MilaWang commited on
Commit
525a5f2
·
verified ·
1 Parent(s): 0691674

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/README.md +202 -0
  2. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/adapter_config.json +29 -0
  3. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/adapter_model.safetensors +3 -0
  4. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/README.md +202 -0
  5. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/adapter_config.json +29 -0
  6. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/adapter_model.safetensors +3 -0
  7. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/optimizer.pt +3 -0
  8. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/rng_state.pth +3 -0
  9. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/scheduler.pt +3 -0
  10. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/special_tokens_map.json +24 -0
  11. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/tokenizer.json +0 -0
  12. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/tokenizer.model +3 -0
  13. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/tokenizer_config.json +0 -0
  14. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/trainer_state.json +910 -0
  15. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/training_args.bin +3 -0
  16. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/README.md +202 -0
  17. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/adapter_config.json +29 -0
  18. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/adapter_model.safetensors +3 -0
  19. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/optimizer.pt +3 -0
  20. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/rng_state.pth +3 -0
  21. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/scheduler.pt +3 -0
  22. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/special_tokens_map.json +24 -0
  23. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/tokenizer.json +0 -0
  24. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/tokenizer.model +3 -0
  25. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/tokenizer_config.json +0 -0
  26. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/trainer_state.json +1345 -0
  27. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/training_args.bin +3 -0
  28. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/README.md +202 -0
  29. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/adapter_config.json +29 -0
  30. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/adapter_model.safetensors +3 -0
  31. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/optimizer.pt +3 -0
  32. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/rng_state.pth +3 -0
  33. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/scheduler.pt +3 -0
  34. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/special_tokens_map.json +24 -0
  35. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/tokenizer.json +0 -0
  36. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/tokenizer.model +3 -0
  37. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/tokenizer_config.json +0 -0
  38. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/trainer_state.json +1787 -0
  39. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/training_args.bin +3 -0
  40. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/README.md +202 -0
  41. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/adapter_config.json +29 -0
  42. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/adapter_model.safetensors +3 -0
  43. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/optimizer.pt +3 -0
  44. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/rng_state.pth +3 -0
  45. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/scheduler.pt +3 -0
  46. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/special_tokens_map.json +24 -0
  47. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/tokenizer.json +0 -0
  48. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/tokenizer.model +3 -0
  49. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/tokenizer_config.json +0 -0
  50. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/trainer_state.json +2222 -0
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b486b358aea1479761012918bfb040fdf031818a91dc8796bed62083123e7c6
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7df5fa654fead9c6cc35e3c044bb0dd46b0b51a9222e5855bcc13a1805dac4a
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77af8e8d3ff1e84aca498ab331b63f37d398f4e4419523222aa09428aafaa1eb
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96072bc59d4e66f3b13852c2b1a567b5da80eafb4d1d12d51714de2b320ea949
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5000a5052c8d090ffd908477f337cfaa88890bbadf7e2e9c16cda94eee348adf
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/trainer_state.json ADDED
@@ -0,0 +1,910 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7831426858901978,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-615",
4
+ "epoch": 2.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1230,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016260162601626018,
13
+ "grad_norm": 1.903406023979187,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.6243,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.032520325203252036,
20
+ "grad_norm": 1.0100678205490112,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.2084,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.04878048780487805,
27
+ "grad_norm": 0.7413098812103271,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0423,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.06504065040650407,
34
+ "grad_norm": 0.7540805339813232,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0647,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.08130081300813008,
41
+ "grad_norm": 0.6508658528327942,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.0926,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.0975609756097561,
48
+ "grad_norm": 0.7228319048881531,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.878,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.11382113821138211,
55
+ "grad_norm": 0.6510937213897705,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8672,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.13008130081300814,
62
+ "grad_norm": 0.7238746881484985,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8592,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.14634146341463414,
69
+ "grad_norm": 0.7530466318130493,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.8541,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.16260162601626016,
76
+ "grad_norm": 0.622166097164154,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8245,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.17886178861788618,
83
+ "grad_norm": 0.6180148720741272,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.7581,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.1951219512195122,
90
+ "grad_norm": 0.6221362352371216,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.7741,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.21138211382113822,
97
+ "grad_norm": 0.569580078125,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.7575,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.22764227642276422,
104
+ "grad_norm": 0.6962840557098389,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.7833,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.24390243902439024,
111
+ "grad_norm": 0.644322395324707,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.8329,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.2601626016260163,
118
+ "grad_norm": 0.5970060229301453,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.7794,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.2764227642276423,
125
+ "grad_norm": 0.6249210834503174,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.8521,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2926829268292683,
132
+ "grad_norm": 0.7134785652160645,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.8066,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.3089430894308943,
139
+ "grad_norm": 0.5477158427238464,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.8815,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.3252032520325203,
146
+ "grad_norm": 0.6054863333702087,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.7222,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.34146341463414637,
153
+ "grad_norm": 0.5664568543434143,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.7598,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.35772357723577236,
160
+ "grad_norm": 0.5942816734313965,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.7688,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.37398373983739835,
167
+ "grad_norm": 0.6311767101287842,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.7715,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.3902439024390244,
174
+ "grad_norm": 0.6614870429039001,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.7663,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.4065040650406504,
181
+ "grad_norm": 0.5644984841346741,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.8045,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.42276422764227645,
188
+ "grad_norm": 0.7260110974311829,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.7364,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.43902439024390244,
195
+ "grad_norm": 0.6733413934707642,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.7606,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.45528455284552843,
202
+ "grad_norm": 0.5211837887763977,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.8432,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.4715447154471545,
209
+ "grad_norm": 0.5538370013237,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.9166,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.4878048780487805,
216
+ "grad_norm": 0.5429130792617798,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.8391,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.5040650406504065,
223
+ "grad_norm": 0.517801821231842,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.8072,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.5203252032520326,
230
+ "grad_norm": 0.6029635667800903,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.8045,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.5365853658536586,
237
+ "grad_norm": 0.506401002407074,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.7734,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.5528455284552846,
244
+ "grad_norm": 0.5226597189903259,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.7923,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.5691056910569106,
251
+ "grad_norm": 0.5899750590324402,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.7625,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.5853658536585366,
258
+ "grad_norm": 0.6185210943222046,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.828,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.6016260162601627,
265
+ "grad_norm": 0.8088458180427551,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.8358,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.6178861788617886,
272
+ "grad_norm": 0.509591817855835,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.8351,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.6341463414634146,
279
+ "grad_norm": 0.5209569931030273,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.7849,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.6504065040650406,
286
+ "grad_norm": 0.50320965051651,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.7925,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.6666666666666666,
293
+ "grad_norm": 0.5555663108825684,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.795,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.6829268292682927,
300
+ "grad_norm": 0.5865469574928284,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.7562,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.6991869918699187,
307
+ "grad_norm": 0.5288474559783936,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.7869,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.7154471544715447,
314
+ "grad_norm": 0.5364211797714233,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.8046,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.7317073170731707,
321
+ "grad_norm": 0.5877127051353455,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.8124,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.7479674796747967,
328
+ "grad_norm": 0.5993741154670715,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.7938,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.7642276422764228,
335
+ "grad_norm": 0.4871112108230591,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.8034,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.7804878048780488,
342
+ "grad_norm": 0.5300846099853516,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.7798,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.7967479674796748,
349
+ "grad_norm": 0.5623212456703186,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.7772,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.8130081300813008,
356
+ "grad_norm": 0.5131309032440186,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.7207,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.8292682926829268,
363
+ "grad_norm": 0.49512147903442383,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.7143,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.8455284552845529,
370
+ "grad_norm": 0.6260727643966675,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.8032,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.8617886178861789,
377
+ "grad_norm": 0.5796844959259033,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.8292,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.8780487804878049,
384
+ "grad_norm": 0.615927517414093,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.7775,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.8943089430894309,
391
+ "grad_norm": 0.5230891704559326,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.7254,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.9105691056910569,
398
+ "grad_norm": 0.5990992784500122,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.8126,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.926829268292683,
405
+ "grad_norm": 0.538957417011261,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.8551,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.943089430894309,
412
+ "grad_norm": 0.556900680065155,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.791,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.959349593495935,
419
+ "grad_norm": 0.6459956765174866,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.8799,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.975609756097561,
426
+ "grad_norm": 0.5648245215415955,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.774,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.991869918699187,
433
+ "grad_norm": 0.5341294407844543,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.7746,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 1.0,
440
+ "eval_loss": 1.7831426858901978,
441
+ "eval_runtime": 98.419,
442
+ "eval_samples_per_second": 5.416,
443
+ "eval_steps_per_second": 0.681,
444
+ "step": 615
445
+ },
446
+ {
447
+ "epoch": 1.008130081300813,
448
+ "grad_norm": 0.49698150157928467,
449
+ "learning_rate": 0.0002,
450
+ "loss": 1.7212,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 1.024390243902439,
455
+ "grad_norm": 0.696890652179718,
456
+ "learning_rate": 0.0002,
457
+ "loss": 1.7379,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 1.040650406504065,
462
+ "grad_norm": 0.5939123630523682,
463
+ "learning_rate": 0.0002,
464
+ "loss": 1.6391,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 1.056910569105691,
469
+ "grad_norm": 0.5630994439125061,
470
+ "learning_rate": 0.0002,
471
+ "loss": 1.712,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.0731707317073171,
476
+ "grad_norm": 0.5783666968345642,
477
+ "learning_rate": 0.0002,
478
+ "loss": 1.6401,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.089430894308943,
483
+ "grad_norm": 0.6006693840026855,
484
+ "learning_rate": 0.0002,
485
+ "loss": 1.7158,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.1056910569105691,
490
+ "grad_norm": 0.6544332504272461,
491
+ "learning_rate": 0.0002,
492
+ "loss": 1.7434,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.1219512195121952,
497
+ "grad_norm": 0.6734776496887207,
498
+ "learning_rate": 0.0002,
499
+ "loss": 1.6562,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.1382113821138211,
504
+ "grad_norm": 0.6067698001861572,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.6724,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.1544715447154472,
511
+ "grad_norm": 0.6639267802238464,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.6932,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.170731707317073,
518
+ "grad_norm": 0.5179714560508728,
519
+ "learning_rate": 0.0002,
520
+ "loss": 1.6562,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.1869918699186992,
525
+ "grad_norm": 0.7320363521575928,
526
+ "learning_rate": 0.0002,
527
+ "loss": 1.6811,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.203252032520325,
532
+ "grad_norm": 0.689231276512146,
533
+ "learning_rate": 0.0002,
534
+ "loss": 1.5619,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.2195121951219512,
539
+ "grad_norm": 0.6605235934257507,
540
+ "learning_rate": 0.0002,
541
+ "loss": 1.5688,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.2357723577235773,
546
+ "grad_norm": 0.7013542056083679,
547
+ "learning_rate": 0.0002,
548
+ "loss": 1.7045,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.2520325203252032,
553
+ "grad_norm": 0.6349928975105286,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.6857,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.2682926829268293,
560
+ "grad_norm": 0.6362272500991821,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.6767,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.2845528455284554,
567
+ "grad_norm": 0.6152030229568481,
568
+ "learning_rate": 0.0002,
569
+ "loss": 1.6594,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.3008130081300813,
574
+ "grad_norm": 0.6406176686286926,
575
+ "learning_rate": 0.0002,
576
+ "loss": 1.7542,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.3170731707317074,
581
+ "grad_norm": 0.6099124550819397,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.7243,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.3333333333333333,
588
+ "grad_norm": 0.6298971772193909,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.6642,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.3495934959349594,
595
+ "grad_norm": 0.775223433971405,
596
+ "learning_rate": 0.0002,
597
+ "loss": 1.6901,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.3658536585365852,
602
+ "grad_norm": 0.7261736392974854,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.6284,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.3821138211382114,
609
+ "grad_norm": 0.6321929097175598,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.6671,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.3983739837398375,
616
