MilaWang commited on
Commit
2853246
·
verified ·
1 Parent(s): 477da4b

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/README.md +202 -0
  2. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/adapter_config.json +29 -0
  3. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/adapter_model.safetensors +3 -0
  4. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/README.md +202 -0
  5. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/adapter_config.json +29 -0
  6. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/adapter_model.safetensors +3 -0
  7. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/optimizer.pt +3 -0
  8. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/rng_state.pth +3 -0
  9. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/scheduler.pt +3 -0
  10. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/special_tokens_map.json +24 -0
  11. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/tokenizer.json +0 -0
  12. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/tokenizer.model +3 -0
  13. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/tokenizer_config.json +0 -0
  14. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/trainer_state.json +1176 -0
  15. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/training_args.bin +3 -0
  16. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/README.md +202 -0
  17. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/adapter_config.json +29 -0
  18. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/adapter_model.safetensors +3 -0
  19. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/optimizer.pt +3 -0
  20. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/rng_state.pth +3 -0
  21. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/scheduler.pt +3 -0
  22. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/special_tokens_map.json +24 -0
  23. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/tokenizer.json +0 -0
  24. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/tokenizer.model +3 -0
  25. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/tokenizer_config.json +0 -0
  26. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/trainer_state.json +1744 -0
  27. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/training_args.bin +3 -0
  28. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/README.md +202 -0
  29. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/adapter_config.json +29 -0
  30. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/adapter_model.safetensors +3 -0
  31. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/optimizer.pt +3 -0
  32. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/rng_state.pth +3 -0
  33. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/scheduler.pt +3 -0
  34. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/special_tokens_map.json +24 -0
  35. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/tokenizer.json +0 -0
  36. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/tokenizer.model +3 -0
  37. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/tokenizer_config.json +0 -0
  38. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/trainer_state.json +2319 -0
  39. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/training_args.bin +3 -0
  40. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/README.md +202 -0
  41. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/adapter_config.json +29 -0
  42. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/adapter_model.safetensors +3 -0
  43. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/optimizer.pt +3 -0
  44. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/rng_state.pth +3 -0
  45. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/scheduler.pt +3 -0
  46. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/special_tokens_map.json +24 -0
  47. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/tokenizer.json +0 -0
  48. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/tokenizer.model +3 -0
  49. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/tokenizer_config.json +0 -0
  50. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/trainer_state.json +2894 -0
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e874f2e9428c075b5468619aa828adfd7970ec89fb046cd4b04b5ff9637bab7c
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e874f2e9428c075b5468619aa828adfd7970ec89fb046cd4b04b5ff9637bab7c
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cc8e51fe48593fc52b4a9c6ecc3b108e42bed72ace17e4e55824879d4555a94
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01d3f13ef50eeffd6108fd5cdcc39935e98b1fa9ec9bb18bab640108d36187de
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92baa84cde23f9b4f7dbdf737520214bb9b1757ce8a7fb401d4ce26fc10ae684
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/trainer_state.json ADDED
@@ -0,0 +1,1176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2014765739440918,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613",
4
+ "epoch": 2.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1613,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.012399256044637322,
13
+ "grad_norm": 1.6176791191101074,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.8616,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.024798512089274645,
20
+ "grad_norm": 0.7599679827690125,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5953,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.037197768133911964,
27
+ "grad_norm": 0.8452111482620239,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.5705,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.04959702417854929,
34
+ "grad_norm": 0.8393070101737976,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5647,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.06199628022318661,
41
+ "grad_norm": 1.117109775543213,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4628,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.07439553626782393,
48
+ "grad_norm": 0.8330236077308655,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.3492,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.08679479231246125,
55
+ "grad_norm": 0.8670704960823059,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.367,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.09919404835709858,
62
+ "grad_norm": 0.6262535452842712,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.2357,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.1115933044017359,
69
+ "grad_norm": 0.753338098526001,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.3651,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.12399256044637322,
76
+ "grad_norm": 0.6324933171272278,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.2789,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.13639181649101054,
83
+ "grad_norm": 0.7270851135253906,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.2393,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.14879107253564786,
90
+ "grad_norm": 0.7036070227622986,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.177,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.16119032858028517,
97
+ "grad_norm": 0.6269583106040955,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.2808,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.1735895846249225,
104
+ "grad_norm": 0.6848828792572021,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.3039,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.1859888406695598,
111
+ "grad_norm": 0.5589784383773804,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1925,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.19838809671419716,
118
