "learning_rate": 0.0002,
1979
+ "loss": 0.4389,
1980
+ "step": 2770
1981
+ },
1982
+ {
1983
+ "epoch": 4.283513097072419,
1984
+ "grad_norm": 2.0011212825775146,
1985
+ "learning_rate": 0.0002,
1986
+ "loss": 0.5205,
1987
+ "step": 2780
1988
+ },
1989
+ {
1990
+ "epoch": 4.298921417565485,
1991
+ "grad_norm": 2.3058269023895264,
1992
+ "learning_rate": 0.0002,
1993
+ "loss": 0.5638,
1994
+ "step": 2790
1995
+ },
1996
+ {
1997
+ "epoch": 4.314329738058552,
1998
+ "grad_norm": 1.360182762145996,
1999
+ "learning_rate": 0.0002,
2000
+ "loss": 0.5479,
2001
+ "step": 2800
2002
+ },
2003
+ {
2004
+ "epoch": 4.329738058551618,
2005
+ "grad_norm": 1.7124749422073364,
2006
+ "learning_rate": 0.0002,
2007
+ "loss": 0.4765,
2008
+ "step": 2810
2009
+ },
2010
+ {
2011
+ "epoch": 4.345146379044684,
2012
+ "grad_norm": 1.439314603805542,
2013
+ "learning_rate": 0.0002,
2014
+ "loss": 0.5113,
2015
+ "step": 2820
2016
+ },
2017
+ {
2018
+ "epoch": 4.36055469953775,
2019
+ "grad_norm": 1.5941680669784546,
2020
+ "learning_rate": 0.0002,
2021
+ "loss": 0.502,
2022
+ "step": 2830
2023
+ },
2024
+ {
2025
+ "epoch": 4.375963020030817,
2026
+ "grad_norm": 1.8157657384872437,
2027
+ "learning_rate": 0.0002,
2028
+ "loss": 0.5283,
2029
+ "step": 2840
2030
+ },
2031
+ {
2032
+ "epoch": 4.391371340523883,
2033
+ "grad_norm": 1.754032015800476,
2034
+ "learning_rate": 0.0002,
2035
+ "loss": 0.5379,
2036
+ "step": 2850
2037
+ },
2038
+ {
2039
+ "epoch": 4.406779661016949,
2040
+ "grad_norm": 2.0685315132141113,
2041
+ "learning_rate": 0.0002,
2042
+ "loss": 0.539,
2043
+ "step": 2860
2044
+ },
2045
+ {
2046
+ "epoch": 4.422187981510016,
2047
+ "grad_norm": 1.605820655822754,
2048
+ "learning_rate": 0.0002,
2049
+ "loss": 0.525,
2050
+ "step": 2870
2051
+ },
2052
+ {
2053
+ "epoch": 4.437596302003081,
2054
+ "grad_norm": 1.7439035177230835,
2055
+ "learning_rate": 0.0002,
2056
+ "loss": 0.5254,
2057
+ "step": 2880
2058
+ },
2059
+ {
2060
+ "epoch": 4.453004622496148,
2061
+ "grad_norm": 2.0108375549316406,
2062
+ "learning_rate": 0.0002,
2063
+ "loss": 0.5594,
2064
+ "step": 2890
2065
+ },
2066
+ {
2067
+ "epoch": 4.4684129429892145,
2068
+ "grad_norm": 1.7569063901901245,
2069
+ "learning_rate": 0.0002,
2070
+ "loss": 0.5695,
2071
+ "step": 2900
2072
+ },
2073
+ {
2074
+ "epoch": 4.48382126348228,
2075
+ "grad_norm": 1.544561743736267,
2076
+ "learning_rate": 0.0002,
2077
+ "loss": 0.566,
2078
+ "step": 2910
2079
+ },
2080
+ {
2081
+ "epoch": 4.499229583975347,
2082
+ "grad_norm": 1.3701506853103638,
2083
+ "learning_rate": 0.0002,
2084
+ "loss": 0.4984,
2085
+ "step": 2920
2086
+ },
2087
+ {
2088
+ "epoch": 4.514637904468413,
2089
+ "grad_norm": 1.2095595598220825,
2090
+ "learning_rate": 0.0002,
2091
+ "loss": 0.5695,
2092
+ "step": 2930
2093
+ },
2094
+ {
2095
+ "epoch": 4.530046224961479,
2096
+ "grad_norm": 1.7037502527236938,
2097
+ "learning_rate": 0.0002,
2098
+ "loss": 0.5415,
2099
+ "step": 2940
2100