+ "grad_norm": 0.7564281225204468,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.7036,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.4146341463414633,
623
+ "grad_norm": 0.6329448819160461,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.7014,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.4308943089430894,
630
+ "grad_norm": 0.6288684606552124,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.6398,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.4471544715447155,
637
+ "grad_norm": 0.6165404915809631,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.673,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.4634146341463414,
644
+ "grad_norm": 0.6124468445777893,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.6668,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.4796747967479675,
651
+ "grad_norm": 0.7038629651069641,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.6879,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.4959349593495934,
658
+ "grad_norm": 0.5755146145820618,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.6701,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.5121951219512195,
665
+ "grad_norm": 0.7639156579971313,
666
+ "learning_rate": 0.0002,
667
+ "loss": 1.7244,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.5284552845528454,
672
+ "grad_norm": 0.6948140859603882,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.6836,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.5447154471544715,
679
+ "grad_norm": 0.6887956261634827,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.6479,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.5609756097560976,
686
+ "grad_norm": 0.7226824164390564,
687
+ "learning_rate": 0.0002,
688
+ "loss": 1.7285,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.5772357723577235,
693
+ "grad_norm": 0.6753950715065002,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.6214,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.5934959349593496,
700
+ "grad_norm": 0.6580971479415894,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.7283,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.6097560975609757,
707
+ "grad_norm": 0.7157843112945557,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.6671,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.6260162601626016,
714
+ "grad_norm": 0.6736738681793213,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.645,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.6422764227642277,
721
+ "grad_norm": 0.5271940231323242,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.6589,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.6585365853658538,
728
+ "grad_norm": 0.6378998160362244,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.7358,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.6747967479674797,
735
+ "grad_norm": 0.6498209834098816,
736
+ "learning_rate": 0.0002,
737
+ "loss": 1.6924,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.6910569105691056,
742
+ "grad_norm": 0.7050761580467224,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.6253,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.7073170731707317,
749
+ "grad_norm": 0.7122200131416321,
750
+ "learning_rate": 0.0002,
751
+ "loss": 1.7146,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.7235772357723578,
756
+ "grad_norm": 0.6705704927444458,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.6511,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.7398373983739837,
763
+ "grad_norm": 0.6859356760978699,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.6506,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.7560975609756098,
770
+ "grad_norm": 0.6540971994400024,
771
+ "learning_rate": 0.0002,
772
+ "loss": 1.6562,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.7723577235772359,
777
+ "grad_norm": 0.6297651529312134,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.6627,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.7886178861788617,
784
+ "grad_norm": 0.6645651459693909,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.704,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.8048780487804879,
791
+ "grad_norm": 0.6450296640396118,
792
+ "learning_rate": 0.0002,
793
+ "loss": 1.6908,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.821138211382114,
798
+ "grad_norm": 0.7785659432411194,
799
+ "learning_rate": 0.0002,
800
+ "loss": 1.7642,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.8373983739837398,
805
+ "grad_norm": 0.6845982670783997,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.6773,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.8536585365853657,
812
+ "grad_norm": 0.699683666229248,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.6879,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.8699186991869918,
819
+ "grad_norm": 0.6600332856178284,
820
+ "learning_rate": 0.0002,
821
+ "loss": 1.7162,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.886178861788618,
826
+ "grad_norm": 0.7301949262619019,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.7291,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.9024390243902438,
833
+ "grad_norm": 0.8183556795120239,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.6874,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.91869918699187,
840
+ "grad_norm": 0.7122833132743835,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.6779,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.934959349593496,
847
+ "grad_norm": 0.6391404271125793,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.7361,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.951219512195122,
854
+ "grad_norm": 0.6136474013328552,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.7188,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.967479674796748,
861
+ "grad_norm": 0.7704503536224365,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.6536,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.9837398373983741,
868
+ "grad_norm": 0.6155434846878052,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.6735,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 2.0,
875
+ "grad_norm": 0.6262536644935608,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.6534,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 2.0,
882
+ "eval_loss": 1.7886285781860352,
883
+ "eval_runtime": 98.7888,
884
+ "eval_samples_per_second": 5.395,
885
+ "eval_steps_per_second": 0.678,
886
+ "step": 1230
887
+ }
888
+ ],
889
+ "logging_steps": 10,
890
+ "max_steps": 4920,
891
+ "num_input_tokens_seen": 0,
892
+ "num_train_epochs": 8,
893
+ "save_steps": 200,
894
+ "stateful_callbacks": {
895
+ "TrainerControl": {
896
+ "args": {
897
+ "should_epoch_stop": false,
898
+ "should_evaluate": false,
899
+ "should_log": false,
900
+ "should_save": true,
901
+ "should_training_stop": false
902
+ },
903
+ "attributes": {}
904
+ }
905
+ },
906
+ "total_flos": 5.3965913849856e+16,
907
+ "train_batch_size": 1,
908
+ "trial_name": null,
909
+ "trial_params": null
910
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1230/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:794da760599f5a7e302e2faa616ba0185215c069e7fa3436832bde34c7f2ec7b
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45a8e9d5384381b3e8903830b6e34c51316cfca1cad200aac53e47837137e391
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f22849adf6fbc0690380f8ad61bd0e75641c0a742ae078d0df0dd5709cdd960
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f506141fde9fefcbfd2fbdf5037d513aea18a05dfdfb5d36fd7515adf2079d2e
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9ecf3cbe2bdeeb71fbeaf36b416466e300cc4d67381f2ab44ce5a65f3569ea2
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/trainer_state.json ADDED
@@ -0,0 +1,1345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7831426858901978,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-615",
4
+ "epoch": 3.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1845,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016260162601626018,
13
+ "grad_norm": 1.903406023979187,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.6243,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.032520325203252036,
20
+ "grad_norm": 1.0100678205490112,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.2084,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.04878048780487805,
27
+ "grad_norm": 0.7413098812103271,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0423,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.06504065040650407,
34
+ "grad_norm": 0.7540805339813232,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0647,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.08130081300813008,
41
+ "grad_norm": 0.6508658528327942,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.0926,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.0975609756097561,
48
+ "grad_norm": 0.7228319048881531,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.878,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.11382113821138211,
55
+ "grad_norm": 0.6510937213897705,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8672,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.13008130081300814,
62
+ "grad_norm": 0.7238746881484985,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8592,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.14634146341463414,
69
+ "grad_norm": 0.7530466318130493,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.8541,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.16260162601626016,
76
+ "grad_norm": 0.622166097164154,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8245,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.17886178861788618,
83
+ "grad_norm": 0.6180148720741272,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.7581,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.1951219512195122,
90
+ "grad_norm": 0.6221362352371216,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.7741,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.21138211382113822,
97
+ "grad_norm": 0.569580078125,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.7575,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.22764227642276422,
104
+ "grad_norm": 0.6962840557098389,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.7833,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.24390243902439024,
111
+ "grad_norm": 0.644322395324707,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.8329,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.2601626016260163,
118
+ "grad_norm": 0.5970060229301453,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.7794,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.2764227642276423,
125
+ "grad_norm": 0.6249210834503174,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.8521,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2926829268292683,
132
+ "grad_norm": 0.7134785652160645,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.8066,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.3089430894308943,
139
+ "grad_norm": 0.5477158427238464,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.8815,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.3252032520325203,
146
+ "grad_norm": 0.6054863333702087,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.7222,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.34146341463414637,
153
+ "grad_norm": 0.5664568543434143,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.7598,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.35772357723577236,
160
+ "grad_norm": 0.5942816734313965,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.7688,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.37398373983739835,
167
+ "grad_norm": 0.6311767101287842,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.7715,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.3902439024390244,
174
+ "grad_norm": 0.6614870429039001,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.7663,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.4065040650406504,
181
+ "grad_norm": 0.5644984841346741,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.8045,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.42276422764227645,
188
+ "grad_norm": 0.7260110974311829,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.7364,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.43902439024390244,
195
+ "grad_norm": 0.6733413934707642,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.7606,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.45528455284552843,
202
+ "grad_norm": 0.5211837887763977,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.8432,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.4715447154471545,
209
+ "grad_norm": 0.5538370013237,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.9166,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.4878048780487805,
216
+ "grad_norm": 0.5429130792617798,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.8391,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.5040650406504065,
223
+ "grad_norm": 0.517801821231842,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.8072,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.5203252032520326,
230
+ "grad_norm": 0.6029635667800903,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.8045,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.5365853658536586,
237
+ "grad_norm": 0.506401002407074,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.7734,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.5528455284552846,
244
+ "grad_norm": 0.5226597189903259,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.7923,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.5691056910569106,
251
+ "grad_norm": 0.5899750590324402,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.7625,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.5853658536585366,
258
+ "grad_norm": 0.6185210943222046,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.828,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.6016260162601627,
265
+ "grad_norm": 0.8088458180427551,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.8358,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.6178861788617886,
272
+ "grad_norm": 0.509591817855835,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.8351,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.6341463414634146,
279
+ "grad_norm": 0.5209569931030273,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.7849,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.6504065040650406,
286
+ "grad_norm": 0.50320965051651,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.7925,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.6666666666666666,
293
+ "grad_norm": 0.5555663108825684,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.795,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.6829268292682927,
300
+ "grad_norm": 0.5865469574928284,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.7562,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.6991869918699187,
307
+ "grad_norm": 0.5288474559783936,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.7869,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.7154471544715447,
314
+ "grad_norm": 0.5364211797714233,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.8046,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.7317073170731707,
321
+ "grad_norm": 0.5877127051353455,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.8124,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.7479674796747967,
328
+ "grad_norm": 0.5993741154670715,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.7938,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.7642276422764228,
335
+ "grad_norm": 0.4871112108230591,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.8034,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.7804878048780488,
342
+ "grad_norm": 0.5300846099853516,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.7798,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.7967479674796748,
349
+ "grad_norm": 0.5623212456703186,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.7772,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.8130081300813008,
356
+ "grad_norm": 0.5131309032440186,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.7207,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.8292682926829268,
363
+ "grad_norm": 0.49512147903442383,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.7143,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.8455284552845529,
370
+ "grad_norm": 0.6260727643966675,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.8032,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.8617886178861789,
377
+ "grad_norm": 0.5796844959259033,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.8292,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.8780487804878049,
384
+ "grad_norm": 0.615927517414093,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.7775,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.8943089430894309,
391
+ "grad_norm": 0.5230891704559326,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.7254,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.9105691056910569,
398
+ "grad_norm": 0.5990992784500122,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.8126,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.926829268292683,
405
+ "grad_norm": 0.538957417011261,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.8551,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.943089430894309,
412
+ "grad_norm": 0.556900680065155,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.791,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.959349593495935,
419
+ "grad_norm": 0.6459956765174866,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.8799,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.975609756097561,
426
+ "grad_norm": 0.5648245215415955,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.774,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.991869918699187,
433
+ "grad_norm": 0.5341294407844543,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.7746,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 1.0,
440
+ "eval_loss": 1.7831426858901978,
441
+ "eval_runtime": 98.419,
442
+ "eval_samples_per_second": 5.416,
443
+ "eval_steps_per_second": 0.681,
444
+ "step": 615
445
+ },
446
+ {
447
+ "epoch": 1.008130081300813,
448
+ "grad_norm": 0.49698150157928467,
449
+ "learning_rate": 0.0002,
450
+ "loss": 1.7212,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 1.024390243902439,
455
+ "grad_norm": 0.696890652179718,
456
+ "learning_rate": 0.0002,
457
+ "loss": 1.7379,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 1.040650406504065,
462
+ "grad_norm": 0.5939123630523682,
463
+ "learning_rate": 0.0002,
464
+ "loss": 1.6391,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 1.056910569105691,
469
+ "grad_norm": 0.5630994439125061,
470
+ "learning_rate": 0.0002,
471
+ "loss": 1.712,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.0731707317073171,
476
+ "grad_norm": 0.5783666968345642,
477
+ "learning_rate": 0.0002,
478
+ "loss": 1.6401,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.089430894308943,
483
+ "grad_norm": 0.6006693840026855,
484
+ "learning_rate": 0.0002,
485
+ "loss": 1.7158,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.1056910569105691,
490
+ "grad_norm": 0.6544332504272461,
491
+ "learning_rate": 0.0002,
492
+ "loss": 1.7434,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.1219512195121952,
497
+ "grad_norm": 0.6734776496887207,
498