+ "grad_norm": 0.8350988626480103,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.2724,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.21078735275883448,
125
+ "grad_norm": 1.1780346632003784,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.2093,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2231866088034718,
132
+ "grad_norm": 0.674608588218689,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.2573,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.23558586484810912,
139
+ "grad_norm": 0.6972184181213379,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.2629,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.24798512089274644,
146
+ "grad_norm": 0.5187845230102539,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.2618,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.26038437693738375,
153
+ "grad_norm": 0.7513871192932129,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.3478,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.2727836329820211,
160
+ "grad_norm": 0.5859110951423645,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.1843,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.2851828890266584,
167
+ "grad_norm": 0.5547062754631042,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.1784,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2975821450712957,
174
+ "grad_norm": 3.5287671089172363,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.2564,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.30998140111593303,
181
+ "grad_norm": 0.8644460439682007,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.313,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.32238065716057035,
188
+ "grad_norm": 0.6270064115524292,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.2187,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.33477991320520767,
195
+ "grad_norm": 1.170295000076294,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.2017,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.347179169249845,
202
+ "grad_norm": 0.5701245069503784,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.1075,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.3595784252944823,
209
+ "grad_norm": 0.6373095512390137,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.1185,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.3719776813391196,
216
+ "grad_norm": 0.5740704536437988,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.1738,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.384376937383757,
223
+ "grad_norm": 0.5516835451126099,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.2858,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3967761934283943,
230
+ "grad_norm": 0.5212382078170776,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.2315,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.40917544947303164,
237
+ "grad_norm": 0.540307343006134,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.172,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.42157470551766896,
244
+ "grad_norm": 0.7454301714897156,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.2736,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.4339739615623063,
251
+ "grad_norm": 0.7390317916870117,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.3013,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.4463732176069436,
258
+ "grad_norm": 0.5498788356781006,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.0615,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.4587724736515809,
265
+ "grad_norm": 0.5776252150535583,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.2251,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.47117172969621823,
272
+ "grad_norm": 0.6941552758216858,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.1932,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.48357098574085555,
279
+ "grad_norm": 0.7936233282089233,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.23,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.49597024178549287,
286
+ "grad_norm": 0.5257220268249512,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.1137,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.5083694978301302,
293
+ "grad_norm": 0.5740510821342468,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.1867,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.5207687538747675,
300
+ "grad_norm": 0.6181507110595703,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.1049,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.5331680099194048,
307
+ "grad_norm": 0.6333999037742615,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.2303,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.5455672659640421,
314
+ "grad_norm": 0.5667845010757446,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.2457,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.5579665220086795,
321
+ "grad_norm": 0.5254231095314026,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.2547,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.5703657780533168,
328
+ "grad_norm": 0.5938495993614197,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.2118,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.5827650340979541,
335
+ "grad_norm": 0.7733635902404785,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.2409,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.5951642901425914,
342
+ "grad_norm": 0.6114753484725952,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.2343,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.6075635461872287,
349
+ "grad_norm": 0.5587155818939209,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.1779,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.6199628022318661,
356
+ "grad_norm": 0.7636917233467102,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.2136,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.6323620582765034,
363
+ "grad_norm": 0.5896942615509033,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.1301,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.6447613143211407,
370
+ "grad_norm": 0.8594750165939331,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.2089,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.657160570365778,
377
+ "grad_norm": 0.6459881067276001,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.1551,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.6695598264104153,
384
+ "grad_norm": 0.650656521320343,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.175,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.6819590824550527,
391
+ "grad_norm": 0.7238242626190186,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.2143,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.69435833849969,
398
+ "grad_norm": 0.6289859414100647,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.0961,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.7067575945443273,
405
+ "grad_norm": 0.6108142137527466,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.2316,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.7191568505889646,
412
+ "grad_norm": 0.6905024647712708,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.1315,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.7315561066336019,
419
+ "grad_norm": 0.5975471138954163,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.2368,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.7439553626782393,
426
+ "grad_norm": 0.49540066719055176,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.1014,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.7563546187228767,
433
+ "grad_norm": 0.5365461707115173,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.1359,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.768753874767514,
440