+ },
2101
+ {
2102
+ "epoch": 4.545454545454545,
2103
+ "grad_norm": 2.8776841163635254,
2104
+ "learning_rate": 0.0002,
2105
+ "loss": 0.5179,
2106
+ "step": 2950
2107
+ },
2108
+ {
2109
+ "epoch": 4.560862865947612,
2110
+ "grad_norm": 1.360141634941101,
2111
+ "learning_rate": 0.0002,
2112
+ "loss": 0.5832,
2113
+ "step": 2960
2114
+ },
2115
+ {
2116
+ "epoch": 4.576271186440678,
2117
+ "grad_norm": 1.6299976110458374,
2118
+ "learning_rate": 0.0002,
2119
+ "loss": 0.5515,
2120
+ "step": 2970
2121
+ },
2122
+ {
2123
+ "epoch": 4.591679506933744,
2124
+ "grad_norm": 2.0980679988861084,
2125
+ "learning_rate": 0.0002,
2126
+ "loss": 0.5466,
2127
+ "step": 2980
2128
+ },
2129
+ {
2130
+ "epoch": 4.6070878274268106,
2131
+ "grad_norm": 1.5481915473937988,
2132
+ "learning_rate": 0.0002,
2133
+ "loss": 0.5325,
2134
+ "step": 2990
2135
+ },
2136
+ {
2137
+ "epoch": 4.622496147919877,
2138
+ "grad_norm": 1.1016762256622314,
2139
+ "learning_rate": 0.0002,
2140
+ "loss": 0.5168,
2141
+ "step": 3000
2142
+ },
2143
+ {
2144
+ "epoch": 4.637904468412943,
2145
+ "grad_norm": 1.8467375040054321,
2146
+ "learning_rate": 0.0002,
2147
+ "loss": 0.5374,
2148
+ "step": 3010
2149
+ },
2150
+ {
2151
+ "epoch": 4.6533127889060095,
2152
+ "grad_norm": 1.7077717781066895,
2153
+ "learning_rate": 0.0002,
2154
+ "loss": 0.5274,
2155
+ "step": 3020
2156
+ },
2157
+ {
2158
+ "epoch": 4.668721109399075,
2159
+ "grad_norm": 1.6364675760269165,
2160
+ "learning_rate": 0.0002,
2161
+ "loss": 0.5666,
2162
+ "step": 3030
2163
+ },
2164
+ {
2165
+ "epoch": 4.684129429892142,
2166
+ "grad_norm": 1.3262457847595215,
2167
+ "learning_rate": 0.0002,
2168
+ "loss": 0.5072,
2169
+ "step": 3040
2170
+ },
2171
+ {
2172
+ "epoch": 4.699537750385208,
2173
+ "grad_norm": 1.6521623134613037,
2174
+ "learning_rate": 0.0002,
2175
+ "loss": 0.5281,
2176
+ "step": 3050
2177
+ },
2178
+ {
2179
+ "epoch": 4.714946070878274,
2180
+ "grad_norm": 1.1765156984329224,
2181
+ "learning_rate": 0.0002,
2182
+ "loss": 0.5036,
2183
+ "step": 3060
2184
+ },
2185
+ {
2186
+ "epoch": 4.730354391371341,
2187
+ "grad_norm": 1.4242093563079834,
2188
+ "learning_rate": 0.0002,
2189
+ "loss": 0.5251,
2190
+ "step": 3070
2191
+ },
2192
+ {
2193
+ "epoch": 4.745762711864407,
2194
+ "grad_norm": 1.9651737213134766,
2195
+ "learning_rate": 0.0002,
2196
+ "loss": 0.5471,
2197
+ "step": 3080
2198
+ },
2199
+ {
2200
+ "epoch": 4.761171032357473,
2201
+ "grad_norm": 1.9256596565246582,
2202
+ "learning_rate": 0.0002,
2203
+ "loss": 0.5504,
2204
+ "step": 3090
2205
+ },
2206
+ {
2207
+ "epoch": 4.776579352850539,
2208
+ "grad_norm": 1.4493910074234009,
2209
+ "learning_rate": 0.0002,
2210
+ "loss": 0.5452,
2211
+ "step": 3100
2212
+ },
2213
+ {
2214
+ "epoch": 4.7919876733436055,
2215
+ "grad_norm": 1.9169608354568481,
2216
+ "learning_rate": 0.0002,
2217
+ "loss": 0.559,
2218
+ "step": 3110
2219
+ },
2220
+ {
2221
+ "epoch": 4.807395993836672,
2222