+ "learning_rate": 0.0002,
499
+ "loss": 1.6562,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.1382113821138211,
504
+ "grad_norm": 0.6067698001861572,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.6724,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.1544715447154472,
511
+ "grad_norm": 0.6639267802238464,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.6932,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.170731707317073,
518
+ "grad_norm": 0.5179714560508728,
519
+ "learning_rate": 0.0002,
520
+ "loss": 1.6562,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.1869918699186992,
525
+ "grad_norm": 0.7320363521575928,
526
+ "learning_rate": 0.0002,
527
+ "loss": 1.6811,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.203252032520325,
532
+ "grad_norm": 0.689231276512146,
533
+ "learning_rate": 0.0002,
534
+ "loss": 1.5619,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.2195121951219512,
539
+ "grad_norm": 0.6605235934257507,
540
+ "learning_rate": 0.0002,
541
+ "loss": 1.5688,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.2357723577235773,
546
+ "grad_norm": 0.7013542056083679,
547
+ "learning_rate": 0.0002,
548
+ "loss": 1.7045,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.2520325203252032,
553
+ "grad_norm": 0.6349928975105286,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.6857,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.2682926829268293,
560
+ "grad_norm": 0.6362272500991821,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.6767,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.2845528455284554,
567
+ "grad_norm": 0.6152030229568481,
568
+ "learning_rate": 0.0002,
569
+ "loss": 1.6594,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.3008130081300813,
574
+ "grad_norm": 0.6406176686286926,
575
+ "learning_rate": 0.0002,
576
+ "loss": 1.7542,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.3170731707317074,
581
+ "grad_norm": 0.6099124550819397,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.7243,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.3333333333333333,
588
+ "grad_norm": 0.6298971772193909,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.6642,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.3495934959349594,
595
+ "grad_norm": 0.775223433971405,
596
+ "learning_rate": 0.0002,
597
+ "loss": 1.6901,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.3658536585365852,
602
+ "grad_norm": 0.7261736392974854,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.6284,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.3821138211382114,
609
+ "grad_norm": 0.6321929097175598,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.6671,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.3983739837398375,
616
+ "grad_norm": 0.7564281225204468,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.7036,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.4146341463414633,
623
+ "grad_norm": 0.6329448819160461,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.7014,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.4308943089430894,
630
+ "grad_norm": 0.6288684606552124,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.6398,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.4471544715447155,
637
+ "grad_norm": 0.6165404915809631,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.673,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.4634146341463414,
644
+ "grad_norm": 0.6124468445777893,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.6668,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.4796747967479675,
651
+ "grad_norm": 0.7038629651069641,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.6879,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.4959349593495934,
658
+ "grad_norm": 0.5755146145820618,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.6701,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.5121951219512195,
665
+ "grad_norm": 0.7639156579971313,
666
+ "learning_rate": 0.0002,
667
+ "loss": 1.7244,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.5284552845528454,
672
+ "grad_norm": 0.6948140859603882,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.6836,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.5447154471544715,
679
+ "grad_norm": 0.6887956261634827,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.6479,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.5609756097560976,
686
+ "grad_norm": 0.7226824164390564,
687
+ "learning_rate": 0.0002,
688
+ "loss": 1.7285,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.5772357723577235,
693
+ "grad_norm": 0.6753950715065002,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.6214,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.5934959349593496,
700
+ "grad_norm": 0.6580971479415894,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.7283,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.6097560975609757,
707
+ "grad_norm": 0.7157843112945557,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.6671,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.6260162601626016,
714
+ "grad_norm": 0.6736738681793213,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.645,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.6422764227642277,
721
+ "grad_norm": 0.5271940231323242,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.6589,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.6585365853658538,
728
+ "grad_norm": 0.6378998160362244,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.7358,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.6747967479674797,
735
+ "grad_norm": 0.6498209834098816,
736
+ "learning_rate": 0.0002,
737
+ "loss": 1.6924,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.6910569105691056,
742
+ "grad_norm": 0.7050761580467224,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.6253,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.7073170731707317,
749
+ "grad_norm": 0.7122200131416321,
750
+ "learning_rate": 0.0002,
751
+ "loss": 1.7146,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.7235772357723578,
756
+ "grad_norm": 0.6705704927444458,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.6511,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.7398373983739837,
763
+ "grad_norm": 0.6859356760978699,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.6506,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.7560975609756098,
770
+ "grad_norm": 0.6540971994400024,
771
+ "learning_rate": 0.0002,
772
+ "loss": 1.6562,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.7723577235772359,
777
+ "grad_norm": 0.6297651529312134,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.6627,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.7886178861788617,
784
+ "grad_norm": 0.6645651459693909,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.704,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.8048780487804879,
791
+ "grad_norm": 0.6450296640396118,
792
+ "learning_rate": 0.0002,
793
+ "loss": 1.6908,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.821138211382114,
798
+ "grad_norm": 0.7785659432411194,
799
+ "learning_rate": 0.0002,
800
+ "loss": 1.7642,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.8373983739837398,
805
+ "grad_norm": 0.6845982670783997,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.6773,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.8536585365853657,
812
+ "grad_norm": 0.699683666229248,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.6879,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.8699186991869918,
819
+ "grad_norm": 0.6600332856178284,
820
+ "learning_rate": 0.0002,
821
+ "loss": 1.7162,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.886178861788618,
826
+ "grad_norm": 0.7301949262619019,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.7291,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.9024390243902438,
833
+ "grad_norm": 0.8183556795120239,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.6874,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.91869918699187,
840
+ "grad_norm": 0.7122833132743835,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.6779,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.934959349593496,
847
+ "grad_norm": 0.6391404271125793,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.7361,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.951219512195122,
854
+ "grad_norm": 0.6136474013328552,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.7188,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.967479674796748,
861
+ "grad_norm": 0.7704503536224365,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.6536,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.9837398373983741,
868
+ "grad_norm": 0.6155434846878052,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.6735,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 2.0,
875
+ "grad_norm": 0.6262536644935608,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.6534,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 2.0,
882
+ "eval_loss": 1.7886285781860352,
883
+ "eval_runtime": 98.7888,
884
+ "eval_samples_per_second": 5.395,
885
+ "eval_steps_per_second": 0.678,
886
+ "step": 1230
887
+ },
888
+ {
889
+ "epoch": 2.016260162601626,
890
+ "grad_norm": 0.9827656149864197,
891
+ "learning_rate": 0.0002,
892
+ "loss": 1.5135,
893
+ "step": 1240
894
+ },
895
+ {
896
+ "epoch": 2.032520325203252,
897
+ "grad_norm": 0.8443078398704529,
898
+ "learning_rate": 0.0002,
899
+ "loss": 1.5396,
900
+ "step": 1250
901
+ },
902
+ {
903
+ "epoch": 2.048780487804878,
904
+ "grad_norm": 0.9006391763687134,
905
+ "learning_rate": 0.0002,
906
+ "loss": 1.5326,
907
+ "step": 1260
908
+ },
909
+ {
910
+ "epoch": 2.065040650406504,
911
+ "grad_norm": 0.7900105714797974,
912
+ "learning_rate": 0.0002,
913
+ "loss": 1.5176,
914
+ "step": 1270
915
+ },
916
+ {
917
+ "epoch": 2.08130081300813,
918
+ "grad_norm": 0.6430686116218567,
919
+ "learning_rate": 0.0002,
920
+ "loss": 1.5578,
921
+ "step": 1280
922
+ },
923
+ {
924
+ "epoch": 2.097560975609756,
925
+ "grad_norm": 0.8998992443084717,
926
+ "learning_rate": 0.0002,
927
+ "loss": 1.5453,
928
+ "step": 1290
929
+ },
930
+ {
931
+ "epoch": 2.113821138211382,
932
+ "grad_norm": 0.7658976316452026,
933
+ "learning_rate": 0.0002,
934
+ "loss": 1.5051,
935
+ "step": 1300
936
+ },
937
+ {
938
+ "epoch": 2.130081300813008,
939
+ "grad_norm": 0.9033166766166687,
940
+ "learning_rate": 0.0002,
941
+ "loss": 1.5005,
942
+ "step": 1310
943
+ },
944
+ {
945
+ "epoch": 2.1463414634146343,
946
+ "grad_norm": 0.7942133545875549,
947
+ "learning_rate": 0.0002,
948
+ "loss": 1.5517,
949
+ "step": 1320
950
+ },
951
+ {
952
+ "epoch": 2.16260162601626,
953
+ "grad_norm": 0.8496367931365967,
954
+ "learning_rate": 0.0002,
955
+ "loss": 1.5248,
956
+ "step": 1330
957
+ },
958
+ {
959
+ "epoch": 2.178861788617886,
960
+ "grad_norm": 0.8638061881065369,
961
+ "learning_rate": 0.0002,
962
+ "loss": 1.4887,
963
+ "step": 1340
964
+ },
965
+ {
966
+ "epoch": 2.1951219512195124,
967
+ "grad_norm": 0.9003657102584839,
968
+ "learning_rate": 0.0002,
969
+ "loss": 1.5023,
970
+ "step": 1350
971
+ },
972
+ {
973
+ "epoch": 2.2113821138211383,
974
+ "grad_norm": 0.8387648463249207,
975
+ "learning_rate": 0.0002,
976
+ "loss": 1.4904,
977
+ "step": 1360
978
+ },
979
+ {
980
+ "epoch": 2.227642276422764,
981
+ "grad_norm": 0.7598716616630554,
982
+ "learning_rate": 0.0002,
983
+ "loss": 1.5553,
984
+ "step": 1370
985
+ },
986
+ {
987
+ "epoch": 2.2439024390243905,
988
+ "grad_norm": 0.872882604598999,
989
+ "learning_rate": 0.0002,
990
+ "loss": 1.4723,
991
+ "step": 1380
992
+ },
993
+ {
994
+ "epoch": 2.2601626016260163,
995
+ "grad_norm": 0.8919313549995422,
996
+ "learning_rate": 0.0002,
997
+ "loss": 1.5121,
998
+ "step": 1390
999
+ },
1000
+ {
1001
+ "epoch": 2.2764227642276422,
1002
+ "grad_norm": 0.9646918773651123,
1003
+ "learning_rate": 0.0002,
1004
+ "loss": 1.5162,
1005
+ "step": 1400
1006
+ },
1007
+ {
1008
+ "epoch": 2.292682926829268,
1009
+ "grad_norm": 0.8501992225646973,
1010
+ "learning_rate": 0.0002,
1011
+ "loss": 1.5163,
1012
+ "step": 1410
1013
+ },
1014
+ {
1015
+ "epoch": 2.3089430894308944,
1016
+ "grad_norm": 0.7517067790031433,
1017
+ "learning_rate": 0.0002,
1018
+ "loss": 1.5096,
1019
+ "step": 1420
1020
+ },
1021
+ {
1022
+ "epoch": 2.3252032520325203,
1023
+ "grad_norm": 0.9097304940223694,
1024
+ "learning_rate": 0.0002,
1025
+ "loss": 1.5359,
1026
+ "step": 1430
1027
+ },
1028
+ {
1029
+ "epoch": 2.341463414634146,
1030
+ "grad_norm": 0.8515191674232483,
1031
+ "learning_rate": 0.0002,
1032
+ "loss": 1.4843,
1033
+ "step": 1440
1034
+ },
1035
+ {
1036
+ "epoch": 2.3577235772357725,
1037
+ "grad_norm": 0.8925113677978516,
1038
+ "learning_rate": 0.0002,
1039
+ "loss": 1.5021,
1040
+ "step": 1450
1041
+ },
1042
+ {
1043
+ "epoch": 2.3739837398373984,
1044
+ "grad_norm": 1.0194441080093384,
1045
+ "learning_rate": 0.0002,
1046
+ "loss": 1.4235,
1047
+ "step": 1460
1048
+ },
1049
+ {
1050
+ "epoch": 2.3902439024390243,
1051
+ "grad_norm": 0.9004436731338501,
1052
+ "learning_rate": 0.0002,
1053
+ "loss": 1.5778,
1054
+ "step": 1470
1055
+ },
1056
+ {
1057
+ "epoch": 2.40650406504065,
1058
+ "grad_norm": 0.9552311897277832,
1059
+ "learning_rate": 0.0002,
1060
+ "loss": 1.5623,
1061
+ "step": 1480
1062
+ },
1063
+ {
1064
+ "epoch": 2.4227642276422765,
1065
+ "grad_norm": 0.9185764789581299,
1066
+ "learning_rate": 0.0002,
1067
+ "loss": 1.5507,
1068
+ "step": 1490
1069
+ },
1070
+ {
1071
+ "epoch": 2.4390243902439024,
1072
+ "grad_norm": 0.7935037016868591,
1073
+ "learning_rate": 0.0002,
1074
+ "loss": 1.5058,
1075
+ "step": 1500
1076
+ },
1077
+ {
1078
+ "epoch": 2.4552845528455283,
1079
+ "grad_norm": 0.8124602437019348,
1080
+ "learning_rate": 0.0002,
1081
+ "loss": 1.5374,
1082
+ "step": 1510
1083
+ },
1084
+ {
1085
+ "epoch": 2.4715447154471546,
1086
+ "grad_norm": 0.7927430272102356,
1087
+ "learning_rate": 0.0002,
1088
+ "loss": 1.4553,
1089
+ "step": 1520
1090
+ },
1091
+ {
1092
+ "epoch": 2.4878048780487805,
1093
+ "grad_norm": 0.9143779873847961,
1094
+ "learning_rate": 0.0002,
1095
+ "loss": 1.5135,
1096
+ "step": 1530
1097
+ },
1098
+ {
1099
+ "epoch": 2.5040650406504064,
1100
+ "grad_norm": 0.938185453414917,
1101
+ "learning_rate": 0.0002,
1102
+ "loss": 1.4842,
1103
+ "step": 1540
1104
+ },
1105
+ {
1106
+ "epoch": 2.5203252032520327,
1107
+ "grad_norm": 0.9858708381652832,
1108
+ "learning_rate": 0.0002,
1109
+ "loss": 1.5983,
1110
+ "step": 1550
1111
+ },
1112
+ {
1113
+ "epoch": 2.5365853658536586,
1114
+ "grad_norm": 0.9211642742156982,
1115
+ "learning_rate": 0.0002,
1116
+ "loss": 1.5464,
1117
+ "step": 1560
1118
+ },
1119
+ {
1120
+ "epoch": 2.5528455284552845,
1121
+ "grad_norm": 0.9824395775794983,
1122
+ "learning_rate": 0.0002,
1123
+ "loss": 1.5293,
1124
+ "step": 1570
1125
+ },
1126
+ {
1127
+ "epoch": 2.569105691056911,
1128
+ "grad_norm": 0.916930615901947,
1129
+ "learning_rate": 0.0002,
1130
+ "loss": 1.5559,
1131
+ "step": 1580
1132
+ },
1133
+ {
1134
+ "epoch": 2.5853658536585367,
1135
+ "grad_norm": 0.9336596727371216,
1136
+ "learning_rate": 0.0002,
1137
+ "loss": 1.5581,
1138
+ "step": 1590
1139
+ },
1140
+ {
1141
+ "epoch": 2.6016260162601625,
1142
+ "grad_norm": 0.9006481170654297,
1143
+ "learning_rate": 0.0002,
1144
+ "loss": 1.5379,
1145
+ "step": 1600
1146
+ },
1147
+ {
1148
+ "epoch": 2.617886178861789,
1149
+ "grad_norm": 0.8296214938163757,
1150
+ "learning_rate": 0.0002,
1151
+ "loss": 1.5254,
1152
+ "step": 1610
1153
+ },
1154
+ {
1155
+ "epoch": 2.6341463414634148,
1156
+ "grad_norm": 1.0448366403579712,
1157
+ "learning_rate": 0.0002,
1158
+ "loss": 1.5782,
1159
+ "step": 1620
1160
+ },
1161
+ {
1162
+ "epoch": 2.6504065040650406,
1163
+ "grad_norm": 0.8174839019775391,
1164
+ "learning_rate": 0.0002,
1165
+ "loss": 1.5523,
1166
+ "step": 1630
1167
+ },
1168
+ {
1169
+ "epoch": 2.6666666666666665,
1170
+ "grad_norm": 0.873572051525116,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 1.4434,
1173
+ "step": 1640
1174
+ },
1175
+ {
1176
+ "epoch": 2.682926829268293,
1177
+ "grad_norm": 0.9270642995834351,
1178
+ "learning_rate": 0.0002,
1179
+ "loss": 1.4723,
1180
+ "step": 1650
1181
+ },
1182
+ {
1183
+ "epoch": 2.6991869918699187,
1184
+ "grad_norm": 0.8988297581672668,
1185
+ "learning_rate": 0.0002,
1186
+ "loss": 1.4736,
1187
+ "step": 1660
1188
+ },
1189
+ {
1190
+ "epoch": 2.7154471544715446,
1191
+ "grad_norm": 0.8537285923957825,
1192
+ "learning_rate": 0.0002,
1193
+ "loss": 1.52,
1194
+ "step": 1670
1195
+ },
1196
+ {
1197
+ "epoch": 2.7317073170731705,
1198
+ "grad_norm": 0.7982168793678284,
1199
+ "learning_rate": 0.0002,
1200
+ "loss": 1.5073,
1201
+ "step": 1680
1202
+ },
1203
+ {
1204
+ "epoch": 2.747967479674797,
1205
+ "grad_norm": 0.9140633940696716,
1206
+ "learning_rate": 0.0002,
1207
+ "loss": 1.5357,
1208
+ "step": 1690
1209
+ },
1210
+ {
1211
+ "epoch": 2.7642276422764227,
1212
+ "grad_norm": 0.8485862016677856,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 1.5182,
1215
+ "step": 1700
1216
+ },
1217
+ {
1218
+ "epoch": 2.7804878048780486,
1219
+ "grad_norm": 1.3670072555541992,
1220
+ "learning_rate": 0.0002,
1221
+ "loss": 1.5273,
1222
+ "step": 1710
1223
+ },
1224
+ {
1225
+ "epoch": 2.796747967479675,
1226
+ "grad_norm": 0.8846588134765625,
1227
+ "learning_rate": 0.0002,
1228
+ "loss": 1.492,
1229
+ "step": 1720
1230
+ },
1231
+ {
1232
+ "epoch": 2.813008130081301,
1233
+ "grad_norm": 1.0143219232559204,
1234
+ "learning_rate": 0.0002,
1235
+ "loss": 1.5286,
1236
+ "step": 1730
1237
+ },
1238
+ {
1239
+ "epoch": 2.8292682926829267,
1240
+ "grad_norm": 0.9646075367927551,
1241
+ "learning_rate": 0.0002,
1242
+ "loss": 1.5253,
1243
+ "step": 1740
1244
+ },
1245
+ {
1246
+ "epoch": 2.845528455284553,
1247
+ "grad_norm": 0.9912563562393188,
1248
+ "learning_rate": 0.0002,
1249
+ "loss": 1.5865,
1250
+ "step": 1750
1251
+ },
1252
+ {
1253
+ "epoch": 2.861788617886179,
1254
+ "grad_norm": 0.8160223364830017,
1255
+ "learning_rate": 0.0002,
1256
+ "loss": 1.5266,
1257
+ "step": 1760
1258
+ },
1259
+ {
1260
+ "epoch": 2.8780487804878048,
1261
+ "grad_norm": 0.8553791642189026,
1262
+ "learning_rate": 0.0002,
1263
+ "loss": 1.5542,
1264
+ "step": 1770
1265
+ },
1266
+ {
1267
+ "epoch": 2.894308943089431,
1268
+ "grad_norm": 0.8816639184951782,
1269
+ "learning_rate": 0.0002,
1270
+ "loss": 1.5592,
1271
+ "step": 1780
1272
+ },
1273
+ {
1274
+ "epoch": 2.910569105691057,
1275
+ "grad_norm": 0.829551637172699,
1276
+ "learning_rate": 0.0002,
1277
+ "loss": 1.5443,
1278
+ "step": 1790
1279
+ },
1280
+ {
1281
+ "epoch": 2.926829268292683,
1282
+ "grad_norm": 1.0520497560501099,
1283
+ "learning_rate": 0.0002,
1284
+ "loss": 1.5111,
1285
+ "step": 1800
1286
+ },
1287
+ {
1288
+ "epoch": 2.943089430894309,
1289
+ "grad_norm": 0.8627844452857971,
1290
+ "learning_rate": 0.0002,
1291
+ "loss": 1.509,
1292
+ "step": 1810
1293
+ },
1294
+ {
1295
+ "epoch": 2.959349593495935,
1296
+ "grad_norm": 0.8868018388748169,
1297
+ "learning_rate": 0.0002,
1298
+ "loss": 1.5119,
1299
+ "step": 1820
1300
+ },
1301
+ {
1302
+ "epoch": 2.975609756097561,
1303
+ "grad_norm": 1.047621250152588,
1304
+ "learning_rate": 0.0002,
1305
+ "loss": 1.5956,
1306
+ "step": 1830
1307
+ },
1308
+ {
1309
+ "epoch": 2.991869918699187,
1310
+ "grad_norm": 1.122131109237671,
1311
+ "learning_rate": 0.0002,
1312
+ "loss": 1.5189,
1313
+ "step": 1840
1314
+ },
1315
+ {
1316
+ "epoch": 3.0,
1317
+ "eval_loss": 1.8374383449554443,
1318
+ "eval_runtime": 98.0056,
1319
+ "eval_samples_per_second": 5.438,
1320
+ "eval_steps_per_second": 0.684,
1321