+ "grad_norm": 0.6156648993492126,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.2552,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.7811531308121513,
447
+ "grad_norm": 0.656879186630249,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.1929,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.7935523868567886,
454
+ "grad_norm": 0.8963037729263306,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.3063,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.805951642901426,
461
+ "grad_norm": 1.0569753646850586,
462
+ "learning_rate": 0.0002,
463
+ "loss": 1.219,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.8183508989460633,
468
+ "grad_norm": 0.7332107424736023,
469
+ "learning_rate": 0.0002,
470
+ "loss": 1.2563,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.8307501549907006,
475
+ "grad_norm": 0.589097797870636,
476
+ "learning_rate": 0.0002,
477
+ "loss": 1.1029,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.8431494110353379,
482
+ "grad_norm": 0.9553480744361877,
483
+ "learning_rate": 0.0002,
484
+ "loss": 1.1705,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.8555486670799752,
489
+ "grad_norm": 0.7076331973075867,
490
+ "learning_rate": 0.0002,
491
+ "loss": 1.1605,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.8679479231246126,
496
+ "grad_norm": 0.597531795501709,
497
+ "learning_rate": 0.0002,
498
+ "loss": 1.2346,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.8803471791692499,
503
+ "grad_norm": 0.7023149132728577,
504
+ "learning_rate": 0.0002,
505
+ "loss": 1.1637,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.8927464352138872,
510
+ "grad_norm": 1.4393764734268188,
511
+ "learning_rate": 0.0002,
512
+ "loss": 1.2717,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.9051456912585245,
517
+ "grad_norm": 0.5944231152534485,
518
+ "learning_rate": 0.0002,
519
+ "loss": 1.216,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.9175449473031618,
524
+ "grad_norm": 0.5712162852287292,
525
+ "learning_rate": 0.0002,
526
+ "loss": 1.148,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.9299442033477991,
531
+ "grad_norm": 0.5335281491279602,
532
+ "learning_rate": 0.0002,
533
+ "loss": 1.2318,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.9423434593924365,
538
+ "grad_norm": 0.8050292730331421,
539
+ "learning_rate": 0.0002,
540
+ "loss": 1.149,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.9547427154370738,
545
+ "grad_norm": 0.6092700958251953,
546
+ "learning_rate": 0.0002,
547
+ "loss": 1.0862,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.9671419714817111,
552
+ "grad_norm": 0.7012797594070435,
553
+ "learning_rate": 0.0002,
554
+ "loss": 1.3204,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.9795412275263484,
559
+ "grad_norm": 0.6228184103965759,
560
+ "learning_rate": 0.0002,
561
+ "loss": 1.1641,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.9919404835709857,
566
+ "grad_norm": 0.5482686161994934,
567
+ "learning_rate": 0.0002,
568
+ "loss": 1.131,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.9993800371977681,
573
+ "eval_loss": 1.2057286500930786,
574
+ "eval_runtime": 164.6087,
575
+ "eval_samples_per_second": 2.77,
576
+ "eval_steps_per_second": 0.346,
577
+ "step": 806
578
+ },
579
+ {
580
+ "epoch": 1.004339739615623,
581
+ "grad_norm": 0.6331814527511597,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.0899,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.0167389956602604,
588
+ "grad_norm": 0.6160872578620911,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.0551,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.0291382517048977,
595
+ "grad_norm": 0.6104072332382202,
596
+ "learning_rate": 0.0002,
597
+ "loss": 0.9934,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.041537507749535,
602
+ "grad_norm": 0.7619274854660034,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.0776,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.0539367637941723,
609
+ "grad_norm": 0.761172890663147,
610
+ "learning_rate": 0.0002,
611
+ "loss": 0.9929,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.0663360198388097,
616
+ "grad_norm": 0.7563514113426208,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.0543,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.078735275883447,
623
+ "grad_norm": 0.521998941898346,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.0812,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.0911345319280843,
630
+ "grad_norm": 0.824347972869873,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.1417,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.1035337879727216,
637
+ "grad_norm": 0.5645424127578735,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.1096,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.115933044017359,
644
+ "grad_norm": 0.8568223714828491,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.1005,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.1283323000619963,
651
+ "grad_norm": 0.68181312084198,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.088,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.1407315561066336,
658
+ "grad_norm": 0.7577647566795349,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.0281,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.153130812151271,
665
+ "grad_norm": 0.6968798637390137,
666
+ "learning_rate": 0.0002,
667
+ "loss": 0.9812,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.1655300681959082,
672
+ "grad_norm": 0.5769661664962769,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.0539,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.1779293242405455,
679
+ "grad_norm": 0.6399155259132385,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.0831,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.1903285802851828,
686
+ "grad_norm": 0.9824289679527283,
687
+ "learning_rate": 0.0002,
688
+ "loss": 1.0464,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.2027278363298202,
693
+ "grad_norm": 0.7485893964767456,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.1068,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.2151270923744575,
700
+ "grad_norm": 0.668736457824707,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.0047,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.2275263484190948,
707
+ "grad_norm": 0.7041404843330383,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.0818,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.2399256044637321,
714
+ "grad_norm": 0.7070603966712952,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.0847,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.2523248605083694,
721
+ "grad_norm": 0.7828628420829773,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.047,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.2647241165530068,
728
+ "grad_norm": 0.7149654626846313,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.0658,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.277123372597644,
735
+ "grad_norm": 0.7691766619682312,
736
+ "learning_rate": 0.0002,
737
+ "loss": 0.9791,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.2895226286422814,
742
+ "grad_norm": 0.8022137880325317,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.0242,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.3019218846869187,
749
+ "grad_norm": 0.6709204316139221,
750
+ "learning_rate": 0.0002,
751
+ "loss": 1.0837,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.314321140731556,
756
+ "grad_norm": 0.7368158102035522,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.0382,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.3267203967761934,
763
+ "grad_norm": 0.8408007621765137,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.0371,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.3391196528208307,