+ "grad_norm": 1.585694670677185,
2223
+ "learning_rate": 0.0002,
2224
+ "loss": 0.5357,
2225
+ "step": 3120
2226
+ },
2227
+ {
2228
+ "epoch": 4.822804314329738,
2229
+ "grad_norm": 1.8497015237808228,
2230
+ "learning_rate": 0.0002,
2231
+ "loss": 0.5627,
2232
+ "step": 3130
2233
+ },
2234
+ {
2235
+ "epoch": 4.8382126348228045,
2236
+ "grad_norm": 1.4345619678497314,
2237
+ "learning_rate": 0.0002,
2238
+ "loss": 0.5604,
2239
+ "step": 3140
2240
+ },
2241
+ {
2242
+ "epoch": 4.85362095531587,
2243
+ "grad_norm": 1.3929195404052734,
2244
+ "learning_rate": 0.0002,
2245
+ "loss": 0.5771,
2246
+ "step": 3150
2247
+ },
2248
+ {
2249
+ "epoch": 4.869029275808937,
2250
+ "grad_norm": 1.9688060283660889,
2251
+ "learning_rate": 0.0002,
2252
+ "loss": 0.6083,
2253
+ "step": 3160
2254
+ },
2255
+ {
2256
+ "epoch": 4.8844375963020035,
2257
+ "grad_norm": 1.7507604360580444,
2258
+ "learning_rate": 0.0002,
2259
+ "loss": 0.5391,
2260
+ "step": 3170
2261
+ },
2262
+ {
2263
+ "epoch": 4.899845916795069,
2264
+ "grad_norm": 2.4209811687469482,
2265
+ "learning_rate": 0.0002,
2266
+ "loss": 0.5527,
2267
+ "step": 3180
2268
+ },
2269
+ {
2270
+ "epoch": 4.915254237288136,
2271
+ "grad_norm": 2.582061529159546,
2272
+ "learning_rate": 0.0002,
2273
+ "loss": 0.5557,
2274
+ "step": 3190
2275
+ },
2276
+ {
2277
+ "epoch": 4.9306625577812015,
2278
+ "grad_norm": 1.6832361221313477,
2279
+ "learning_rate": 0.0002,
2280
+ "loss": 0.559,
2281
+ "step": 3200
2282
+ },
2283
+ {
2284
+ "epoch": 4.946070878274268,
2285
+ "grad_norm": 1.2785899639129639,
2286
+ "learning_rate": 0.0002,
2287
+ "loss": 0.5078,
2288
+ "step": 3210
2289
+ },
2290
+ {
2291
+ "epoch": 4.961479198767334,
2292
+ "grad_norm": 1.4990512132644653,
2293
+ "learning_rate": 0.0002,
2294
+ "loss": 0.5644,
2295
+ "step": 3220
2296
+ },
2297
+ {
2298
+ "epoch": 4.9768875192604005,
2299
+ "grad_norm": 1.751932978630066,
2300
+ "learning_rate": 0.0002,
2301
+ "loss": 0.5827,
2302
+ "step": 3230
2303
+ },
2304
+ {
2305
+ "epoch": 4.992295839753467,
2306
+ "grad_norm": 1.843894124031067,
2307
+ "learning_rate": 0.0002,
2308
+ "loss": 0.6049,
2309
+ "step": 3240
2310
+ },
2311
+ {
2312
+ "epoch": 5.0,
2313
+ "eval_loss": 1.4627584218978882,
2314
+ "eval_runtime": 119.266,
2315
+ "eval_samples_per_second": 3.823,
2316
+ "eval_steps_per_second": 0.478,
2317
+ "step": 3245
2318
+ }
2319
+ ],
2320
+ "logging_steps": 10,
2321
+ "max_steps": 5192,
2322
+ "num_input_tokens_seen": 0,
2323
+ "num_train_epochs": 8,
2324
+ "save_steps": 200,
2325
+ "stateful_callbacks": {
2326
+ "TrainerControl": {
2327
+ "args": {
2328
+ "should_epoch_stop": false,
2329
+ "should_evaluate": false,
2330
+ "should_log": false,
2331
+ "should_save": true,
2332
+ "should_training_stop": false
2333
+ },
2334
+ "attributes": {}
2335
+ }
2336
+ },
2337
+ "total_flos": 1.42373488164864e+17,
2338
+ "train_batch_size": 1,
2339
+ "trial_name": null,
2340
+ "trial_params": null
2341
+ }