+ "step": 1845
1322
+ }
1323
+ ],
1324
+ "logging_steps": 10,
1325
+ "max_steps": 4920,
1326
+ "num_input_tokens_seen": 0,
1327
+ "num_train_epochs": 8,
1328
+ "save_steps": 200,
1329
+ "stateful_callbacks": {
1330
+ "TrainerControl": {
1331
+ "args": {
1332
+ "should_epoch_stop": false,
1333
+ "should_evaluate": false,
1334
+ "should_log": false,
1335
+ "should_save": true,
1336
+ "should_training_stop": false
1337
+ },
1338
+ "attributes": {}
1339
+ }
1340
+ },
1341
+ "total_flos": 8.0948870774784e+16,
1342
+ "train_batch_size": 1,
1343
+ "trial_name": null,
1344
+ "trial_params": null
1345
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-1845/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:794da760599f5a7e302e2faa616ba0185215c069e7fa3436832bde34c7f2ec7b
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b86b1157344ee03d1ea9e53ecb7441f26c937f3f7a3e6a087620639cc0b4576
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac93e172748bfa648efe9fbc93d295ff4861413dcf819b2a0d68b6db6157a6bd
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95e15f5fb27ea7d5bd0ba228e7d4894788a0b2e16eaaff348a1a0c2de0b0980c
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b03d97ce7b3c60cec4ded43deb4819d236c41cd836fa7210a3124936d0cd1e7
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/trainer_state.json ADDED
@@ -0,0 +1,1787 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7831426858901978,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-615",
4
+ "epoch": 4.0,
5
+ "eval_steps": 10,
6
+ "global_step": 2460,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016260162601626018,
13
+ "grad_norm": 1.903406023979187,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.6243,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.032520325203252036,
20
+ "grad_norm": 1.0100678205490112,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.2084,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.04878048780487805,
27
+ "grad_norm": 0.7413098812103271,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0423,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.06504065040650407,
34
+ "grad_norm": 0.7540805339813232,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0647,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.08130081300813008,
41
+ "grad_norm": 0.6508658528327942,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.0926,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.0975609756097561,
48
+ "grad_norm": 0.7228319048881531,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.878,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.11382113821138211,
55
+ "grad_norm": 0.6510937213897705,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8672,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.13008130081300814,
62
+ "grad_norm": 0.7238746881484985,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8592,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.14634146341463414,
69
+ "grad_norm": 0.7530466318130493,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.8541,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.16260162601626016,
76
+ "grad_norm": 0.622166097164154,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8245,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.17886178861788618,
83
+ "grad_norm": 0.6180148720741272,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.7581,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.1951219512195122,
90
+ "grad_norm": 0.6221362352371216,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.7741,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.21138211382113822,
97
+ "grad_norm": 0.569580078125,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.7575,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.22764227642276422,
104
+ "grad_norm": 0.6962840557098389,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.7833,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.24390243902439024,
111
+ "grad_norm": 0.644322395324707,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.8329,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.2601626016260163,
118
+ "grad_norm": 0.5970060229301453,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.7794,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.2764227642276423,
125
+ "grad_norm": 0.6249210834503174,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.8521,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2926829268292683,
132
+ "grad_norm": 0.7134785652160645,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.8066,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.3089430894308943,
139
+ "grad_norm": 0.5477158427238464,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.8815,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.3252032520325203,
146
+ "grad_norm": 0.6054863333702087,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.7222,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.34146341463414637,
153
+ "grad_norm": 0.5664568543434143,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.7598,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.35772357723577236,
160
+ "grad_norm": 0.5942816734313965,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.7688,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.37398373983739835,
167
+ "grad_norm": 0.6311767101287842,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.7715,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.3902439024390244,
174
+ "grad_norm": 0.6614870429039001,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.7663,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.4065040650406504,
181
+ "grad_norm": 0.5644984841346741,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.8045,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.42276422764227645,
188
+ "grad_norm": 0.7260110974311829,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.7364,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.43902439024390244,
195
+ "grad_norm": 0.6733413934707642,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.7606,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.45528455284552843,
202
+ "grad_norm": 0.5211837887763977,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.8432,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.4715447154471545,
209
+ "grad_norm": 0.5538370013237,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.9166,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.4878048780487805,
216
+ "grad_norm": 0.5429130792617798,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.8391,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.5040650406504065,
223
+ "grad_norm": 0.517801821231842,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.8072,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.5203252032520326,
230
+ "grad_norm": 0.6029635667800903,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.8045,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.5365853658536586,
237
+ "grad_norm": 0.506401002407074,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.7734,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.5528455284552846,
244
+ "grad_norm": 0.5226597189903259,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.7923,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.5691056910569106,
251
+ "grad_norm": 0.5899750590324402,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.7625,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.5853658536585366,
258
+ "grad_norm": 0.6185210943222046,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.828,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.6016260162601627,
265
+ "grad_norm": 0.8088458180427551,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.8358,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.6178861788617886,
272
+ "grad_norm": 0.509591817855835,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.8351,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.6341463414634146,
279
+ "grad_norm": 0.5209569931030273,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.7849,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.6504065040650406,
286
+ "grad_norm": 0.50320965051651,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.7925,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.6666666666666666,
293
+ "grad_norm": 0.5555663108825684,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.795,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.6829268292682927,
300
+ "grad_norm": 0.5865469574928284,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.7562,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.6991869918699187,
307
+ "grad_norm": 0.5288474559783936,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.7869,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.7154471544715447,
314
+ "grad_norm": 0.5364211797714233,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.8046,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.7317073170731707,
321
+ "grad_norm": 0.5877127051353455,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.8124,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.7479674796747967,
328
+ "grad_norm": 0.5993741154670715,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.7938,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.7642276422764228,
335
+ "grad_norm": 0.4871112108230591,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.8034,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.7804878048780488,
342
+ "grad_norm": 0.5300846099853516,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.7798,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.7967479674796748,
349
+ "grad_norm": 0.5623212456703186,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.7772,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.8130081300813008,
356
+ "grad_norm": 0.5131309032440186,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.7207,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.8292682926829268,
363
+ "grad_norm": 0.49512147903442383,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.7143,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.8455284552845529,
370
+ "grad_norm": 0.6260727643966675,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.8032,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.8617886178861789,
377
+ "grad_norm": 0.5796844959259033,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.8292,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.8780487804878049,
384
+ "grad_norm": 0.615927517414093,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.7775,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.8943089430894309,
391
+ "grad_norm": 0.5230891704559326,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.7254,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.9105691056910569,
398
+ "grad_norm": 0.5990992784500122,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.8126,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.926829268292683,
405
+ "grad_norm": 0.538957417011261,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.8551,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.943089430894309,
412
+ "grad_norm": 0.556900680065155,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.791,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.959349593495935,
419
+ "grad_norm": 0.6459956765174866,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.8799,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.975609756097561,
426
+ "grad_norm": 0.5648245215415955,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.774,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.991869918699187,
433
+ "grad_norm": 0.5341294407844543,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.7746,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 1.0,
440
+ "eval_loss": 1.7831426858901978,
441
+ "eval_runtime": 98.419,
442
+ "eval_samples_per_second": 5.416,
443
+ "eval_steps_per_second": 0.681,
444
+ "step": 615
445
+ },
446
+ {
447
+ "epoch": 1.008130081300813,
448
+ "grad_norm": 0.49698150157928467,
449
+ "learning_rate": 0.0002,
450
+ "loss": 1.7212,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 1.024390243902439,
455
+ "grad_norm": 0.696890652179718,
456
+ "learning_rate": 0.0002,
457
+ "loss": 1.7379,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 1.040650406504065,
462
+ "grad_norm": 0.5939123630523682,
463
+ "learning_rate": 0.0002,
464
+ "loss": 1.6391,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 1.056910569105691,
469
+ "grad_norm": 0.5630994439125061,
470
+ "learning_rate": 0.0002,
471
+ "loss": 1.712,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.0731707317073171,
476
+ "grad_norm": 0.5783666968345642,
477
+ "learning_rate": 0.0002,
478
+ "loss": 1.6401,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.089430894308943,
483
+ "grad_norm": 0.6006693840026855,
484
+ "learning_rate": 0.0002,
485
+ "loss": 1.7158,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.1056910569105691,
490
+ "grad_norm": 0.6544332504272461,
491
+ "learning_rate": 0.0002,
492
+ "loss": 1.7434,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.1219512195121952,
497
+ "grad_norm": 0.6734776496887207,
498
+ "learning_rate": 0.0002,
499
+ "loss": 1.6562,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.1382113821138211,
504
+ "grad_norm": 0.6067698001861572,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.6724,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.1544715447154472,
511
+ "grad_norm": 0.6639267802238464,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.6932,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.170731707317073,
518
+ "grad_norm": 0.5179714560508728,
519
+ "learning_rate": 0.0002,
520
+ "loss": 1.6562,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.1869918699186992,
525
+ "grad_norm": 0.7320363521575928,
526
+ "learning_rate": 0.0002,
527
+ "loss": 1.6811,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.203252032520325,
532
+ "grad_norm": 0.689231276512146,
533
+ "learning_rate": 0.0002,
534
+ "loss": 1.5619,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.2195121951219512,
539
+ "grad_norm": 0.6605235934257507,
540
+ "learning_rate": 0.0002,
541
+ "loss": 1.5688,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.2357723577235773,
546
+ "grad_norm": 0.7013542056083679,
547
+ "learning_rate": 0.0002,
548
+ "loss": 1.7045,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.2520325203252032,
553
+ "grad_norm": 0.6349928975105286,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.6857,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.2682926829268293,
560
+ "grad_norm": 0.6362272500991821,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.6767,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.2845528455284554,
567
+ "grad_norm": 0.6152030229568481,
568
+ "learning_rate": 0.0002,
569
+ "loss": 1.6594,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.3008130081300813,
574
+ "grad_norm": 0.6406176686286926,
575
+ "learning_rate": 0.0002,
576
+ "loss": 1.7542,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.3170731707317074,
581
+ "grad_norm": 0.6099124550819397,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.7243,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.3333333333333333,
588
+ "grad_norm": 0.6298971772193909,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.6642,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.3495934959349594,
595
+ "grad_norm": 0.775223433971405,
596
+ "learning_rate": 0.0002,
597
+ "loss": 1.6901,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.3658536585365852,
602
+ "grad_norm": 0.7261736392974854,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.6284,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.3821138211382114,
609
+ "grad_norm": 0.6321929097175598,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.6671,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.3983739837398375,
616
+ "grad_norm": 0.7564281225204468,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.7036,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.4146341463414633,
623
+ "grad_norm": 0.6329448819160461,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.7014,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.4308943089430894,
630
+ "grad_norm": 0.6288684606552124,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.6398,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.4471544715447155,
637
+ "grad_norm": 0.6165404915809631,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.673,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.4634146341463414,
644
+ "grad_norm": 0.6124468445777893,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.6668,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.4796747967479675,
651
+ "grad_norm": 0.7038629651069641,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.6879,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.4959349593495934,
658
+ "grad_norm": 0.5755146145820618,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.6701,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.5121951219512195,
665
+ "grad_norm": 0.7639156579971313,
666
+ "learning_rate": 0.0002,
667
+ "loss": 1.7244,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.5284552845528454,
672
+ "grad_norm": 0.6948140859603882,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.6836,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.5447154471544715,
679
+ "grad_norm": 0.6887956261634827,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.6479,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.5609756097560976,
686
+ "grad_norm": 0.7226824164390564,
687
+ "learning_rate": 0.0002,
688
+ "loss": 1.7285,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.5772357723577235,
693
+ "grad_norm": 0.6753950715065002,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.6214,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.5934959349593496,
700
+ "grad_norm": 0.6580971479415894,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.7283,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.6097560975609757,
707
+ "grad_norm": 0.7157843112945557,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.6671,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.6260162601626016,
714
+ "grad_norm": 0.6736738681793213,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.645,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.6422764227642277,
721
+ "grad_norm": 0.5271940231323242,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.6589,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.6585365853658538,
728
+ "grad_norm": 0.6378998160362244,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.7358,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.6747967479674797,
735
+ "grad_norm": 0.6498209834098816,
736
+ "learning_rate": 0.0002,
737
+ "loss": 1.6924,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.6910569105691056,
742
+ "grad_norm": 0.7050761580467224,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.6253,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.7073170731707317,
749
+ "grad_norm": 0.7122200131416321,
750
+ "learning_rate": 0.0002,
751
+ "loss": 1.7146,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.7235772357723578,
756
+ "grad_norm": 0.6705704927444458,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.6511,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.7398373983739837,
763
+ "grad_norm": 0.6859356760978699,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.6506,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.7560975609756098,