770
+ "grad_norm": 1.2165539264678955,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.9633,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.351518908865468,
777
+ "grad_norm": 0.7284916043281555,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.0079,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.3639181649101053,
784
+ "grad_norm": 0.7994557619094849,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.0211,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.3763174209547429,
791
+ "grad_norm": 0.9658345580101013,
792
+ "learning_rate": 0.0002,
793
+ "loss": 1.0892,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.3887166769993802,
798
+ "grad_norm": 0.6312829852104187,
799
+ "learning_rate": 0.0002,
800
+ "loss": 1.2088,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.4011159330440175,
805
+ "grad_norm": 0.7263661026954651,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.1055,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.4135151890886548,
812
+ "grad_norm": 0.829082727432251,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.0232,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.4259144451332921,
819
+ "grad_norm": 0.6168127059936523,
820
+ "learning_rate": 0.0002,
821
+ "loss": 1.1413,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.4383137011779294,
826
+ "grad_norm": 0.8351425528526306,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.0283,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.4507129572225668,
833
+ "grad_norm": 0.8814472556114197,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.1146,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.463112213267204,
840
+ "grad_norm": 0.6913689970970154,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.0932,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.4755114693118414,
847
+ "grad_norm": 0.7907165884971619,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.1066,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.4879107253564787,
854
+ "grad_norm": 0.8361626267433167,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.0738,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.500309981401116,
861
+ "grad_norm": 1.073534607887268,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.0559,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.5127092374457534,
868
+ "grad_norm": 0.8416345119476318,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.0204,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.5251084934903907,
875
+ "grad_norm": 1.0225597620010376,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.0941,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.537507749535028,
882
+ "grad_norm": 0.6662965416908264,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.0854,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.5499070055796653,
889
+ "grad_norm": 0.7363991737365723,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.0816,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.5623062616243026,
896
+ "grad_norm": 0.9029574990272522,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.0271,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.57470551766894,
903
+ "grad_norm": 0.7992424368858337,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.0206,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.5871047737135773,
910
+ "grad_norm": 0.8108977675437927,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.0114,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.5995040297582146,
917
+ "grad_norm": 0.8257458806037903,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.0264,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.611903285802852,
924
+ "grad_norm": 0.8265092968940735,
925
+ "learning_rate": 0.0002,
926
+ "loss": 1.0944,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.6243025418474892,
931
+ "grad_norm": 0.6568580269813538,
932
+ "learning_rate": 0.0002,
933
+ "loss": 1.0136,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.6367017978921266,
938
+ "grad_norm": 0.7608488202095032,
939
+ "learning_rate": 0.0002,
940
+ "loss": 1.009,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.6491010539367639,
945
+ "grad_norm": 0.7511259317398071,
946
+ "learning_rate": 0.0002,
947
+ "loss": 1.1202,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.6615003099814012,
952
+ "grad_norm": 0.7942162752151489,
953
+ "learning_rate": 0.0002,
954
+ "loss": 1.0528,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.6738995660260385,
959
+ "grad_norm": 0.8253659605979919,
960
+ "learning_rate": 0.0002,
961
+ "loss": 1.0411,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.6862988220706758,
966
+ "grad_norm": 1.1318382024765015,
967
+ "learning_rate": 0.0002,
968
+ "loss": 1.001,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.6986980781153131,
973
+ "grad_norm": 0.693403959274292,
974
+ "learning_rate": 0.0002,
975
+ "loss": 1.0727,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.7110973341599505,
980
+ "grad_norm": 0.7107617259025574,
981
+ "learning_rate": 0.0002,
982
+ "loss": 1.073,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.7234965902045878,
987
+ "grad_norm": 0.8169032335281372,
988
+ "learning_rate": 0.0002,
989
+ "loss": 1.0849,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.735895846249225,
994
+ "grad_norm": 0.8940841555595398,
995
+ "learning_rate": 0.0002,
996
+ "loss": 1.0578,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.7482951022938624,
1001
+ "grad_norm": 0.7862188220024109,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 1.0891,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.7606943583384997,
1008
+ "grad_norm": 1.136338472366333,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.9962,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.773093614383137,
1015
+ "grad_norm": 0.9534069895744324,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 1.0943,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.7854928704277744,
1022
+ "grad_norm": 1.0747562646865845,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 1.1257,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.7978921264724117,
1029
+ "grad_norm": 0.8557891249656677,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 1.0556,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.810291382517049,
1036
+ "grad_norm": 0.6829259991645813,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 1.0128,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.8226906385616863,
1043
+ "grad_norm": 0.8164441585540771,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 1.0313,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.8350898946063237,
1050
+ "grad_norm": 0.9458068609237671,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 1.1136,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.847489150650961,
1057
+ "grad_norm": 0.743009626865387,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 1.0457,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.8598884066955983,
1064
+ "grad_norm": 0.7137694358825684,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 1.0107,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.8722876627402356,
1071
+ "grad_norm": 0.7618028521537781,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 1.0633,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.884686918784873,
1078
+ "grad_norm": 0.8153398633003235,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 1.103,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.8970861748295103,
1085
+ "grad_norm": 0.9127124547958374,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 1.2094,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.9094854308741476,
1092
+ "grad_norm": 0.7699425220489502,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 1.0379,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.921884686918785,
1099
+ "grad_norm": 0.8807545304298401,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.9849,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.9342839429634222,
1106
+ "grad_norm": 0.7340815663337708,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 1.033,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.9466831990080595,
1113
+ "grad_norm": 1.070056676864624,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 1.0083,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.9590824550526968,
1120
+ "grad_norm": 0.8195573687553406,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 1.0023,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.9714817110973342,
1127
+ "grad_norm": 0.7938687205314636,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 1.029,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.9838809671419715,
1134
+ "grad_norm": 0.7632259726524353,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 1.0512,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.9962802231866088,
1141
+ "grad_norm": 0.7921916246414185,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 1.0426,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 2.0,
1148
+ "eval_loss": 1.2014765739440918,
1149
+ "eval_runtime": 159.8677,
1150
+ "eval_samples_per_second": 2.852,
1151
+ "eval_steps_per_second": 0.357,
1152
+ "step": 1613
1153
+ }
1154
+ ],
1155
+ "logging_steps": 10,
1156
+ "max_steps": 6448,
1157
+ "num_input_tokens_seen": 0,
1158
+ "num_train_epochs": 8,
1159
+ "save_steps": 200,
1160
+ "stateful_callbacks": {
1161
+ "TrainerControl": {
1162
+ "args": {
1163
+ "should_epoch_stop": false,
1164
+ "should_evaluate": false,
1165
+ "should_log": false,
1166
+ "should_save": true,
1167
+ "should_training_stop": false
1168
+ },
1169
+ "attributes": {}
1170
+ }
1171
+ },
1172
+ "total_flos": 7.07699341787136e+16,
1173
+ "train_batch_size": 1,
1174
+ "trial_name": null,
1175
+ "trial_params": null
1176
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0a54cf05b51cc3ca7cba649c3e96685958c9d310c181dff0c31954ec4641225
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d10271c618d36c826ace5e45001c7771ded5c31082f53ab7bdb92f05315fb25a
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7ba379db8ad00f7f893f770c91af779ba350dc59dd78a4ee8081924fc40a35f
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87ee99a079ce34c26aa81ce69d3f226916a2c733d8107600fbf6b0f6daebad6c
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27f7bcd01e452f6167b74d0bec132ca6ee19005f211aee6650a726693c8fb6fc
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/trainer_state.json ADDED
@@ -0,0 +1,1744 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2014765739440918,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613",
4
+ "epoch": 2.999380037197768,
5
+ "eval_steps": 10,
6
+ "global_step": 2419,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.012399256044637322,
13
+ "grad_norm": 1.6176791191101074,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.8616,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.024798512089274645,
20
+ "grad_norm": 0.7599679827690125,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5953,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.037197768133911964,
27
+ "grad_norm": 0.8452111482620239,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.5705,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.04959702417854929,
34
+ "grad_norm": 0.8393070101737976,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5647,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.06199628022318661,
41
+ "grad_norm": 1.117109775543213,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4628,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.07439553626782393,
48
+ "grad_norm": 0.8330236077308655,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.3492,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.08679479231246125,
55
+ "grad_norm": 0.8670704960823059,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.367,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.09919404835709858,
62
+ "grad_norm": 0.6262535452842712,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.2357,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.1115933044017359,
69
+ "grad_norm": 0.753338098526001,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.3651,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.12399256044637322,
76
+ "grad_norm": 0.6324933171272278,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.2789,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.13639181649101054,
83
+ "grad_norm": 0.7270851135253906,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.2393,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.14879107253564786,
90
+ "grad_norm": 0.7036070227622986,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.177,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.16119032858028517,
97
+ "grad_norm": 0.6269583106040955,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.2808,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.1735895846249225,
104
+ "grad_norm": 0.6848828792572021,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.3039,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.1859888406695598,
111
+ "grad_norm": 0.5589784383773804,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1925,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.19838809671419716,
118
+ "grad_norm": 0.8350988626480103,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.2724,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.21078735275883448,
125
+ "grad_norm": 1.1780346632003784,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.2093,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2231866088034718,
132
+ "grad_norm": 0.674608588218689,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.2573,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.23558586484810912,
139
+ "grad_norm": 0.6972184181213379,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.2629,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.24798512089274644,
146
+ "grad_norm": 0.5187845230102539,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.2618,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.26038437693738375,
153
+ "grad_norm": 0.7513871192932129,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.3478,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.2727836329820211,
160
+ "grad_norm": 0.5859110951423645,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.1843,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.2851828890266584,
167
+ "grad_norm": 0.5547062754631042,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.1784,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2975821450712957,
174
+ "grad_norm": 3.5287671089172363,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.2564,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.30998140111593303,
181
+ "grad_norm": 0.8644460439682007,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.313,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.32238065716057035,
188
+ "grad_norm": 0.6270064115524292,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.2187,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.33477991320520767,
195
+ "grad_norm": 1.170295000076294,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.2017,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.347179169249845,
202
+ "grad_norm": 0.5701245069503784,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.1075,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.3595784252944823,