770
+ "grad_norm": 0.6540971994400024,
771
+ "learning_rate": 0.0002,
772
+ "loss": 1.6562,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.7723577235772359,
777
+ "grad_norm": 0.6297651529312134,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.6627,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.7886178861788617,
784
+ "grad_norm": 0.6645651459693909,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.704,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.8048780487804879,
791
+ "grad_norm": 0.6450296640396118,
792
+ "learning_rate": 0.0002,
793
+ "loss": 1.6908,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.821138211382114,
798
+ "grad_norm": 0.7785659432411194,
799
+ "learning_rate": 0.0002,
800
+ "loss": 1.7642,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.8373983739837398,
805
+ "grad_norm": 0.6845982670783997,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.6773,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.8536585365853657,
812
+ "grad_norm": 0.699683666229248,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.6879,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.8699186991869918,
819
+ "grad_norm": 0.6600332856178284,
820
+ "learning_rate": 0.0002,
821
+ "loss": 1.7162,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.886178861788618,
826
+ "grad_norm": 0.7301949262619019,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.7291,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.9024390243902438,
833
+ "grad_norm": 0.8183556795120239,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.6874,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.91869918699187,
840
+ "grad_norm": 0.7122833132743835,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.6779,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.934959349593496,
847
+ "grad_norm": 0.6391404271125793,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.7361,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.951219512195122,
854
+ "grad_norm": 0.6136474013328552,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.7188,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.967479674796748,
861
+ "grad_norm": 0.7704503536224365,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.6536,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.9837398373983741,
868
+ "grad_norm": 0.6155434846878052,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.6735,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 2.0,
875
+ "grad_norm": 0.6262536644935608,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.6534,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 2.0,
882
+ "eval_loss": 1.7886285781860352,
883
+ "eval_runtime": 98.7888,
884
+ "eval_samples_per_second": 5.395,
885
+ "eval_steps_per_second": 0.678,
886
+ "step": 1230
887
+ },
888
+ {
889
+ "epoch": 2.016260162601626,
890
+ "grad_norm": 0.9827656149864197,
891
+ "learning_rate": 0.0002,
892
+ "loss": 1.5135,
893
+ "step": 1240
894
+ },
895
+ {
896
+ "epoch": 2.032520325203252,
897
+ "grad_norm": 0.8443078398704529,
898
+ "learning_rate": 0.0002,
899
+ "loss": 1.5396,
900
+ "step": 1250
901
+ },
902
+ {
903
+ "epoch": 2.048780487804878,
904
+ "grad_norm": 0.9006391763687134,
905
+ "learning_rate": 0.0002,
906
+ "loss": 1.5326,
907
+ "step": 1260
908
+ },
909
+ {
910
+ "epoch": 2.065040650406504,
911
+ "grad_norm": 0.7900105714797974,
912
+ "learning_rate": 0.0002,
913
+ "loss": 1.5176,
914
+ "step": 1270
915
+ },
916
+ {
917
+ "epoch": 2.08130081300813,
918
+ "grad_norm": 0.6430686116218567,
919
+ "learning_rate": 0.0002,
920
+ "loss": 1.5578,
921
+ "step": 1280
922
+ },
923
+ {
924
+ "epoch": 2.097560975609756,
925
+ "grad_norm": 0.8998992443084717,
926
+ "learning_rate": 0.0002,
927
+ "loss": 1.5453,
928
+ "step": 1290
929
+ },
930
+ {
931
+ "epoch": 2.113821138211382,
932
+ "grad_norm": 0.7658976316452026,
933
+ "learning_rate": 0.0002,
934
+ "loss": 1.5051,
935
+ "step": 1300
936
+ },
937
+ {
938
+ "epoch": 2.130081300813008,
939
+ "grad_norm": 0.9033166766166687,
940
+ "learning_rate": 0.0002,
941
+ "loss": 1.5005,
942
+ "step": 1310
943
+ },
944
+ {
945
+ "epoch": 2.1463414634146343,
946
+ "grad_norm": 0.7942133545875549,
947
+ "learning_rate": 0.0002,
948
+ "loss": 1.5517,
949
+ "step": 1320
950
+ },
951
+ {
952
+ "epoch": 2.16260162601626,
953
+ "grad_norm": 0.8496367931365967,
954
+ "learning_rate": 0.0002,
955
+ "loss": 1.5248,
956
+ "step": 1330
957
+ },
958
+ {
959
+ "epoch": 2.178861788617886,
960
+ "grad_norm": 0.8638061881065369,
961
+ "learning_rate": 0.0002,
962
+ "loss": 1.4887,
963
+ "step": 1340
964
+ },
965
+ {
966
+ "epoch": 2.1951219512195124,
967
+ "grad_norm": 0.9003657102584839,
968
+ "learning_rate": 0.0002,
969
+ "loss": 1.5023,
970
+ "step": 1350
971
+ },
972
+ {
973
+ "epoch": 2.2113821138211383,
974
+ "grad_norm": 0.8387648463249207,
975
+ "learning_rate": 0.0002,
976
+ "loss": 1.4904,
977
+ "step": 1360
978
+ },
979
+ {
980
+ "epoch": 2.227642276422764,
981
+ "grad_norm": 0.7598716616630554,
982
+ "learning_rate": 0.0002,
983
+ "loss": 1.5553,
984
+ "step": 1370
985
+ },
986
+ {
987
+ "epoch": 2.2439024390243905,
988
+ "grad_norm": 0.872882604598999,
989
+ "learning_rate": 0.0002,
990
+ "loss": 1.4723,
991
+ "step": 1380
992
+ },
993
+ {
994
+ "epoch": 2.2601626016260163,
995
+ "grad_norm": 0.8919313549995422,
996
+ "learning_rate": 0.0002,
997
+ "loss": 1.5121,
998
+ "step": 1390
999
+ },
1000
+ {
1001
+ "epoch": 2.2764227642276422,
1002
+ "grad_norm": 0.9646918773651123,
1003
+ "learning_rate": 0.0002,
1004
+ "loss": 1.5162,
1005
+ "step": 1400
1006
+ },
1007
+ {
1008
+ "epoch": 2.292682926829268,
1009
+ "grad_norm": 0.8501992225646973,
1010
+ "learning_rate": 0.0002,
1011
+ "loss": 1.5163,
1012
+ "step": 1410
1013
+ },
1014
+ {
1015
+ "epoch": 2.3089430894308944,
1016
+ "grad_norm": 0.7517067790031433,
1017
+ "learning_rate": 0.0002,
1018
+ "loss": 1.5096,
1019
+ "step": 1420
1020
+ },
1021
+ {
1022
+ "epoch": 2.3252032520325203,
1023
+ "grad_norm": 0.9097304940223694,
1024
+ "learning_rate": 0.0002,
1025
+ "loss": 1.5359,
1026
+ "step": 1430
1027
+ },
1028
+ {
1029
+ "epoch": 2.341463414634146,
1030
+ "grad_norm": 0.8515191674232483,
1031
+ "learning_rate": 0.0002,
1032
+ "loss": 1.4843,
1033
+ "step": 1440
1034
+ },
1035
+ {
1036
+ "epoch": 2.3577235772357725,
1037
+ "grad_norm": 0.8925113677978516,
1038
+ "learning_rate": 0.0002,
1039
+ "loss": 1.5021,
1040
+ "step": 1450
1041
+ },
1042
+ {
1043
+ "epoch": 2.3739837398373984,
1044
+ "grad_norm": 1.0194441080093384,
1045
+ "learning_rate": 0.0002,
1046
+ "loss": 1.4235,
1047
+ "step": 1460
1048
+ },
1049
+ {
1050
+ "epoch": 2.3902439024390243,
1051
+ "grad_norm": 0.9004436731338501,
1052
+ "learning_rate": 0.0002,
1053
+ "loss": 1.5778,
1054
+ "step": 1470
1055
+ },
1056
+ {
1057
+ "epoch": 2.40650406504065,
1058
+ "grad_norm": 0.9552311897277832,
1059
+ "learning_rate": 0.0002,
1060
+ "loss": 1.5623,
1061
+ "step": 1480
1062
+ },
1063
+ {
1064
+ "epoch": 2.4227642276422765,
1065
+ "grad_norm": 0.9185764789581299,
1066
+ "learning_rate": 0.0002,
1067
+ "loss": 1.5507,
1068
+ "step": 1490
1069
+ },
1070
+ {
1071
+ "epoch": 2.4390243902439024,
1072
+ "grad_norm": 0.7935037016868591,
1073
+ "learning_rate": 0.0002,
1074
+ "loss": 1.5058,
1075
+ "step": 1500
1076
+ },
1077
+ {
1078
+ "epoch": 2.4552845528455283,
1079
+ "grad_norm": 0.8124602437019348,
1080
+ "learning_rate": 0.0002,
1081
+ "loss": 1.5374,
1082
+ "step": 1510
1083
+ },
1084
+ {
1085
+ "epoch": 2.4715447154471546,
1086
+ "grad_norm": 0.7927430272102356,
1087
+ "learning_rate": 0.0002,
1088
+ "loss": 1.4553,
1089
+ "step": 1520
1090
+ },
1091
+ {
1092
+ "epoch": 2.4878048780487805,
1093
+ "grad_norm": 0.9143779873847961,
1094
+ "learning_rate": 0.0002,
1095
+ "loss": 1.5135,
1096
+ "step": 1530
1097
+ },
1098
+ {
1099
+ "epoch": 2.5040650406504064,
1100
+ "grad_norm": 0.938185453414917,
1101
+ "learning_rate": 0.0002,
1102
+ "loss": 1.4842,
1103
+ "step": 1540
1104
+ },
1105
+ {
1106
+ "epoch": 2.5203252032520327,
1107
+ "grad_norm": 0.9858708381652832,
1108
+ "learning_rate": 0.0002,
1109
+ "loss": 1.5983,
1110
+ "step": 1550
1111
+ },
1112
+ {
1113
+ "epoch": 2.5365853658536586,
1114
+ "grad_norm": 0.9211642742156982,
1115
+ "learning_rate": 0.0002,
1116
+ "loss": 1.5464,
1117
+ "step": 1560
1118
+ },
1119
+ {
1120
+ "epoch": 2.5528455284552845,
1121
+ "grad_norm": 0.9824395775794983,
1122
+ "learning_rate": 0.0002,
1123
+ "loss": 1.5293,
1124
+ "step": 1570
1125
+ },
1126
+ {
1127
+ "epoch": 2.569105691056911,
1128
+ "grad_norm": 0.916930615901947,
1129
+ "learning_rate": 0.0002,
1130
+ "loss": 1.5559,
1131
+ "step": 1580
1132
+ },
1133
+ {
1134
+ "epoch": 2.5853658536585367,
1135
+ "grad_norm": 0.9336596727371216,
1136
+ "learning_rate": 0.0002,
1137
+ "loss": 1.5581,
1138
+ "step": 1590
1139
+ },
1140
+ {
1141
+ "epoch": 2.6016260162601625,
1142
+ "grad_norm": 0.9006481170654297,
1143
+ "learning_rate": 0.0002,
1144
+ "loss": 1.5379,
1145
+ "step": 1600
1146
+ },
1147
+ {
1148
+ "epoch": 2.617886178861789,
1149
+ "grad_norm": 0.8296214938163757,
1150
+ "learning_rate": 0.0002,
1151
+ "loss": 1.5254,
1152
+ "step": 1610
1153
+ },
1154
+ {
1155
+ "epoch": 2.6341463414634148,
1156
+ "grad_norm": 1.0448366403579712,
1157
+ "learning_rate": 0.0002,
1158
+ "loss": 1.5782,
1159
+ "step": 1620
1160
+ },
1161
+ {
1162
+ "epoch": 2.6504065040650406,
1163
+ "grad_norm": 0.8174839019775391,
1164
+ "learning_rate": 0.0002,
1165
+ "loss": 1.5523,
1166
+ "step": 1630
1167
+ },
1168
+ {
1169
+ "epoch": 2.6666666666666665,
1170
+ "grad_norm": 0.873572051525116,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 1.4434,
1173
+ "step": 1640
1174
+ },
1175
+ {
1176
+ "epoch": 2.682926829268293,
1177
+ "grad_norm": 0.9270642995834351,
1178
+ "learning_rate": 0.0002,
1179
+ "loss": 1.4723,
1180
+ "step": 1650
1181
+ },
1182
+ {
1183
+ "epoch": 2.6991869918699187,
1184
+ "grad_norm": 0.8988297581672668,
1185
+ "learning_rate": 0.0002,
1186
+ "loss": 1.4736,
1187
+ "step": 1660
1188
+ },
1189
+ {
1190
+ "epoch": 2.7154471544715446,
1191
+ "grad_norm": 0.8537285923957825,
1192
+ "learning_rate": 0.0002,
1193
+ "loss": 1.52,
1194
+ "step": 1670
1195
+ },
1196
+ {
1197
+ "epoch": 2.7317073170731705,
1198
+ "grad_norm": 0.7982168793678284,
1199
+ "learning_rate": 0.0002,
1200
+ "loss": 1.5073,
1201
+ "step": 1680
1202
+ },
1203
+ {
1204
+ "epoch": 2.747967479674797,
1205
+ "grad_norm": 0.9140633940696716,
1206
+ "learning_rate": 0.0002,
1207
+ "loss": 1.5357,
1208
+ "step": 1690
1209
+ },
1210
+ {
1211
+ "epoch": 2.7642276422764227,
1212
+ "grad_norm": 0.8485862016677856,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 1.5182,
1215
+ "step": 1700
1216
+ },
1217
+ {
1218
+ "epoch": 2.7804878048780486,
1219
+ "grad_norm": 1.3670072555541992,
1220
+ "learning_rate": 0.0002,
1221
+ "loss": 1.5273,
1222
+ "step": 1710
1223
+ },
1224
+ {
1225
+ "epoch": 2.796747967479675,
1226
+ "grad_norm": 0.8846588134765625,
1227
+ "learning_rate": 0.0002,
1228
+ "loss": 1.492,
1229
+ "step": 1720
1230
+ },
1231
+ {
1232
+ "epoch": 2.813008130081301,
1233
+ "grad_norm": 1.0143219232559204,
1234
+ "learning_rate": 0.0002,
1235
+ "loss": 1.5286,
1236
+ "step": 1730
1237
+ },
1238
+ {
1239
+ "epoch": 2.8292682926829267,
1240
+ "grad_norm": 0.9646075367927551,
1241
+ "learning_rate": 0.0002,
1242
+ "loss": 1.5253,
1243
+ "step": 1740
1244
+ },
1245
+ {
1246
+ "epoch": 2.845528455284553,
1247
+ "grad_norm": 0.9912563562393188,
1248
+ "learning_rate": 0.0002,
1249
+ "loss": 1.5865,
1250
+ "step": 1750
1251
+ },
1252
+ {
1253
+ "epoch": 2.861788617886179,
1254
+ "grad_norm": 0.8160223364830017,
1255
+ "learning_rate": 0.0002,
1256
+ "loss": 1.5266,
1257
+ "step": 1760
1258
+ },
1259
+ {
1260
+ "epoch": 2.8780487804878048,
1261
+ "grad_norm": 0.8553791642189026,
1262
+ "learning_rate": 0.0002,
1263
+ "loss": 1.5542,
1264
+ "step": 1770
1265
+ },
1266
+ {
1267
+ "epoch": 2.894308943089431,
1268
+ "grad_norm": 0.8816639184951782,
1269
+ "learning_rate": 0.0002,
1270
+ "loss": 1.5592,
1271
+ "step": 1780
1272
+ },
1273
+ {
1274
+ "epoch": 2.910569105691057,
1275
+ "grad_norm": 0.829551637172699,
1276
+ "learning_rate": 0.0002,
1277
+ "loss": 1.5443,
1278
+ "step": 1790
1279
+ },
1280
+ {
1281
+ "epoch": 2.926829268292683,
1282
+ "grad_norm": 1.0520497560501099,
1283
+ "learning_rate": 0.0002,
1284
+ "loss": 1.5111,
1285
+ "step": 1800
1286
+ },
1287
+ {
1288
+ "epoch": 2.943089430894309,
1289
+ "grad_norm": 0.8627844452857971,
1290
+ "learning_rate": 0.0002,
1291
+ "loss": 1.509,
1292
+ "step": 1810
1293
+ },
1294
+ {
1295
+ "epoch": 2.959349593495935,
1296
+ "grad_norm": 0.8868018388748169,
1297
+ "learning_rate": 0.0002,
1298
+ "loss": 1.5119,
1299
+ "step": 1820
1300
+ },
1301
+ {
1302
+ "epoch": 2.975609756097561,
1303
+ "grad_norm": 1.047621250152588,
1304
+ "learning_rate": 0.0002,
1305
+ "loss": 1.5956,
1306
+ "step": 1830
1307
+ },
1308
+ {
1309
+ "epoch": 2.991869918699187,
1310
+ "grad_norm": 1.122131109237671,
1311
+ "learning_rate": 0.0002,
1312
+ "loss": 1.5189,
1313
+ "step": 1840
1314
+ },
1315
+ {
1316
+ "epoch": 3.0,
1317
+ "eval_loss": 1.8374383449554443,
1318
+ "eval_runtime": 98.0056,
1319
+ "eval_samples_per_second": 5.438,
1320
+ "eval_steps_per_second": 0.684,
1321
+ "step": 1845
1322
+ },
1323
+ {
1324
+ "epoch": 3.008130081300813,
1325
+ "grad_norm": 0.9361767172813416,
1326
+ "learning_rate": 0.0002,
1327
+ "loss": 1.3996,
1328
+ "step": 1850
1329
+ },
1330
+ {
1331
+ "epoch": 3.024390243902439,
1332
+ "grad_norm": 1.0564402341842651,
1333
+ "learning_rate": 0.0002,
1334
+ "loss": 1.3122,
1335
+ "step": 1860
1336
+ },
1337
+ {
1338
+ "epoch": 3.040650406504065,
1339
+ "grad_norm": 1.2450026273727417,
1340
+ "learning_rate": 0.0002,
1341
+ "loss": 1.2512,
1342
+ "step": 1870
1343
+ },
1344
+ {
1345
+ "epoch": 3.0569105691056913,
1346
+ "grad_norm": 1.082606554031372,
1347
+ "learning_rate": 0.0002,
1348
+ "loss": 1.2585,
1349
+ "step": 1880
1350
+ },
1351
+ {
1352
+ "epoch": 3.073170731707317,
1353
+ "grad_norm": 1.1582257747650146,
1354
+ "learning_rate": 0.0002,
1355
+ "loss": 1.2827,
1356
+ "step": 1890
1357
+ },
1358
+ {
1359
+ "epoch": 3.089430894308943,
1360
+ "grad_norm": 1.1113696098327637,
1361
+ "learning_rate": 0.0002,
1362
+ "loss": 1.2865,
1363
+ "step": 1900
1364
+ },
1365
+ {
1366
+ "epoch": 3.105691056910569,
1367
+ "grad_norm": 1.1716952323913574,
1368
+ "learning_rate": 0.0002,
1369
+ "loss": 1.2867,
1370
+ "step": 1910
1371
+ },
1372
+ {
1373
+ "epoch": 3.1219512195121952,
1374
+ "grad_norm": 1.1270506381988525,
1375
+ "learning_rate": 0.0002,
1376
+ "loss": 1.286,
1377
+ "step": 1920
1378
+ },
1379
+ {
1380
+ "epoch": 3.138211382113821,
1381
+ "grad_norm": 1.1955605745315552,
1382
+ "learning_rate": 0.0002,
1383
+ "loss": 1.3074,
1384
+ "step": 1930
1385
+ },
1386
+ {
1387
+ "epoch": 3.154471544715447,
1388
+ "grad_norm": 1.246848464012146,
1389
+ "learning_rate": 0.0002,
1390
+ "loss": 1.2752,
1391
+ "step": 1940
1392
+ },
1393
+ {
1394
+ "epoch": 3.1707317073170733,
1395
+ "grad_norm": 1.2208205461502075,
1396
+ "learning_rate": 0.0002,
1397
+ "loss": 1.3422,
1398
+ "step": 1950
1399
+ },
1400
+ {
1401
+ "epoch": 3.186991869918699,
1402
+ "grad_norm": 1.1758005619049072,
1403
+ "learning_rate": 0.0002,
1404
+ "loss": 1.2618,
1405
+ "step": 1960
1406
+ },
1407
+ {
1408
+ "epoch": 3.203252032520325,
1409
+ "grad_norm": 1.2697960138320923,
1410
+ "learning_rate": 0.0002,
1411
+ "loss": 1.3094,
1412
+ "step": 1970
1413
+ },
1414
+ {
1415
+ "epoch": 3.2195121951219514,
1416
+ "grad_norm": 1.0855997800827026,
1417
+ "learning_rate": 0.0002,
1418
+ "loss": 1.3714,
1419
+ "step": 1980
1420
+ },
1421
+ {
1422
+ "epoch": 3.2357723577235773,
1423
+ "grad_norm": 1.1054189205169678,
1424
+ "learning_rate": 0.0002,
1425
+ "loss": 1.2866,
1426
+ "step": 1990
1427
+ },
1428
+ {
1429
+ "epoch": 3.252032520325203,
1430
+ "grad_norm": 1.2496592998504639,
1431
+ "learning_rate": 0.0002,
1432
+ "loss": 1.3057,
1433
+ "step": 2000
1434
+ },
1435
+ {
1436
+ "epoch": 3.2682926829268295,
1437
+ "grad_norm": 1.215553641319275,
1438
+ "learning_rate": 0.0002,
1439
+ "loss": 1.3868,
1440
+ "step": 2010
1441
+ },
1442
+ {
1443
+ "epoch": 3.2845528455284554,
1444
+ "grad_norm": 1.1711665391921997,
1445
+ "learning_rate": 0.0002,
1446
+ "loss": 1.2866,
1447
+ "step": 2020
1448
+ },
1449
+ {
1450
+ "epoch": 3.3008130081300813,
1451
+ "grad_norm": 1.493438959121704,
1452
+ "learning_rate": 0.0002,
1453
+ "loss": 1.2969,
1454
+ "step": 2030
1455
+ },
1456
+ {
1457
+ "epoch": 3.317073170731707,
1458
+ "grad_norm": 1.1202969551086426,
1459
+ "learning_rate": 0.0002,
1460
+ "loss": 1.3032,
1461
+ "step": 2040
1462
+ },
1463
+ {
1464
+ "epoch": 3.3333333333333335,
1465
+ "grad_norm": 1.1334387063980103,
1466
+ "learning_rate": 0.0002,
1467
+ "loss": 1.3257,
1468
+ "step": 2050
1469
+ },
1470
+ {
1471
+ "epoch": 3.3495934959349594,
1472
+ "grad_norm": 1.2813389301300049,
1473
+ "learning_rate": 0.0002,
1474
+ "loss": 1.2823,
1475
+ "step": 2060
1476
+ },
1477
+ {
1478
+ "epoch": 3.3658536585365852,
1479
+ "grad_norm": 1.1317278146743774,
1480
+ "learning_rate": 0.0002,
1481
+ "loss": 1.2892,
1482
+ "step": 2070
1483
+ },
1484
+ {
1485
+ "epoch": 3.3821138211382116,
1486
+ "grad_norm": 1.4018956422805786,
1487
+ "learning_rate": 0.0002,
1488
+ "loss": 1.2731,
1489
+ "step": 2080
1490
+ },
1491
+ {
1492
+ "epoch": 3.3983739837398375,
1493
+ "grad_norm": 1.1856937408447266,
1494
+ "learning_rate": 0.0002,
1495
+ "loss": 1.3279,
1496
+ "step": 2090
1497
+ },
1498
+ {
1499
+ "epoch": 3.4146341463414633,
1500
+ "grad_norm": 1.480185627937317,
1501
+ "learning_rate": 0.0002,
1502
+ "loss": 1.2903,
1503
+ "step": 2100
1504
+ },
1505
+ {
1506
+ "epoch": 3.430894308943089,
1507
+ "grad_norm": 1.3945696353912354,
1508
+ "learning_rate": 0.0002,
1509
+ "loss": 1.3713,
1510
+ "step": 2110
1511
+ },
1512
+ {
1513
+ "epoch": 3.4471544715447155,
1514
+ "grad_norm": 1.5409419536590576,
1515
+ "learning_rate": 0.0002,
1516
+ "loss": 1.3327,
1517
+ "step": 2120
1518
+ },
1519
+ {
1520
+ "epoch": 3.4634146341463414,
1521
+ "grad_norm": 1.3170857429504395,
1522
+ "learning_rate": 0.0002,
1523
+ "loss": 1.3456,
1524
+ "step": 2130
1525
+ },
1526
+ {
1527
+ "epoch": 3.4796747967479673,
1528
+ "grad_norm": 1.1793901920318604,
1529
+ "learning_rate": 0.0002,
1530
+ "loss": 1.3129,
1531
+ "step": 2140
1532
+ },
1533
+ {
1534
+ "epoch": 3.4959349593495936,
1535
+ "grad_norm": 1.3043832778930664,
1536
+ "learning_rate": 0.0002,
1537
+ "loss": 1.3356,
1538
+ "step": 2150
1539
+ },
1540
+ {
1541
+ "epoch": 3.5121951219512195,
1542
+ "grad_norm": 1.2157930135726929,
1543
+ "learning_rate": 0.0002,
1544
+ "loss": 1.2893,
1545
+ "step": 2160
1546
+ },
1547
+ {
1548
+ "epoch": 3.5284552845528454,
1549
+ "grad_norm": 1.2139101028442383,
1550
+ "learning_rate": 0.0002,
1551
+ "loss": 1.3606,
1552
+ "step": 2170
1553
+ },
1554
+ {
1555
+ "epoch": 3.5447154471544717,
1556
+ "grad_norm": 1.0714174509048462,
1557
+ "learning_rate": 0.0002,
1558
+ "loss": 1.2897,
1559
+ "step": 2180
1560
+ },
1561
+ {
1562
+ "epoch": 3.5609756097560976,
1563
+ "grad_norm": 1.1357146501541138,
1564
+ "learning_rate": 0.0002,
1565
+ "loss": 1.3398,
1566
+ "step": 2190
1567
+ },
1568
+ {
1569
+ "epoch": 3.5772357723577235,
1570
+ "grad_norm": 1.216141939163208,
1571
+ "learning_rate": 0.0002,
1572
+ "loss": 1.2829,
1573
+ "step": 2200
1574
+ },
1575
+ {
1576
+ "epoch": 3.59349593495935,
1577
+ "grad_norm": 1.2001926898956299,
1578
+ "learning_rate": 0.0002,
1579
+ "loss": 1.3411,
1580
+ "step": 2210
1581
+ },
1582
+ {
1583
+ "epoch": 3.6097560975609757,
1584
+ "grad_norm": 1.355756163597107,
1585
+ "learning_rate": 0.0002,
1586
+ "loss": 1.2804,
1587
+ "step": 2220
1588
+ },
1589
+ {
1590
+ "epoch": 3.6260162601626016,
1591
+ "grad_norm": 1.1870149374008179,
1592
+ "learning_rate": 0.0002,
1593
+ "loss": 1.3732,
1594
+ "step": 2230
1595
+ },
1596
+ {
1597
+ "epoch": 3.642276422764228,
1598
+ "grad_norm": 1.0973352193832397,
1599
+ "learning_rate": 0.0002,
1600
+ "loss": 1.4334,
1601
+ "step": 2240
1602
+ },
1603
+ {
1604
+ "epoch": 3.658536585365854,
1605
+ "grad_norm": 1.110839605331421,
1606
+ "learning_rate": 0.0002,
1607
+ "loss": 1.3987,
1608
+ "step": 2250
1609
+ },
1610
+ {
1611
+ "epoch": 3.6747967479674797,
1612
+ "grad_norm": 1.1280663013458252,
1613
+ "learning_rate": 0.0002,
1614
+ "loss": 1.3316,
1615
+ "step": 2260
1616
+ },
1617
+ {
1618
+ "epoch": 3.6910569105691056,
1619
+ "grad_norm": 1.3871443271636963,
1620
+ "learning_rate": 0.0002,
1621
+ "loss": 1.2897,
1622
+ "step": 2270
1623
+ },
1624
+ {
1625
+ "epoch": 3.7073170731707314,
1626
+ "grad_norm": 1.384059190750122,
1627
+ "learning_rate": 0.0002,
1628
+ "loss": 1.3784,
1629
+ "step": 2280
1630
+ },
1631
+ {
1632
+ "epoch": 3.7235772357723578,
1633
+ "grad_norm": 1.422131896018982,
1634
+ "learning_rate": 0.0002,
1635
+ "loss": 1.3288,
1636
+ "step": 2290
1637
+ },
1638
+ {
1639
+ "epoch": 3.7398373983739837,
1640
+ "grad_norm": 1.2262955904006958,
1641
+ "learning_rate": 0.0002,
1642
+ "loss": 1.342,
1643
+ "step": 2300
1644
+ },
1645
+ {
1646
+ "epoch": 3.7560975609756095,
1647
+ "grad_norm": 1.4098708629608154,
1648
+ "learning_rate": 0.0002,
1649
+ "loss": 1.3674,
1650
+ "step": 2310
1651
+ },
1652
+ {
1653
+ "epoch": 3.772357723577236,
1654
+ "grad_norm": 1.3726389408111572,
1655
+ "learning_rate": 0.0002,
1656
+ "loss": 1.4156,
1657
+ "step": 2320
1658
+ },
1659
+ {
1660
+ "epoch": 3.7886178861788617,
1661
+ "grad_norm": 1.2945446968078613,
1662
+ "learning_rate": 0.0002,
1663
+ "loss": 1.3083,
1664
+ "step": 2330
1665
+ },
1666
+ {
1667
+ "epoch": 3.8048780487804876,
1668
+ "grad_norm": 1.2011241912841797,
1669
+ "learning_rate": 0.0002,
1670
+ "loss": 1.3631,
1671
+ "step": 2340
1672
+ },
1673
+ {
1674
+ "epoch": 3.821138211382114,
1675
+ "grad_norm": 1.158033847808838,
1676
+ "learning_rate": 0.0002,
1677
+ "loss": 1.3888,
1678
+ "step": 2350
1679
+ },
1680
+ {
1681
+ "epoch": 3.83739837398374,
1682
+ "grad_norm": 1.2479424476623535,
1683
+ "learning_rate": 0.0002,
1684
+ "loss": 1.3159,
1685
+ "step": 2360
1686
+ },
1687
+ {
1688
+ "epoch": 3.8536585365853657,
1689
+ "grad_norm": 1.253841519355774,
1690
+ "learning_rate": 0.0002,
1691
+ "loss": 1.3116,
1692
+ "step": 2370
1693
+ },
1694
+ {
1695
+ "epoch": 3.869918699186992,
1696
+ "grad_norm": 1.2509289979934692,
1697
+ "learning_rate": 0.0002,
1698
+ "loss": 1.3943,
1699
+ "step": 2380
1700
+ },
1701
+ {
1702
+ "epoch": 3.886178861788618,
1703
+ "grad_norm": 1.529388666152954,
1704
+ "learning_rate": 0.0002,
1705
+ "loss": 1.3717,
1706
+ "step": 2390
1707
+ },
1708
+ {
1709
+ "epoch": 3.902439024390244,
1710
+ "grad_norm": 1.241012692451477,
1711
+ "learning_rate": 0.0002,
1712
+ "loss": 1.3875,
1713
+ "step": 2400
1714
+ },
1715
+ {
1716
+ "epoch": 3.91869918699187,
1717
+ "grad_norm": 1.4315979480743408,
1718
+ "learning_rate": 0.0002,
1719
+ "loss": 1.3352,
1720
+ "step": 2410
1721
+ },
1722
+ {
1723
+ "epoch": 3.934959349593496,
1724
+ "grad_norm": 1.6688332557678223,
1725
+ "learning_rate": 0.0002,
1726
+ "loss": 1.4241,
1727
+ "step": 2420
1728
+ },
1729
+ {
1730
+ "epoch": 3.951219512195122,
1731
+ "grad_norm": 1.3832660913467407,
1732
+ "learning_rate": 0.0002,
1733
+ "loss": 1.3261,
1734
+ "step": 2430
1735
+ },
1736
+ {
1737
+ "epoch": 3.9674796747967482,
1738
+ "grad_norm": 1.3022568225860596,
1739
+ "learning_rate": 0.0002,
1740
+ "loss": 1.3334,
1741
+ "step": 2440
1742
+ },
1743
+ {
1744
+ "epoch": 3.983739837398374,
1745
+ "grad_norm": 1.3116395473480225,
1746
+ "learning_rate": 0.0002,
1747
+ "loss": 1.4051,
1748
+ "step": 2450
1749
+ },
1750
+ {
1751
+ "epoch": 4.0,
1752
+ "grad_norm": 1.2045269012451172,
1753
+ "learning_rate": 0.0002,
1754
+ "loss": 1.3712,
1755
+ "step": 2460
1756
+ },
1757
+ {
1758
+ "epoch": 4.0,
1759
+ "eval_loss": 1.938527226448059,
1760
+ "eval_runtime": 95.315,
1761
+ "eval_samples_per_second": 5.592,
1762
+ "eval_steps_per_second": 0.703,
1763
+ "step": 2460
1764
+ }
1765
+ ],
1766
+ "logging_steps": 10,
1767
+ "max_steps": 4920,
1768
+ "num_input_tokens_seen": 0,
1769
+ "num_train_epochs": 8,
1770
+ "save_steps": 200,
1771
+ "stateful_callbacks": {
1772
+ "TrainerControl": {
1773
+ "args": {
1774
+ "should_epoch_stop": false,
1775
+ "should_evaluate": false,
1776
+ "should_log": false,
1777
+ "should_save": true,
1778
+ "should_training_stop": false
1779
+ },
1780
+ "attributes": {}
1781
+ }
1782
+ },
1783
+ "total_flos": 1.07931827699712e+17,
1784
+ "train_batch_size": 1,
1785
+ "trial_name": null,
1786
+ "trial_params": null
1787
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-2460/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:794da760599f5a7e302e2faa616ba0185215c069e7fa3436832bde34c7f2ec7b
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c8674660ff49bcd692030c221252811675aa81a534da5a208b5bb33b3d5a97d
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14220cf1ae4a7dd06df1aee1a7c6b48d2108005d1e79c4179894677d1c7cec21
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:724dae46b62ffc002919a41c5db975411c8394998e5786353d82c87f5ee642b2
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8f2c5f9e3d9d5442b1bfc19ef5ae200cd4874a0f1fe07649f57069a5c04c331
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-3075/trainer_state.json ADDED
@@ -0,0 +1,2222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7831426858901978,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.4-num-2811-sd-1/checkpoint-615",
4
+ "epoch": 5.0,
5
+ "eval_steps": 10,
6
+ "global_step": 3075,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016260162601626018,
13
+ "grad_norm": 1.903406023979187,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.6243,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.032520325203252036,
20
+ "grad_norm": 1.0100678205490112,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.2084,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.04878048780487805,
27
+ "grad_norm": 0.7413098812103271,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0423,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.06504065040650407,
34
+ "grad_norm": 0.7540805339813232,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0647,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.08130081300813008,
41
+ "grad_norm": 0.6508658528327942,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.0926,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.0975609756097561,
48
+ "grad_norm": 0.7228319048881531,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.878,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.11382113821138211,
55
+ "grad_norm": 0.6510937213897705,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8672,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.13008130081300814,
62
+ "grad_norm": 0.7238746881484985,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8592,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.14634146341463414,
69
+ "grad_norm": 0.7530466318130493,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.8541,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.16260162601626016,
76
+ "grad_norm": 0.622166097164154,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8245,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.17886178861788618,
83
+ "grad_norm": 0.6180148720741272,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.7581,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.1951219512195122,
90
+ "grad_norm": 0.6221362352371216,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.7741,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.21138211382113822,
97
+ "grad_norm": 0.569580078125,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.7575,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.22764227642276422,
104
+ "grad_norm": 0.6962840557098389,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.7833,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.24390243902439024,
111
+ "grad_norm": 0.644322395324707,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.8329,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.2601626016260163,
118
+ "grad_norm": 0.5970060229301453,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.7794,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.2764227642276423,
125
+ "grad_norm": 0.6249210834503174,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.8521,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2926829268292683,
132
+ "grad_norm": 0.7134785652160645,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.8066,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.3089430894308943,
139
+ "grad_norm": 0.5477158427238464,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.8815,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.3252032520325203,
146
+ "grad_norm": 0.6054863333702087,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.7222,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.34146341463414637,
153
+ "grad_norm": 0.5664568543434143,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.7598,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.35772357723577236,
160
+ "grad_norm": 0.5942816734313965,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.7688,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.37398373983739835,
167
+ "grad_norm": 0.6311767101287842,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.7715,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.3902439024390244,
174
+ "grad_norm": 0.6614870429039001,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.7663,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.4065040650406504,
181
+ "grad_norm": 0.5644984841346741,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.8045,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.42276422764227645,
188
+ "grad_norm": 0.7260110974311829,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.7364,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.43902439024390244,
195
+ "grad_norm": 0.6733413934707642,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.7606,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.45528455284552843,
202
+ "grad_norm": 0.5211837887763977,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.8432,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.4715447154471545,
209
+ "grad_norm": 0.5538370013237,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.9166,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.4878048780487805,
216
+ "grad_norm": 0.5429130792617798,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.8391,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.5040650406504065,
223
+ "grad_norm": 0.517801821231842,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.8072,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.5203252032520326,
230
+ "grad_norm": 0.6029635667800903,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.8045,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.5365853658536586,
237
+ "grad_norm": 0.506401002407074,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.7734,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.5528455284552846,
244
+ "grad_norm": 0.5226597189903259,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.7923,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.5691056910569106,
251
+ "grad_norm": 0.5899750590324402,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.7625,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.5853658536585366,
258
+ "grad_norm": 0.6185210943222046,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.828,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.6016260162601627,
265
+ "grad_norm": 0.8088458180427551,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.8358,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.6178861788617886,
272
+ "grad_norm": 0.509591817855835,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.8351,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.6341463414634146,
279
+ "grad_norm": 0.5209569931030273,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.7849,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.6504065040650406,
286
+ "grad_norm": 0.50320965051651,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.7925,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.6666666666666666,
293
+ "grad_norm": 0.5555663108825684,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.795,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.6829268292682927,
300
+ "grad_norm": 0.5865469574928284,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.7562,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.6991869918699187,
307
+ "grad_norm": 0.5288474559783936,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.7869,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.7154471544715447,
314
+ "grad_norm": 0.5364211797714233,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.8046,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.7317073170731707,
321
+ "grad_norm": 0.5877127051353455,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.8124,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.7479674796747967,
328
+ "grad_norm": 0.5993741154670715,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.7938,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.7642276422764228,
335
+ "grad_norm": 0.4871112108230591,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.8034,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.7804878048780488,
342
+ "grad_norm": 0.5300846099853516,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.7798,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.7967479674796748,
349
+ "grad_norm": 0.5623212456703186,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.7772,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.8130081300813008,
356
+ "grad_norm": 0.5131309032440186,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.7207,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.8292682926829268,
363
+ "grad_norm": 0.49512147903442383,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.7143,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.8455284552845529,
370
+ "grad_norm": 0.6260727643966675,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.8032,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.8617886178861789,
377
+ "grad_norm": 0.5796844959259033,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.8292,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.8780487804878049,
384
+ "grad_norm": 0.615927517414093,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.7775,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.8943089430894309,
391
+ "grad_norm": 0.5230891704559326,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.7254,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.9105691056910569,
398
+ "grad_norm": 0.5990992784500122,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.8126,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.926829268292683,
405
+ "grad_norm": 0.538957417011261,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.8551,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.943089430894309,
412
+ "grad_norm": 0.556900680065155,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.791,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.959349593495935,
419
+ "grad_norm": 0.6459956765174866,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.8799,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.975609756097561,
426
+ "grad_norm": 0.5648245215415955,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.774,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.991869918699187,
433
+ "grad_norm": 0.5341294407844543,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.7746,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 1.0,
440
+ "eval_loss": 1.7831426858901978,
441
+ "eval_runtime": 98.419,
442
+ "eval_samples_per_second": 5.416,
443
+ "eval_steps_per_second": 0.681,
444
+ "step": 615
445
+ },
446
+ {
447
+ "epoch": 1.008130081300813,
448
+ "grad_norm": 0.49698150157928467,
449
+ "learning_rate": 0.0002,
450
+ "loss": 1.7212,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 1.024390243902439,
455
+ "grad_norm": 0.696890652179718,
456
+ "learning_rate": 0.0002,
457
+ "loss": 1.7379,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 1.040650406504065,
462
+ "grad_norm": 0.5939123630523682,
463
+ "learning_rate": 0.0002,
464
+ "loss": 1.6391,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 1.056910569105691,
469
+ "grad_norm": 0.5630994439125061,
470
+ "learning_rate": 0.0002,
471
+ "loss": 1.712,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.0731707317073171,
476
+ "grad_norm": 0.5783666968345642,
477
+ "learning_rate": 0.0002,
478
+ "loss": 1.6401,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.089430894308943,
483
+ "grad_norm": 0.6006693840026855,
484
+ "learning_rate": 0.0002,
485
+ "loss": 1.7158,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.1056910569105691,
490
+ "grad_norm": 0.6544332504272461,
491
+ "learning_rate": 0.0002,
492
+ "loss": 1.7434,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.1219512195121952,
497
+ "grad_norm": 0.6734776496887207,
498
+ "learning_rate": 0.0002,
499
+ "loss": 1.6562,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.1382113821138211,
504
+ "grad_norm": 0.6067698001861572,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.6724,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.1544715447154472,
511
+ "grad_norm": 0.6639267802238464,
512
+ "learning_rate": 0.0002,
513
+ "loss": 1.6932,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.170731707317073,
518
+ "grad_norm": 0.5179714560508728,
519
+ "learning_rate": 0.0002,
520
+ "loss": 1.6562,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.1869918699186992,
525
+ "grad_norm": 0.7320363521575928,
526
+ "learning_rate": 0.0002,
527
+ "loss": 1.6811,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.203252032520325,
532
+ "grad_norm": 0.689231276512146,
533
+ "learning_rate": 0.0002,
534
+ "loss": 1.5619,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.2195121951219512,
539
+ "grad_norm": 0.6605235934257507,
540
+ "learning_rate": 0.0002,
541
+ "loss": 1.5688,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.2357723577235773,
546
+ "grad_norm": 0.7013542056083679,
547
+ "learning_rate": 0.0002,
548
+ "loss": 1.7045,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.2520325203252032,
553
+ "grad_norm": 0.6349928975105286,
554
+ "learning_rate": 0.0002,
555
+ "loss": 1.6857,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.2682926829268293,
560
+ "grad_norm": 0.6362272500991821,
561
+ "learning_rate": 0.0002,
562
+ "loss": 1.6767,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.2845528455284554,
567
+ "grad_norm": 0.6152030229568481,
568
+ "learning_rate": 0.0002,
569
+ "loss": 1.6594,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.3008130081300813,
574
+ "grad_norm": 0.6406176686286926,
575
+ "learning_rate": 0.0002,
576
+ "loss": 1.7542,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.3170731707317074,
581
+ "grad_norm": 0.6099124550819397,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.7243,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.3333333333333333,