209
+ "grad_norm": 0.6373095512390137,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.1185,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.3719776813391196,
216
+ "grad_norm": 0.5740704536437988,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.1738,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.384376937383757,
223
+ "grad_norm": 0.5516835451126099,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.2858,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3967761934283943,
230
+ "grad_norm": 0.5212382078170776,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.2315,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.40917544947303164,
237
+ "grad_norm": 0.540307343006134,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.172,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.42157470551766896,
244
+ "grad_norm": 0.7454301714897156,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.2736,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.4339739615623063,
251
+ "grad_norm": 0.7390317916870117,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.3013,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.4463732176069436,
258
+ "grad_norm": 0.5498788356781006,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.0615,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.4587724736515809,
265
+ "grad_norm": 0.5776252150535583,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.2251,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.47117172969621823,
272
+ "grad_norm": 0.6941552758216858,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.1932,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.48357098574085555,
279
+ "grad_norm": 0.7936233282089233,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.23,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.49597024178549287,
286
+ "grad_norm": 0.5257220268249512,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.1137,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.5083694978301302,
293
+ "grad_norm": 0.5740510821342468,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.1867,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.5207687538747675,
300
+ "grad_norm": 0.6181507110595703,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.1049,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.5331680099194048,
307
+ "grad_norm": 0.6333999037742615,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.2303,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.5455672659640421,
314
+ "grad_norm": 0.5667845010757446,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.2457,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.5579665220086795,
321
+ "grad_norm": 0.5254231095314026,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.2547,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.5703657780533168,
328
+ "grad_norm": 0.5938495993614197,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.2118,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.5827650340979541,
335
+ "grad_norm": 0.7733635902404785,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.2409,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.5951642901425914,
342
+ "grad_norm": 0.6114753484725952,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.2343,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.6075635461872287,
349
+ "grad_norm": 0.5587155818939209,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.1779,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.6199628022318661,
356
+ "grad_norm": 0.7636917233467102,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.2136,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.6323620582765034,
363
+ "grad_norm": 0.5896942615509033,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.1301,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.6447613143211407,
370
+ "grad_norm": 0.8594750165939331,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.2089,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.657160570365778,
377
+ "grad_norm": 0.6459881067276001,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.1551,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.6695598264104153,
384
+ "grad_norm": 0.650656521320343,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.175,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.6819590824550527,
391
+ "grad_norm": 0.7238242626190186,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.2143,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.69435833849969,
398
+ "grad_norm": 0.6289859414100647,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.0961,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.7067575945443273,
405
+ "grad_norm": 0.6108142137527466,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.2316,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.7191568505889646,
412
+ "grad_norm": 0.6905024647712708,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.1315,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.7315561066336019,
419
+ "grad_norm": 0.5975471138954163,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.2368,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.7439553626782393,
426
+ "grad_norm": 0.49540066719055176,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.1014,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.7563546187228767,
433
+ "grad_norm": 0.5365461707115173,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.1359,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.768753874767514,
440
+ "grad_norm": 0.6156648993492126,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.2552,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.7811531308121513,
447
+ "grad_norm": 0.656879186630249,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.1929,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.7935523868567886,
454
+ "grad_norm": 0.8963037729263306,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.3063,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.805951642901426,
461
+ "grad_norm": 1.0569753646850586,
462
+ "learning_rate": 0.0002,
463
+ "loss": 1.219,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.8183508989460633,
468
+ "grad_norm": 0.7332107424736023,
469
+ "learning_rate": 0.0002,
470
+ "loss": 1.2563,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.8307501549907006,
475
+ "grad_norm": 0.589097797870636,
476
+ "learning_rate": 0.0002,
477
+ "loss": 1.1029,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.8431494110353379,
482
+ "grad_norm": 0.9553480744361877,
483
+ "learning_rate": 0.0002,
484
+ "loss": 1.1705,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.8555486670799752,
489
+ "grad_norm": 0.7076331973075867,
490
+ "learning_rate": 0.0002,
491
+ "loss": 1.1605,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.8679479231246126,
496
+ "grad_norm": 0.597531795501709,
497
+ "learning_rate": 0.0002,
498
+ "loss": 1.2346,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.8803471791692499,
503
+ "grad_norm": 0.7023149132728577,
504
+ "learning_rate": 0.0002,
505
+ "loss": 1.1637,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.8927464352138872,
510
+ "grad_norm": 1.4393764734268188,
511
+ "learning_rate": 0.0002,
512
+ "loss": 1.2717,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.9051456912585245,
517
+ "grad_norm": 0.5944231152534485,
518
+ "learning_rate": 0.0002,
519
+ "loss": 1.216,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.9175449473031618,
524
+ "grad_norm": 0.5712162852287292,
525
+ "learning_rate": 0.0002,
526
+ "loss": 1.148,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.9299442033477991,