588
+ "grad_norm": 0.6298971772193909,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.6642,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.3495934959349594,
595
+ "grad_norm": 0.775223433971405,
596
+ "learning_rate": 0.0002,
597
+ "loss": 1.6901,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.3658536585365852,
602
+ "grad_norm": 0.7261736392974854,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.6284,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.3821138211382114,
609
+ "grad_norm": 0.6321929097175598,
610
+ "learning_rate": 0.0002,
611
+ "loss": 1.6671,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.3983739837398375,
616
+ "grad_norm": 0.7564281225204468,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.7036,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.4146341463414633,
623
+ "grad_norm": 0.6329448819160461,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.7014,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.4308943089430894,
630
+ "grad_norm": 0.6288684606552124,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.6398,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.4471544715447155,
637
+ "grad_norm": 0.6165404915809631,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.673,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.4634146341463414,
644
+ "grad_norm": 0.6124468445777893,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.6668,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.4796747967479675,
651
+ "grad_norm": 0.7038629651069641,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.6879,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.4959349593495934,
658
+ "grad_norm": 0.5755146145820618,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.6701,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.5121951219512195,
665
+ "grad_norm": 0.7639156579971313,
666
+ "learning_rate": 0.0002,
667
+ "loss": 1.7244,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.5284552845528454,
672
+ "grad_norm": 0.6948140859603882,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.6836,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.5447154471544715,
679
+ "grad_norm": 0.6887956261634827,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.6479,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.5609756097560976,
686
+ "grad_norm": 0.7226824164390564,
687
+ "learning_rate": 0.0002,
688
+ "loss": 1.7285,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.5772357723577235,
693
+ "grad_norm": 0.6753950715065002,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.6214,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.5934959349593496,
700
+ "grad_norm": 0.6580971479415894,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.7283,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.6097560975609757,
707
+ "grad_norm": 0.7157843112945557,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.6671,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.6260162601626016,
714
+ "grad_norm": 0.6736738681793213,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.645,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.6422764227642277,
721
+ "grad_norm": 0.5271940231323242,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.6589,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.6585365853658538,
728
+ "grad_norm": 0.6378998160362244,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.7358,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.6747967479674797,
735
+ "grad_norm": 0.6498209834098816,
736
+ "learning_rate": 0.0002,
737
+ "loss": 1.6924,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.6910569105691056,
742
+ "grad_norm": 0.7050761580467224,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.6253,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.7073170731707317,
749
+ "grad_norm": 0.7122200131416321,
750
+ "learning_rate": 0.0002,
751
+ "loss": 1.7146,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.7235772357723578,
756
+ "grad_norm": 0.6705704927444458,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.6511,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.7398373983739837,
763
+ "grad_norm": 0.6859356760978699,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.6506,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.7560975609756098,
770
+ "grad_norm": 0.6540971994400024,
771
+ "learning_rate": 0.0002,
772
+ "loss": 1.6562,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.7723577235772359,
777
+ "grad_norm": 0.6297651529312134,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.6627,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.7886178861788617,
784
+ "grad_norm": 0.6645651459693909,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.704,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.8048780487804879,
791
+ "grad_norm": 0.6450296640396118,
792
+ "learning_rate": 0.0002,
793
+ "loss": 1.6908,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.821138211382114,
798
+ "grad_norm": 0.7785659432411194,
799
+ "learning_rate": 0.0002,
800
+ "loss": 1.7642,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.8373983739837398,
805
+ "grad_norm": 0.6845982670783997,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.6773,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.8536585365853657,
812
+ "grad_norm": 0.699683666229248,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.6879,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.8699186991869918,
819
+ "grad_norm": 0.6600332856178284,
820
+ "learning_rate": 0.0002,
821
+ "loss": 1.7162,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.886178861788618,
826
+ "grad_norm": 0.7301949262619019,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.7291,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.9024390243902438,
833
+ "grad_norm": 0.8183556795120239,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.6874,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.91869918699187,
840
+ "grad_norm": 0.7122833132743835,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.6779,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.934959349593496,
847
+ "grad_norm": 0.6391404271125793,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.7361,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.951219512195122,
854
+ "grad_norm": 0.6136474013328552,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.7188,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.967479674796748,
861
+ "grad_norm": 0.7704503536224365,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.6536,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.9837398373983741,
868
+ "grad_norm": 0.6155434846878052,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.6735,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 2.0,
875
+ "grad_norm": 0.6262536644935608,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.6534,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 2.0,
882
+ "eval_loss": 1.7886285781860352,
883
+ "eval_runtime": 98.7888,
884
+ "eval_samples_per_second": 5.395,
885
+ "eval_steps_per_second": 0.678,
886
+ "step": 1230
887
+ },
888
+ {
889
+ "epoch": 2.016260162601626,
890
+ "grad_norm": 0.9827656149864197,
891
+ "learning_rate": 0.0002,
892
+ "loss": 1.5135,
893
+ "step": 1240
894
+ },
895
+ {
896
+ "epoch": 2.032520325203252,
897
+ "grad_norm": 0.8443078398704529,
898
+ "learning_rate": 0.0002,
899
+ "loss": 1.5396,
900
+ "step": 1250
901
+ },
902
+ {
903
+ "epoch": 2.048780487804878,
904
+ "grad_norm": 0.9006391763687134,
905
+ "learning_rate": 0.0002,
906
+ "loss": 1.5326,
907
+ "step": 1260
908
+ },
909
+ {
910
+ "epoch": 2.065040650406504,
911
+ "grad_norm": 0.7900105714797974,
912
+ "learning_rate": 0.0002,
913
+ "loss": 1.5176,
914
+ "step": 1270
915
+ },
916
+ {
917
+ "epoch": 2.08130081300813,
918
+ "grad_norm": 0.6430686116218567,
919
+ "learning_rate": 0.0002,
920
+ "loss": 1.5578,
921
+ "step": 1280
922
+ },
923
+ {
924
+ "epoch": 2.097560975609756,
925
+ "grad_norm": 0.8998992443084717,
926
+ "learning_rate": 0.0002,
927
+ "loss": 1.5453,
928
+ "step": 1290
929
+ },
930
+ {
931
+ "epoch": 2.113821138211382,
932
+ "grad_norm": 0.7658976316452026,
933
+ "learning_rate": 0.0002,
934
+ "loss": 1.5051,
935
+ "step": 1300
936
+ },
937
+ {
938
+ "epoch": 2.130081300813008,
939
+ "grad_norm": 0.9033166766166687,
940
+ "learning_rate": 0.0002,
941
+ "loss": 1.5005,
942
+ "step": 1310
943
+ },
944
+ {
945
+ "epoch": 2.1463414634146343,
946
+ "grad_norm": 0.7942133545875549,
947
+ "learning_rate": 0.0002,
948
+ "loss": 1.5517,
949
+ "step": 1320
950
+ },
951
+ {
952
+ "epoch": 2.16260162601626,
953
+ "grad_norm": 0.8496367931365967,
954
+ "learning_rate": 0.0002,
955
+ "loss": 1.5248,
956
+ "step": 1330
957
+ },
958
+ {
959
+ "epoch": 2.178861788617886,
960
+ "grad_norm": 0.8638061881065369,
961
+ "learning_rate": 0.0002,
962
+ "loss": 1.4887,
963
+ "step": 1340
964
+ },
965
+ {
966
+ "epoch": 2.1951219512195124,
967
+ "grad_norm": 0.9003657102584839,
968
+ "learning_rate": 0.0002,
969
+ "loss": 1.5023,
970
+ "step": 1350
971
+ },
972
+ {
973
+ "epoch": 2.2113821138211383,
974
+ "grad_norm": 0.8387648463249207,
975
+ "learning_rate": 0.0002,
976
+ "loss": 1.4904,
977
+ "step": 1360
978
+ },
979
+ {
980
+ "epoch": 2.227642276422764,
981
+ "grad_norm": 0.7598716616630554,
982
+ "learning_rate": 0.0002,
983
+ "loss": 1.5553,
984
+ "step": 1370
985
+ },
986
+ {
987
+ "epoch": 2.2439024390243905,
988
+ "grad_norm": 0.872882604598999,
989
+ "learning_rate": 0.0002,
990
+ "loss": 1.4723,
991
+ "step": 1380
992
+ },
993
+ {
994
+ "epoch": 2.2601626016260163,
995
+ "grad_norm": 0.8919313549995422,
996
+ "learning_rate": 0.0002,
997
+ "loss": 1.5121,
998
+ "step": 1390
999
+ },
1000
+ {
1001
+ "epoch": 2.2764227642276422,
1002
+ "grad_norm": 0.9646918773651123,
1003
+ "learning_rate": 0.0002,
1004
+ "loss": 1.5162,
1005
+ "step": 1400
1006
+ },
1007
+ {
1008
+ "epoch": 2.292682926829268,
1009
+ "grad_norm": 0.8501992225646973,
1010
+ "learning_rate": 0.0002,
1011
+ "loss": 1.5163,
1012
+ "step": 1410
1013
+ },
1014
+ {
1015
+ "epoch": 2.3089430894308944,
1016
+ "grad_norm": 0.7517067790031433,
1017
+ "learning_rate": 0.0002,
1018
+ "loss": 1.5096,
1019
+ "step": 1420
1020
+ },
1021
+ {
1022
+ "epoch": 2.3252032520325203,
1023
+ "grad_norm": 0.9097304940223694,
1024
+ "learning_rate": 0.0002,
1025
+ "loss": 1.5359,
1026
+ "step": 1430
1027
+ },
1028
+ {
1029
+ "epoch": 2.341463414634146,
1030
+ "grad_norm": 0.8515191674232483,
1031
+ "learning_rate": 0.0002,
1032
+ "loss": 1.4843,
1033
+ "step": 1440
1034
+ },
1035
+ {
1036
+ "epoch": 2.3577235772357725,
1037
+ "grad_norm": 0.8925113677978516,
1038
+ "learning_rate": 0.0002,
1039
+ "loss": 1.5021,
1040
+ "step": 1450
1041
+ },
1042
+ {
1043
+ "epoch": 2.3739837398373984,
1044
+ "grad_norm": 1.0194441080093384,
1045
+ "learning_rate": 0.0002,
1046
+ "loss": 1.4235,
1047
+ "step": 1460
1048
+ },
1049
+ {
1050
+ "epoch": 2.3902439024390243,
1051
+ "grad_norm": 0.9004436731338501,
1052
+ "learning_rate": 0.0002,
1053
+ "loss": 1.5778,
1054
+ "step": 1470
1055
+ },
1056
+ {
1057
+ "epoch": 2.40650406504065,
1058
+ "grad_norm": 0.9552311897277832,
1059
+ "learning_rate": 0.0002,
1060
+ "loss": 1.5623,
1061
+ "step": 1480
1062
+ },
1063
+ {
1064
+ "epoch": 2.4227642276422765,
1065
+ "grad_norm": 0.9185764789581299,
1066
+ "learning_rate": 0.0002,
1067
+ "loss": 1.5507,
1068
+ "step": 1490
1069
+ },
1070
+ {
1071
+ "epoch": 2.4390243902439024,
1072
+ "grad_norm": 0.7935037016868591,
1073
+ "learning_rate": 0.0002,
1074
+ "loss": 1.5058,
1075
+ "step": 1500
1076
+ },
1077
+ {
1078
+ "epoch": 2.4552845528455283,
1079
+ "grad_norm": 0.8124602437019348,
1080
+ "learning_rate": 0.0002,
1081
+ "loss": 1.5374,
1082
+ "step": 1510
1083
+ },
1084
+ {
1085
+ "epoch": 2.4715447154471546,
1086
+ "grad_norm": 0.7927430272102356,
1087
+ "learning_rate": 0.0002,
1088
+ "loss": 1.4553,
1089
+ "step": 1520
1090
+ },
1091
+ {
1092
+ "epoch": 2.4878048780487805,
1093
+ "grad_norm": 0.9143779873847961,
1094
+ "learning_rate": 0.0002,
1095
+ "loss": 1.5135,
1096
+ "step": 1530
1097
+ },
1098
+ {
1099
+ "epoch": 2.5040650406504064,
1100
+ "grad_norm": 0.938185453414917,
1101
+ "learning_rate": 0.0002,
1102
+ "loss": 1.4842,
1103
+ "step": 1540
1104
+ },
1105
+ {
1106
+ "epoch": 2.5203252032520327,
1107
+ "grad_norm": 0.9858708381652832,
1108
+ "learning_rate": 0.0002,
1109
+ "loss": 1.5983,
1110
+ "step": 1550
1111
+ },
1112
+ {
1113
+ "epoch": 2.5365853658536586,
1114
+ "grad_norm": 0.9211642742156982,
1115
+ "learning_rate": 0.0002,
1116
+ "loss": 1.5464,
1117
+ "step": 1560
1118
+ },
1119
+ {
1120
+ "epoch": 2.5528455284552845,
1121
+ "grad_norm": 0.9824395775794983,
1122
+ "learning_rate": 0.0002,
1123
+ "loss": 1.5293,
1124
+ "step": 1570
1125
+ },
1126
+ {
1127
+ "epoch": 2.569105691056911,
1128
+ "grad_norm": 0.916930615901947,
1129
+ "learning_rate": 0.0002,
1130
+ "loss": 1.5559,
1131
+ "step": 1580
1132
+ },
1133
+ {
1134
+ "epoch": 2.5853658536585367,
1135
+ "grad_norm": 0.9336596727371216,
1136
+ "learning_rate": 0.0002,
1137
+ "loss": 1.5581,
1138
+ "step": 1590
1139
+ },
1140
+ {
1141
+ "epoch": 2.6016260162601625,
1142
+ "grad_norm": 0.9006481170654297,
1143
+ "learning_rate": 0.0002,
1144
+ "loss": 1.5379,
1145
+ "step": 1600
1146
+ },
1147
+ {
1148
+ "epoch": 2.617886178861789,
1149
+ "grad_norm": 0.8296214938163757,
1150
+ "learning_rate": 0.0002,
1151
+ "loss": 1.5254,
1152
+ "step": 1610
1153
+ },
1154
+ {
1155
+ "epoch": 2.6341463414634148,
1156
+ "grad_norm": 1.0448366403579712,
1157
+ "learning_rate": 0.0002,
1158
+ "loss": 1.5782,
1159
+ "step": 1620
1160
+ },
1161
+ {
1162
+ "epoch": 2.6504065040650406,
1163
+ "grad_norm": 0.8174839019775391,
1164
+ "learning_rate": 0.0002,
1165
+ "loss": 1.5523,
1166
+ "step": 1630
1167
+ },
1168
+ {
1169
+ "epoch": 2.6666666666666665,
1170
+ "grad_norm": 0.873572051525116,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 1.4434,
1173
+ "step": 1640
1174
+ },
1175
+ {
1176
+ "epoch": 2.682926829268293,
1177
+ "grad_norm": 0.9270642995834351,
1178
+ "learning_rate": 0.0002,
1179
+ "loss": 1.4723,
1180
+ "step": 1650
1181
+ },
1182
+ {
1183
+ "epoch": 2.6991869918699187,
1184
+ "grad_norm": 0.8988297581672668,
1185
+ "learning_rate": 0.0002,
1186
+ "loss": 1.4736,
1187
+ "step": 1660
1188
+ },
1189
+ {
1190
+ "epoch": 2.7154471544715446,
1191
+ "grad_norm": 0.8537285923957825,
1192
+ "learning_rate": 0.0002,
1193
+ "loss": 1.52,
1194
+ "step": 1670
1195
+ },
1196
+ {
1197
+ "epoch": 2.7317073170731705,
1198
+ "grad_norm": 0.7982168793678284,
1199
+ "learning_rate": 0.0002,
1200
+ "loss": 1.5073,
1201
+ "step": 1680
1202
+ },
1203
+ {
1204
+ "epoch": 2.747967479674797,
1205
+ "grad_norm": 0.9140633940696716,
1206
+ "learning_rate": 0.0002,
1207
+ "loss": 1.5357,
1208
+ "step": 1690
1209
+ },
1210
+ {
1211
+ "epoch": 2.7642276422764227,
1212
+ "grad_norm": 0.8485862016677856,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 1.5182,
1215
+ "step": 1700
1216
+ },
1217
+ {
1218
+ "epoch": 2.7804878048780486,
1219
+ "grad_norm": 1.3670072555541992,
1220
+ "learning_rate": 0.0002,
1221
+ "loss": 1.5273,
1222
+ "step": 1710
1223
+ },
1224
+ {
1225
+ "epoch": 2.796747967479675,
1226
+ "grad_norm": 0.8846588134765625,
1227
+ "learning_rate": 0.0002,
1228
+ "loss": 1.492,
1229
+ "step": 1720
1230
+ },
1231
+ {
1232
+ "epoch": 2.813008130081301,
1233
+ "grad_norm": 1.0143219232559204,
1234
+ "learning_rate": 0.0002,
1235
+ "loss": 1.5286,
1236
+ "step": 1730
1237
+ },
1238
+ {
1239
+ "epoch": 2.8292682926829267,
1240
+ "grad_norm": 0.9646075367927551,
1241
+ "learning_rate": 0.0002,
1242
+ "loss": 1.5253,
1243
+ "step": 1740
1244
+ },
1245
+ {
1246
+ "epoch": 2.845528455284553,
1247
+ "grad_norm": 0.9912563562393188,
1248
+ "learning_rate": 0.0002,
1249
+ "loss": 1.5865,
1250
+ "step": 1750
1251
+ },
1252
+ {
1253
+ "epoch": 2.861788617886179,
1254
+ "grad_norm": 0.8160223364830017,
1255
+ "learning_rate": 0.0002,
1256
+ "loss": 1.5266,
1257
+ "step": 1760
1258
+ },
1259
+ {
1260
+ "epoch": 2.8780487804878048,
1261
+ "grad_norm": 0.8553791642189026,
1262
+ "learning_rate": 0.0002,
1263
+ "loss": 1.5542,
1264
+ "step": 1770
1265
+ },
1266
+ {
1267
+ "epoch": 2.894308943089431,
1268
+ "grad_norm": 0.8816639184951782,
1269
+ "learning_rate": 0.0002,
1270
+ "loss": 1.5592,
1271
+ "step": 1780
1272
+ },
1273
+ {
1274
+ "epoch": 2.910569105691057,
1275
+ "grad_norm": 0.829551637172699,
1276
+ "learning_rate": 0.0002,
1277
+ "loss": 1.5443,
1278
+ "step": 1790
1279
+ },
1280
+ {
1281
+ "epoch": 2.926829268292683,
1282
+ "grad_norm": 1.0520497560501099,
1283
+ "learning_rate": 0.0002,
1284
+ "loss": 1.5111,
1285
+ "step": 1800
1286
+ },
1287
+ {
1288
+ "epoch": 2.943089430894309,
1289
+ "grad_norm": 0.8627844452857971,
1290
+ "learning_rate": 0.0002,
1291
+ "loss": 1.509,
1292
+ "step": 1810
1293
+ },
1294
+ {
1295
+ "epoch": 2.959349593495935,
1296
+ "grad_norm": 0.8868018388748169,
1297
+ "learning_rate": 0.0002,
1298
+ "loss": 1.5119,
1299
+ "step": 1820
1300
+ },
1301
+ {
1302
+ "epoch": 2.975609756097561,
1303
+ "grad_norm": 1.047621250152588,
1304
+ "learning_rate": 0.0002,
1305
+ "loss": 1.5956,
1306
+ "step": 1830
1307
+ },
1308
+ {
1309
+ "epoch": 2.991869918699187,
1310
+ "grad_norm": 1.122131109237671,
1311
+ "learning_rate": 0.0002,
1312
+ "loss": 1.5189,
1313
+ "step": 1840
1314
+ },
1315
+ {
1316
+ "epoch": 3.0,
1317
+ "eval_loss": 1.8374383449554443,
1318
+ "eval_runtime": 98.0056,
1319
+ "eval_samples_per_second": 5.438,
1320
+ "eval_steps_per_second": 0.684,
1321
+ "step": 1845
1322
+ },
1323
+ {
1324
+ "epoch": 3.008130081300813,
1325
+ "grad_norm": 0.9361767172813416,
1326
+ "learning_rate": 0.0002,
1327
+ "loss": 1.3996,
1328
+ "step": 1850
1329
+ },
1330
+ {
1331
+ "epoch": 3.024390243902439,
1332
+ "grad_norm": 1.0564402341842651,
1333
+ "learning_rate": 0.0002,
1334
+ "loss": 1.3122,
1335
+ "step": 1860
1336
+ },
1337
+ {
1338
+ "epoch": 3.040650406504065,
1339
+ "grad_norm": 1.2450026273727417,
1340
+ "learning_rate": 0.0002,
1341
+ "loss": 1.2512,
1342
+ "step": 1870
1343
+ },
1344
+ {
1345
+ "epoch": 3.0569105691056913,
1346
+ "grad_norm": 1.082606554031372,
1347
+ "learning_rate": 0.0002,
1348
+ "loss": 1.2585,
1349
+ "step": 1880
1350
+ },
1351
+ {
1352
+ "epoch": 3.073170731707317,
1353
+ "grad_norm": 1.1582257747650146,
1354
+ "learning_rate": 0.0002,
1355
+ "loss": 1.2827,
1356
+ "step": 1890
1357
+ },
1358
+ {
1359
+ "epoch": 3.089430894308943,
1360
+ "grad_norm": 1.1113696098327637,
1361
+ "learning_rate": 0.0002,
1362
+ "loss": 1.2865,
1363
+ "step": 1900
1364
+ },
1365
+ {
1366
+ "epoch": 3.105691056910569,
1367
+ "grad_norm": 1.1716952323913574,
1368
+ "learning_rate": 0.0002,
1369
+ "loss": 1.2867,
1370
+ "step": 1910
1371
+ },
1372
+ {
1373
+ "epoch": 3.1219512195121952,
1374
+ "grad_norm": 1.1270506381988525,
1375
+ "learning_rate": 0.0002,
1376
+ "loss": 1.286,
1377
+ "step": 1920
1378
+ },
1379
+ {
1380
+ "epoch": 3.138211382113821,
1381
+ "grad_norm": 1.1955605745315552,
1382
+ "learning_rate": 0.0002,
1383
+ "loss": 1.3074,
1384
+ "step": 1930
1385
+ },
1386
+ {
1387
+ "epoch": 3.154471544715447,
1388
+ "grad_norm": 1.246848464012146,
1389
+ "learning_rate": 0.0002,
1390
+ "loss": 1.2752,
1391
+ "step": 1940
1392
+ },
1393
+ {
1394
+ "epoch": 3.1707317073170733,
1395
+ "grad_norm": 1.2208205461502075,
1396
+ "learning_rate": 0.0002,
1397
+ "loss": 1.3422,
1398
+ "step": 1950
1399
+ },
1400
+ {
1401
+ "epoch": 3.186991869918699,
1402
+ "grad_norm": 1.1758005619049072,
1403
+ "learning_rate": 0.0002,
1404
+ "loss": 1.2618,
1405
+ "step": 1960
1406
+ },
1407
+ {
1408
+ "epoch": 3.203252032520325,
1409
+ "grad_norm": 1.2697960138320923,
1410
+ "learning_rate": 0.0002,
1411
+ "loss": 1.3094,
1412
+ "step": 1970
1413
+ },
1414
+ {
1415
+ "epoch": 3.2195121951219514,
1416
+ "grad_norm": 1.0855997800827026,
1417
+ "learning_rate": 0.0002,
1418
+ "loss": 1.3714,
1419
+ "step": 1980
1420
+ },
1421
+ {
1422
+ "epoch": 3.2357723577235773,
1423
+ "grad_norm": 1.1054189205169678,
1424
+ "learning_rate": 0.0002,
1425
+ "loss": 1.2866,
1426
+ "step": 1990
1427
+ },
1428
+ {
1429
+ "epoch": 3.252032520325203,
1430
+ "grad_norm": 1.2496592998504639,
1431
+ "learning_rate": 0.0002,
1432
+ "loss": 1.3057,
1433
+ "step": 2000
1434
+ },
1435
+ {
1436
+ "epoch": 3.2682926829268295,
1437
+ "grad_norm": 1.215553641319275,
1438
+ "learning_rate": 0.0002,
1439
+ "loss": 1.3868,
1440
+ "step": 2010
1441
+ },
1442
+ {
1443
+ "epoch": 3.2845528455284554,
1444
+ "grad_norm": 1.1711665391921997,
1445
+ "learning_rate": 0.0002,
1446
+ "loss": 1.2866,
1447
+ "step": 2020
1448
+ },
1449
+ {
1450
+ "epoch": 3.3008130081300813,
1451
+ "grad_norm": 1.493438959121704,
1452
+ "learning_rate": 0.0002,
1453
+ "loss": 1.2969,
1454
+ "step": 2030
1455
+ },
1456
+ {
1457
+ "epoch": 3.317073170731707,
1458
+ "grad_norm": 1.1202969551086426,
1459
+ "learning_rate": 0.0002,
1460
+ "loss": 1.3032,
1461
+ "step": 2040
1462
+ },
1463
+ {
1464
+ "epoch": 3.3333333333333335,
1465
+ "grad_norm": 1.1334387063980103,
1466
+ "learning_rate": 0.0002,
1467
+ "loss": 1.3257,
1468
+ "step": 2050
1469
+ },
1470
+ {
1471
+ "epoch": 3.3495934959349594,
1472
+ "grad_norm": 1.2813389301300049,
1473
+ "learning_rate": 0.0002,
1474
+ "loss": 1.2823,
1475
+ "step": 2060
1476
+ },
1477
+ {
1478
+ "epoch": 3.3658536585365852,
1479
+ "grad_norm": 1.1317278146743774,
1480
+ "learning_rate": 0.0002,
1481
+ "loss": 1.2892,
1482
+ "step": 2070
1483
+ },
1484
+ {
1485
+ "epoch": 3.3821138211382116,
1486
+ "grad_norm": 1.4018956422805786,
1487
+ "learning_rate": 0.0002,
1488
+ "loss": 1.2731,
1489
+ "step": 2080
1490
+ },
1491
+ {
1492
+ "epoch": 3.3983739837398375,
1493
+ "grad_norm": 1.1856937408447266,
1494
+ "learning_rate": 0.0002,
1495
+ "loss": 1.3279,
1496
+ "step": 2090
1497
+ },
1498
+ {
1499
+ "epoch": 3.4146341463414633,
1500
+ "grad_norm": 1.480185627937317,
1501
+ "learning_rate": 0.0002,
1502
+ "loss": 1.2903,
1503
+ "step": 2100
1504
+ },
1505
+ {
1506
+ "epoch": 3.430894308943089,
1507
+ "grad_norm": 1.3945696353912354,
1508
+ "learning_rate": 0.0002,
1509
+ "loss": 1.3713,
1510
+ "step": 2110
1511
+ },
1512
+ {
1513
+ "epoch": 3.4471544715447155,
1514
+ "grad_norm": 1.5409419536590576,
1515
+ "learning_rate": 0.0002,
1516
+ "loss": 1.3327,
1517
+ "step": 2120
1518
+ },
1519
+ {
1520
+ "epoch": 3.4634146341463414,
1521
+ "grad_norm": 1.3170857429504395,
1522
+ "learning_rate": 0.0002,
1523
+ "loss": 1.3456,
1524
+ "step": 2130
1525
+ },
1526
+ {
1527
+ "epoch": 3.4796747967479673,
1528
+ "grad_norm": 1.1793901920318604,
1529
+ "learning_rate": 0.0002,
1530
+ "loss": 1.3129,
1531
+ "step": 2140
1532
+ },
1533
+ {
1534
+ "epoch": 3.4959349593495936,
1535
+ "grad_norm": 1.3043832778930664,
1536
+ "learning_rate": 0.0002,
1537
+ "loss": 1.3356,
1538
+ "step": 2150
1539
+ },
1540
+ {
1541
+ "epoch": 3.5121951219512195,
1542
+ "grad_norm": 1.2157930135726929,
1543
+ "learning_rate": 0.0002,
1544
+ "loss": 1.2893,
1545
+ "step": 2160
1546
+ },
1547
+ {
1548
+ "epoch": 3.5284552845528454,
1549
+ "grad_norm": 1.2139101028442383,
1550
+ "learning_rate": 0.0002,
1551
+ "loss": 1.3606,
1552
+ "step": 2170
1553
+ },
1554
+ {
1555
+ "epoch": 3.5447154471544717,
1556
+ "grad_norm": 1.0714174509048462,
1557
+ "learning_rate": 0.0002,
1558
+ "loss": 1.2897,
1559
+ "step": 2180
1560
+ },
1561
+ {
1562
+ "epoch": 3.5609756097560976,
1563
+ "grad_norm": 1.1357146501541138,
1564
+ "learning_rate": 0.0002,
1565
+ "loss": 1.3398,
1566
+ "step": 2190
1567
+ },
1568
+ {
1569
+ "epoch": 3.5772357723577235,
1570
+ "grad_norm": 1.216141939163208,
1571
+ "learning_rate": 0.0002,
1572
+ "loss": 1.2829,
1573
+ "step": 2200
1574
+ },
1575
+ {
1576
+ "epoch": 3.59349593495935,
1577
+ "grad_norm": 1.2001926898956299,
1578
+ "learning_rate": 0.0002,
1579
+ "loss": 1.3411,
1580
+ "step": 2210
1581
+ },
1582
+ {
1583
+ "epoch": 3.6097560975609757,
1584
+ "grad_norm": 1.355756163597107,
1585
+ "learning_rate": 0.0002,
1586
+ "loss": 1.2804,
1587
+ "step": 2220
1588
+ },
1589
+ {
1590
+ "epoch": 3.6260162601626016,
1591
+ "grad_norm": 1.1870149374008179,
1592
+ "learning_rate": 0.0002,
1593
+ "loss": 1.3732,
1594
+ "step": 2230
1595
+ },
1596
+ {
1597
+ "epoch": 3.642276422764228,
1598
+ "grad_norm": 1.0973352193832397,
1599
+ "learning_rate": 0.0002,
1600
+ "loss": 1.4334,
1601
+ "step": 2240
1602
+ },
1603
+ {
1604
+ "epoch": 3.658536585365854,
1605
+ "grad_norm": 1.110839605331421,
1606
+ "learning_rate": 0.0002,
1607
+ "loss": 1.3987,
1608
+ "step": 2250
1609
+ },
1610
+ {
1611
+ "epoch": 3.6747967479674797,
1612
+ "grad_norm": 1.1280663013458252,
1613
+ "learning_rate": 0.0002,
1614
+ "loss": 1.3316,
1615
+ "step": 2260
1616
+ },
1617
+ {
1618
+ "epoch": 3.6910569105691056,
1619
+ "grad_norm": 1.3871443271636963,
1620
+ "learning_rate": 0.0002,
1621
+ "loss": 1.2897,
1622
+ "step": 2270
1623
+ },
1624
+ {
1625
+ "epoch": 3.7073170731707314,
1626
+ "grad_norm": 1.384059190750122,
1627
+ "learning_rate": 0.0002,
1628
+ "loss": 1.3784,
1629
+ "step": 2280
1630
+ },
1631
+ {
1632
+ "epoch": 3.7235772357723578,
1633
+ "grad_norm": 1.422131896018982,
1634
+ "learning_rate": 0.0002,
1635
+ "loss": 1.3288,
1636
+ "step": 2290
1637
+ },
1638
+ {
1639
+ "epoch": 3.7398373983739837,
1640
+ "grad_norm": 1.2262955904006958,
1641
+ "learning_rate": 0.0002,
1642
+ "loss": 1.342,
1643
+ "step": 2300
1644
+ },
1645
+ {
1646
+ "epoch": 3.7560975609756095,
1647
+ "grad_norm": 1.4098708629608154,
1648
+ "learning_rate": 0.0002,
1649
+ "loss": 1.3674,
1650
+ "step": 2310
1651
+ },
1652
+ {
1653
+ "epoch": 3.772357723577236,
1654
+ "grad_norm": 1.3726389408111572,
1655
+ "learning_rate": 0.0002,
1656
+ "loss": 1.4156,
1657
+ "step": 2320
1658
+ },
1659
+ {
1660
+ "epoch": 3.7886178861788617,
1661
+ "grad_norm": 1.2945446968078613,
1662
+ "learning_rate": 0.0002,
1663
+ "loss": 1.3083,
1664
+ "step": 2330
1665
+ },
1666
+ {
1667
+ "epoch": 3.8048780487804876,
1668
+ "grad_norm": 1.2011241912841797,
1669
+ "learning_rate": 0.0002,
1670
+ "loss": 1.3631,
1671
+ "step": 2340
1672
+ },
1673
+ {
1674
+ "epoch": 3.821138211382114,
1675
+ "grad_norm": 1.158033847808838,
1676
+ "learning_rate": 0.0002,
1677
+ "loss": 1.3888,
1678
+ "step": 2350
1679
+ },
1680
+ {
1681
+ "epoch": 3.83739837398374,
1682
+ "grad_norm": 1.2479424476623535,
1683
+ "learning_rate": 0.0002,
1684
+ "loss": 1.3159,
1685
+ "step": 2360
1686
+ },
1687
+ {
1688
+ "epoch": 3.8536585365853657,
1689
+ "grad_norm": 1.253841519355774,
1690
+ "learning_rate": 0.0002,
1691
+ "loss": 1.3116,
1692
+ "step": 2370
1693
+ },
1694
+ {
1695
+ "epoch": 3.869918699186992,
1696
+ "grad_norm": 1.2509289979934692,
1697
+ "learning_rate": 0.0002,
1698
+ "loss": 1.3943,
1699
+ "step": 2380
1700
+ },
1701
+ {
1702
+ "epoch": 3.886178861788618,
1703
+ "grad_norm": 1.529388666152954,
1704
+ "learning_rate": 0.0002,
1705
+ "loss": 1.3717,
1706
+ "step": 2390
1707
+ },
1708
+ {
1709
+ "epoch": 3.902439024390244,
1710
+ "grad_norm": 1.241012692451477,
1711
+ "learning_rate": 0.0002,
1712
+ "loss": 1.3875,
1713
+ "step": 2400
1714
+ },
1715
+ {
1716
+ "epoch": 3.91869918699187,
1717
+ "grad_norm": 1.4315979480743408,
1718
+ "learning_rate": 0.0002,
1719
+ "loss": 1.3352,
1720
+ "step": 2410
1721
+ },
1722
+ {
1723
+ "epoch": 3.934959349593496,
1724
+ "grad_norm": 1.6688332557678223,
1725
+ "learning_rate": 0.0002,
1726
+ "loss": 1.4241,
1727
+ "step": 2420
1728
+ },
1729
+ {
1730
+ "epoch": 3.951219512195122,
1731
+ "grad_norm": 1.3832660913467407,
1732
+ "learning_rate": 0.0002,
1733
+ "loss": 1.3261,
1734
+ "step": 2430
1735
+ },
1736
+ {
1737
+ "epoch": 3.9674796747967482,
1738
+ "grad_norm": 1.3022568225860596,
1739
+ "learning_rate": 0.0002,
1740
+ "loss": 1.3334,
1741
+ "step": 2440
1742
+ },
1743
+ {
1744
+ "epoch": 3.983739837398374,
1745
+ "grad_norm": 1.3116395473480225,
1746
+ "learning_rate": 0.0002,
1747
+ "loss": 1.4051,
1748
+ "step": 2450
1749
+ },
1750
+ {
1751
+ "epoch": 4.0,
1752
+ "grad_norm": 1.2045269012451172,
1753
+ "learning_rate": 0.0002,
1754
+ "loss": 1.3712,
1755
+ "step": 2460
1756
+ },
1757
+ {
1758
+ "epoch": 4.0,
1759
+ "eval_loss": 1.938527226448059,
1760
+ "eval_runtime": 95.315,
1761
+ "eval_samples_per_second": 5.592,
1762
+ "eval_steps_per_second": 0.703,
1763
+ "step": 2460
1764
+ },
1765
+ {
1766
+ "epoch": 4.016260162601626,
1767
+ "grad_norm": 2.3368349075317383,
1768
+ "learning_rate": 0.0002,
1769
+ "loss": 1.089,
1770
+ "step": 2470
1771
+ },
1772
+ {
1773
+ "epoch": 4.032520325203252,
1774
+ "grad_norm": 1.5294667482376099,
1775
+ "learning_rate": 0.0002,
1776
+ "loss": 1.067,
1777
+ "step": 2480
1778
+ },
1779
+ {
1780
+ "epoch": 4.048780487804878,
1781
+ "grad_norm": 1.6742061376571655,
1782
+ "learning_rate": 0.0002,
1783
+ "loss": 1.0322,
1784
+ "step": 2490
1785
+ },
1786
+ {
1787
+ "epoch": 4.065040650406504,
1788
+ "grad_norm": 1.766839623451233,
1789
+ "learning_rate": 0.0002,
1790
+ "loss": 1.0097,
1791
+ "step": 2500
1792
+ },
1793
+ {
1794
+ "epoch": 4.08130081300813,
1795
+ "grad_norm": 1.632996916770935,
1796
+ "learning_rate": 0.0002,
1797
+ "loss": 1.15,
1798
+ "step": 2510
1799
+ },
1800
+ {
1801
+ "epoch": 4.097560975609756,
1802
+ "grad_norm": 1.37165367603302,
1803
+ "learning_rate": 0.0002,
1804
+ "loss": 1.057,
1805
+ "step": 2520
1806
+ },
1807
+ {
1808
+ "epoch": 4.1138211382113825,
1809
+ "grad_norm": 1.4612709283828735,
1810
+ "learning_rate": 0.0002,
1811
+ "loss": 1.128,
1812
+ "step": 2530
1813
+ },
1814
+ {
1815
+ "epoch": 4.130081300813008,
1816
+ "grad_norm": 1.7394530773162842,
1817
+ "learning_rate": 0.0002,
1818
+ "loss": 1.0034,
1819
+ "step": 2540
1820
+ },
1821
+ {
1822
+ "epoch": 4.146341463414634,
1823
+ "grad_norm": 1.8255715370178223,
1824
+ "learning_rate": 0.0002,
1825
+ "loss": 1.0831,
1826
+ "step": 2550
1827
+ },
1828
+ {
1829
+ "epoch": 4.16260162601626,
1830
+ "grad_norm": 2.00886869430542,
1831
+ "learning_rate": 0.0002,
1832
+ "loss": 1.0942,
1833
+ "step": 2560
1834
+ },
1835
+ {
1836
+ "epoch": 4.178861788617886,
1837
+ "grad_norm": 1.6969596147537231,
1838
+ "learning_rate": 0.0002,
1839
+ "loss": 1.0548,
1840
+ "step": 2570
1841
+ },
1842
+ {
1843
+ "epoch": 4.195121951219512,
1844
+ "grad_norm": 1.9369271993637085,
1845
+ "learning_rate": 0.0002,
1846
+ "loss": 1.1523,
1847
+ "step": 2580
1848
+ },
1849
+ {
1850
+ "epoch": 4.211382113821138,
1851
+ "grad_norm": 1.6654353141784668,
1852
+ "learning_rate": 0.0002,
1853
+ "loss": 1.0759,
1854
+ "step": 2590
1855
+ },
1856
+ {
1857
+ "epoch": 4.227642276422764,
1858
+ "grad_norm": 1.621569275856018,
1859
+ "learning_rate": 0.0002,
1860
+ "loss": 1.1495,
1861
+ "step": 2600
1862
+ },
1863
+ {
1864
+ "epoch": 4.2439024390243905,
1865
+ "grad_norm": 1.6566373109817505,
1866
+ "learning_rate": 0.0002,
1867
+ "loss": 1.0638,
1868
+ "step": 2610
1869
+ },
1870
+ {
1871
+ "epoch": 4.260162601626016,
1872
+ "grad_norm": 1.7170981168746948,
1873
+ "learning_rate": 0.0002,
1874
+ "loss": 1.1289,
1875
+ "step": 2620
1876
+ },
1877
+ {
1878
+ "epoch": 4.276422764227642,
1879
+ "grad_norm": 1.5868020057678223,
1880
+ "learning_rate": 0.0002,
1881
+ "loss": 1.0647,
1882
+ "step": 2630
1883
+ },
1884
+ {
1885
+ "epoch": 4.2926829268292686,
1886
+ "grad_norm": 1.6616328954696655,
1887
+ "learning_rate": 0.0002,
1888
+ "loss": 1.1076,
1889
+ "step": 2640
1890
+ },
1891
+ {
1892
+ "epoch": 4.308943089430894,
1893
+ "grad_norm": 1.7867165803909302,
1894
+ "learning_rate": 0.0002,
1895
+ "loss": 1.0803,
1896
+ "step": 2650
1897
+ },
1898
+ {
1899
+ "epoch": 4.32520325203252,
1900
+ "grad_norm": 1.7968727350234985,
1901
+ "learning_rate": 0.0002,
1902
+ "loss": 1.0377,
1903
+ "step": 2660
1904
+ },
1905
+ {
1906
+ "epoch": 4.341463414634147,
1907
+ "grad_norm": 1.5795880556106567,
1908
+ "learning_rate": 0.0002,
1909
+ "loss": 1.1096,
1910
+ "step": 2670
1911
+ },
1912
+ {
1913
+ "epoch": 4.357723577235772,
1914
+ "grad_norm": 1.5703494548797607,
1915
+ "learning_rate": 0.0002,
1916
+ "loss": 1.1472,
1917
+ "step": 2680
1918
+ },
1919
+ {
1920
+ "epoch": 4.373983739837398,
1921
+ "grad_norm": 1.6967381238937378,
1922
+ "learning_rate": 0.0002,
1923
+ "loss": 1.0789,
1924
+ "step": 2690
1925
+ },
1926
+ {
1927
+ "epoch": 4.390243902439025,
1928
+ "grad_norm": 1.5561623573303223,
1929
+ "learning_rate": 0.0002,
1930
+ "loss": 1.1253,
1931
+ "step": 2700
1932
+ },
1933
+ {
1934
+ "epoch": 4.40650406504065,
1935
+ "grad_norm": 1.9618488550186157,
1936
+ "learning_rate": 0.0002,
1937
+ "loss": 1.1493,
1938
+ "step": 2710
1939
+ },
1940
+ {
1941
+ "epoch": 4.4227642276422765,
1942
+ "grad_norm": 1.4679653644561768,
1943
+ "learning_rate": 0.0002,
1944
+ "loss": 1.0674,
1945
+ "step": 2720
1946
+ },
1947
+ {
1948
+ "epoch": 4.439024390243903,
1949
+ "grad_norm": 1.6527636051177979,
1950
+ "learning_rate": 0.0002,
1951
+ "loss": 1.1486,
1952
+ "step": 2730
1953
+ },
1954
+ {
1955
+ "epoch": 4.455284552845528,
1956
+ "grad_norm": 1.9380215406417847,
1957
+ "learning_rate": 0.0002,
1958
+ "loss": 1.081,
1959
+ "step": 2740
1960
+ },
1961
+ {
1962
+ "epoch": 4.471544715447155,
1963
+ "grad_norm": 1.8928139209747314,
1964
+ "learning_rate": 0.0002,
1965
+ "loss": 1.1709,
1966
+ "step": 2750
1967
+ },
1968
+ {
1969
+ "epoch": 4.487804878048781,
1970
+ "grad_norm": 1.6719214916229248,
1971
+ "learning_rate": 0.0002,
1972
+ "loss": 1.121,
1973
+ "step": 2760
1974
+ },
1975
+ {
1976
+ "epoch": 4.504065040650406,
1977
+ "grad_norm": 1.5200358629226685,
1978
+ "learning_rate": 0.0002,
1979
+ "loss": 1.1578,
1980
+ "step": 2770
1981
+ },
1982
+ {
1983
+ "epoch": 4.520325203252033,
1984
+ "grad_norm": 1.6545467376708984,
1985
+ "learning_rate": 0.0002,
1986
+ "loss": 1.1576,
1987
+ "step": 2780
1988
+ },
1989
+ {
1990
+ "epoch": 4.536585365853659,
1991
+ "grad_norm": 1.569615364074707,
1992
+ "learning_rate": 0.0002,
1993
+ "loss": 1.1388,
1994
+ "step": 2790
1995
+ },
1996
+ {
1997
+ "epoch": 4.5528455284552845,
1998
+ "grad_norm": 1.7238937616348267,
1999
+ "learning_rate": 0.0002,
2000
+ "loss": 1.1024,
2001
+ "step": 2800
2002
+ },
2003
+ {
2004
+ "epoch": 4.569105691056911,
2005
+ "grad_norm": 1.8149088621139526,
2006
+ "learning_rate": 0.0002,
2007
+ "loss": 1.1747,
2008
+ "step": 2810
2009
+ },
2010
+ {
2011
+ "epoch": 4.585365853658536,
2012
+ "grad_norm": 1.876002311706543,
2013
+ "learning_rate": 0.0002,
2014
+ "loss": 1.1397,
2015
+ "step": 2820
2016
+ },
2017
+ {
2018
+ "epoch": 4.6016260162601625,
2019
+ "grad_norm": 1.938772439956665,
2020
+ "learning_rate": 0.0002,
2021
+ "loss": 1.091,
2022
+ "step": 2830
2023
+ },
2024
+ {
2025
+ "epoch": 4.617886178861789,
2026
+ "grad_norm": 1.5655368566513062,
2027
+ "learning_rate": 0.0002,
2028
+ "loss": 1.0954,
2029
+ "step": 2840
2030
+ },
2031
+ {
2032
+ "epoch": 4.634146341463414,
2033
+ "grad_norm": 1.8196513652801514,
2034
+ "learning_rate": 0.0002,
2035
+ "loss": 1.2074,
2036
+ "step": 2850
2037
+ },
2038
+ {
2039
+ "epoch": 4.650406504065041,
2040
+ "grad_norm": 1.6780239343643188,
2041
+ "learning_rate": 0.0002,
2042
+ "loss": 1.1261,
2043
+ "step": 2860
2044
+ },
2045
+ {
2046
+ "epoch": 4.666666666666667,
2047
+ "grad_norm": 1.445952296257019,
2048
+ "learning_rate": 0.0002,
2049
+ "loss": 1.1654,
2050
+ "step": 2870
2051
+ },
2052
+ {
2053
+ "epoch": 4.682926829268292,
2054
+ "grad_norm": 1.7116491794586182,
2055
+ "learning_rate": 0.0002,
2056
+ "loss": 1.1576,
2057
+ "step": 2880
2058
+ },
2059
+ {
2060
+ "epoch": 4.699186991869919,
2061
+ "grad_norm": 1.8259165287017822,
2062
+ "learning_rate": 0.0002,
2063
+ "loss": 1.1766,
2064
+ "step": 2890
2065
+ },
2066
+ {
2067
+ "epoch": 4.715447154471545,
2068
+ "grad_norm": 1.690813660621643,
2069
+ "learning_rate": 0.0002,
2070
+ "loss": 1.123,
2071
+ "step": 2900
2072
+ },
2073
+ {
2074
+ "epoch": 4.7317073170731705,
2075
+ "grad_norm": 1.964525818824768,
2076
+ "learning_rate": 0.0002,
2077
+ "loss": 1.15,
2078
+ "step": 2910
2079
+ },
2080
+ {
2081
+ "epoch": 4.747967479674797,
2082
+ "grad_norm": 1.6966286897659302,
2083
+ "learning_rate": 0.0002,
2084
+ "loss": 1.1764,
2085
+ "step": 2920
2086
+ },
2087
+ {
2088
+ "epoch": 4.764227642276423,
2089
+ "grad_norm": 1.8009082078933716,
2090
+ "learning_rate": 0.0002,
2091
+ "loss": 1.115,
2092
+ "step": 2930
2093
+ },
2094
+ {
2095
+ "epoch": 4.780487804878049,
2096
+ "grad_norm": 1.5503566265106201,
2097
+ "learning_rate": 0.0002,
2098
+ "loss": 1.0741,
2099
+ "step": 2940
2100
+ },
2101
+ {
2102
+ "epoch": 4.796747967479675,
2103
+ "grad_norm": 1.616410493850708,
2104
+ "learning_rate": 0.0002,
2105
+ "loss": 1.1681,
2106
+ "step": 2950
2107
+ },
2108
+ {
2109
+ "epoch": 4.8130081300813,
2110
+ "grad_norm": 1.8752009868621826,
2111
+ "learning_rate": 0.0002,
2112
+ "loss": 1.1404,
2113
+ "step": 2960
2114
+ },
2115
+ {
2116
+ "epoch": 4.829268292682927,
2117
+ "grad_norm": 1.6281180381774902,
2118
+ "learning_rate": 0.0002,
2119
+ "loss": 1.1325,
2120
+ "step": 2970
2121
+ },
2122
+ {
2123
+ "epoch": 4.845528455284553,
2124
+ "grad_norm": 1.6588609218597412,
2125
+ "learning_rate": 0.0002,
2126
+ "loss": 1.0928,
2127
+ "step": 2980
2128
+ },
2129
+ {
2130
+ "epoch": 4.861788617886178,
2131
+ "grad_norm": 1.7978718280792236,
2132
+ "learning_rate": 0.0002,
2133
+ "loss": 1.1603,
2134
+ "step": 2990
2135
+ },
2136
+ {
2137
+ "epoch": 4.878048780487805,
2138
+ "grad_norm": 1.5647393465042114,
2139
+ "learning_rate": 0.0002,
2140
+ "loss": 1.1617,
2141
+ "step": 3000
2142
+ },
2143
+ {
2144
+ "epoch": 4.894308943089431,
2145
+ "grad_norm": 1.5811057090759277,
2146
+ "learning_rate": 0.0002,
2147
+ "loss": 1.1394,
2148
+ "step": 3010
2149
+ },
2150
+ {
2151
+ "epoch": 4.9105691056910565,
2152
+ "grad_norm": 1.9754141569137573,
2153
+ "learning_rate": 0.0002,
2154
+ "loss": 1.1287,
2155
+ "step": 3020
2156
+ },
2157
+ {
2158
+ "epoch": 4.926829268292683,
2159
+ "grad_norm": 1.591244101524353,
2160
+ "learning_rate": 0.0002,
2161
+ "loss": 1.2431,
2162
+ "step": 3030
2163
+ },
2164
+ {
2165
+ "epoch": 4.943089430894309,
2166
+ "grad_norm": 1.7036725282669067,
2167
+ "learning_rate": 0.0002,
2168
+ "loss": 1.128,
2169
+ "step": 3040
2170
+ },
2171
+ {
2172
+ "epoch": 4.959349593495935,
2173
+ "grad_norm": 1.8453916311264038,
2174
+ "learning_rate": 0.0002,
2175
+ "loss": 1.1828,
2176
+ "step": 3050
2177
+ },
2178
+ {
2179
+ "epoch": 4.975609756097561,
2180
+ "grad_norm": 1.3091868162155151,
2181
+ "learning_rate": 0.0002,
2182
+ "loss": 1.1542,
2183
+ "step": 3060
2184
+ },
2185
+ {
2186
+ "epoch": 4.991869918699187,
2187
+ "grad_norm": 1.7609132528305054,
2188
+ "learning_rate": 0.0002,
2189
+ "loss": 1.1855,
2190
+ "step": 3070
2191
+ },
2192
+ {
2193
+ "epoch": 5.0,
2194
+ "eval_loss": 2.074026346206665,
2195
+ "eval_runtime": 98.3931,
2196
+ "eval_samples_per_second": 5.417,
2197
+ "eval_steps_per_second": 0.681,
2198
+ "step": 3075
2199
+ }
2200
+ ],
2201
+ "logging_steps": 10,
2202
+ "max_steps": 4920,
2203
+ "num_input_tokens_seen": 0,
2204
+ "num_train_epochs": 8,
2205
+ "save_steps": 200,
2206
+ "stateful_callbacks": {
2207
+ "TrainerControl": {
2208
+ "args": {
2209
+ "should_epoch_stop": false,
2210
+ "should_evaluate": false,
2211
+ "should_log": false,
2212
+ "should_save": true,
2213
+ "should_training_stop": false
2214
+ },
2215
+ "attributes": {}
2216
+ }
2217
+ },
2218
+ "total_flos": 1.3491478462464e+17,
2219
+ "train_batch_size": 1,
2220
+ "trial_name": null,
2221
+ "trial_params": null
2222
+ }