531
+ "grad_norm": 0.5335281491279602,
532
+ "learning_rate": 0.0002,
533
+ "loss": 1.2318,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.9423434593924365,
538
+ "grad_norm": 0.8050292730331421,
539
+ "learning_rate": 0.0002,
540
+ "loss": 1.149,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.9547427154370738,
545
+ "grad_norm": 0.6092700958251953,
546
+ "learning_rate": 0.0002,
547
+ "loss": 1.0862,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.9671419714817111,
552
+ "grad_norm": 0.7012797594070435,
553
+ "learning_rate": 0.0002,
554
+ "loss": 1.3204,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.9795412275263484,
559
+ "grad_norm": 0.6228184103965759,
560
+ "learning_rate": 0.0002,
561
+ "loss": 1.1641,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.9919404835709857,
566
+ "grad_norm": 0.5482686161994934,
567
+ "learning_rate": 0.0002,
568
+ "loss": 1.131,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.9993800371977681,
573
+ "eval_loss": 1.2057286500930786,
574
+ "eval_runtime": 164.6087,
575
+ "eval_samples_per_second": 2.77,
576
+ "eval_steps_per_second": 0.346,
577
+ "step": 806
578
+ },
579
+ {
580
+ "epoch": 1.004339739615623,
581
+ "grad_norm": 0.6331814527511597,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.0899,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.0167389956602604,
588
+ "grad_norm": 0.6160872578620911,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.0551,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.0291382517048977,
595
+ "grad_norm": 0.6104072332382202,
596
+ "learning_rate": 0.0002,
597
+ "loss": 0.9934,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.041537507749535,
602
+ "grad_norm": 0.7619274854660034,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.0776,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.0539367637941723,
609
+ "grad_norm": 0.761172890663147,
610
+ "learning_rate": 0.0002,
611
+ "loss": 0.9929,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.0663360198388097,
616
+ "grad_norm": 0.7563514113426208,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.0543,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.078735275883447,
623
+ "grad_norm": 0.521998941898346,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.0812,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.0911345319280843,
630
+ "grad_norm": 0.824347972869873,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.1417,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.1035337879727216,
637
+ "grad_norm": 0.5645424127578735,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.1096,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.115933044017359,
644
+ "grad_norm": 0.8568223714828491,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.1005,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.1283323000619963,
651
+ "grad_norm": 0.68181312084198,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.088,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.1407315561066336,
658
+ "grad_norm": 0.7577647566795349,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.0281,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.153130812151271,
665
+ "grad_norm": 0.6968798637390137,
666
+ "learning_rate": 0.0002,
667
+ "loss": 0.9812,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.1655300681959082,
672
+ "grad_norm": 0.5769661664962769,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.0539,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.1779293242405455,
679
+ "grad_norm": 0.6399155259132385,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.0831,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.1903285802851828,
686
+ "grad_norm": 0.9824289679527283,
687
+ "learning_rate": 0.0002,
688
+ "loss": 1.0464,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.2027278363298202,
693
+ "grad_norm": 0.7485893964767456,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.1068,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.2151270923744575,
700
+ "grad_norm": 0.668736457824707,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.0047,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.2275263484190948,
707
+ "grad_norm": 0.7041404843330383,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.0818,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.2399256044637321,
714
+ "grad_norm": 0.7070603966712952,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.0847,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.2523248605083694,
721
+ "grad_norm": 0.7828628420829773,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.047,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.2647241165530068,
728
+ "grad_norm": 0.7149654626846313,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.0658,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.277123372597644,
735
+ "grad_norm": 0.7691766619682312,
736
+ "learning_rate": 0.0002,
737
+ "loss": 0.9791,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.2895226286422814,
742
+ "grad_norm": 0.8022137880325317,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.0242,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.3019218846869187,
749
+ "grad_norm": 0.6709204316139221,
750
+ "learning_rate": 0.0002,
751
+ "loss": 1.0837,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.314321140731556,
756
+ "grad_norm": 0.7368158102035522,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.0382,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.3267203967761934,
763
+ "grad_norm": 0.8408007621765137,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.0371,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.3391196528208307,
770
+ "grad_norm": 1.2165539264678955,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.9633,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.351518908865468,
777
+ "grad_norm": 0.7284916043281555,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.0079,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.3639181649101053,
784
+ "grad_norm": 0.7994557619094849,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.0211,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.3763174209547429,
791
+ "grad_norm": 0.9658345580101013,
792
+ "learning_rate": 0.0002,
793
+ "loss": 1.0892,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.3887166769993802,
798
+ "grad_norm": 0.6312829852104187,
799
+ "learning_rate": 0.0002,
800
+ "loss": 1.2088,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.4011159330440175,
805
+ "grad_norm": 0.7263661026954651,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.1055,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.4135151890886548,
812
+ "grad_norm": 0.829082727432251,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.0232,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.4259144451332921,
819
+ "grad_norm": 0.6168127059936523,
820
+ "learning_rate": 0.0002,
821
+ "loss": 1.1413,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.4383137011779294,
826
+ "grad_norm": 0.8351425528526306,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.0283,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.4507129572225668,
833
+ "grad_norm": 0.8814472556114197,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.1146,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.463112213267204,
840
+ "grad_norm": 0.6913689970970154,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.0932,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.4755114693118414,
847
+ "grad_norm": 0.7907165884971619,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.1066,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.4879107253564787,
854
+ "grad_norm": 0.8361626267433167,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.0738,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.500309981401116,
861
+ "grad_norm": 1.073534607887268,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.0559,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.5127092374457534,
868
+ "grad_norm": 0.8416345119476318,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.0204,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.5251084934903907,
875
+ "grad_norm": 1.0225597620010376,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.0941,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.537507749535028,
882
+ "grad_norm": 0.6662965416908264,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.0854,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.5499070055796653,
889
+ "grad_norm": 0.7363991737365723,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.0816,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.5623062616243026,
896
+ "grad_norm": 0.9029574990272522,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.0271,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.57470551766894,
903
+ "grad_norm": 0.7992424368858337,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.0206,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.5871047737135773,
910
+ "grad_norm": 0.8108977675437927,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.0114,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.5995040297582146,
917
+ "grad_norm": 0.8257458806037903,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.0264,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.611903285802852,
924
+ "grad_norm": 0.8265092968940735,
925
+ "learning_rate": 0.0002,
926
+ "loss": 1.0944,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.6243025418474892,
931
+ "grad_norm": 0.6568580269813538,
932
+ "learning_rate": 0.0002,
933
+ "loss": 1.0136,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.6367017978921266,
938
+ "grad_norm": 0.7608488202095032,
939
+ "learning_rate": 0.0002,
940
+ "loss": 1.009,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.6491010539367639,
945
+ "grad_norm": 0.7511259317398071,
946
+ "learning_rate": 0.0002,
947
+ "loss": 1.1202,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.6615003099814012,
952
+ "grad_norm": 0.7942162752151489,
953
+ "learning_rate": 0.0002,
954
+ "loss": 1.0528,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.6738995660260385,
959
+ "grad_norm": 0.8253659605979919,
960
+ "learning_rate": 0.0002,
961
+ "loss": 1.0411,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.6862988220706758,
966
+ "grad_norm": 1.1318382024765015,
967
+ "learning_rate": 0.0002,
968
+ "loss": 1.001,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.6986980781153131,
973
+ "grad_norm": 0.693403959274292,
974
+ "learning_rate": 0.0002,
975
+ "loss": 1.0727,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.7110973341599505,
980
+ "grad_norm": 0.7107617259025574,
981
+ "learning_rate": 0.0002,
982
+ "loss": 1.073,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.7234965902045878,
987
+ "grad_norm": 0.8169032335281372,
988
+ "learning_rate": 0.0002,
989
+ "loss": 1.0849,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.735895846249225,
994
+ "grad_norm": 0.8940841555595398,
995
+ "learning_rate": 0.0002,
996
+ "loss": 1.0578,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.7482951022938624,
1001
+ "grad_norm": 0.7862188220024109,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 1.0891,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.7606943583384997,
1008
+ "grad_norm": 1.136338472366333,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.9962,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.773093614383137,
1015
+ "grad_norm": 0.9534069895744324,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 1.0943,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.7854928704277744,
1022
+ "grad_norm": 1.0747562646865845,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 1.1257,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.7978921264724117,
1029
+ "grad_norm": 0.8557891249656677,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 1.0556,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.810291382517049,
1036
+ "grad_norm": 0.6829259991645813,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 1.0128,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.8226906385616863,
1043
+ "grad_norm": 0.8164441585540771,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 1.0313,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.8350898946063237,
1050
+ "grad_norm": 0.9458068609237671,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 1.1136,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.847489150650961,
1057
+ "grad_norm": 0.743009626865387,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 1.0457,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.8598884066955983,
1064
+ "grad_norm": 0.7137694358825684,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 1.0107,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.8722876627402356,
1071
+ "grad_norm": 0.7618028521537781,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 1.0633,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.884686918784873,
1078
+ "grad_norm": 0.8153398633003235,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 1.103,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.8970861748295103,
1085
+ "grad_norm": 0.9127124547958374,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 1.2094,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.9094854308741476,
1092
+ "grad_norm": 0.7699425220489502,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 1.0379,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.921884686918785,
1099
+ "grad_norm": 0.8807545304298401,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.9849,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.9342839429634222,
1106
+ "grad_norm": 0.7340815663337708,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 1.033,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.9466831990080595,
1113
+ "grad_norm": 1.070056676864624,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 1.0083,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.9590824550526968,
1120
+ "grad_norm": 0.8195573687553406,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 1.0023,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.9714817110973342,
1127
+ "grad_norm": 0.7938687205314636,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 1.029,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.9838809671419715,
1134
+ "grad_norm": 0.7632259726524353,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 1.0512,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.9962802231866088,
1141
+ "grad_norm": 0.7921916246414185,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 1.0426,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 2.0,
1148
+ "eval_loss": 1.2014765739440918,
1149
+ "eval_runtime": 159.8677,
1150
+ "eval_samples_per_second": 2.852,
1151
+ "eval_steps_per_second": 0.357,
1152
+ "step": 1613
1153
+ },
1154
+ {
1155
+ "epoch": 2.008679479231246,
1156
+ "grad_norm": 1.1764529943466187,
1157
+ "learning_rate": 0.0002,
1158
+ "loss": 0.9239,
1159
+ "step": 1620
1160
+ },
1161
+ {
1162
+ "epoch": 2.0210787352758834,
1163
+ "grad_norm": 1.0271947383880615,
1164
+ "learning_rate": 0.0002,
1165
+ "loss": 0.7995,
1166
+ "step": 1630
1167
+ },
1168
+ {
1169
+ "epoch": 2.0334779913205208,
1170
+ "grad_norm": 0.7138071656227112,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 0.8592,
1173
+ "step": 1640
1174
+ },
1175
+ {
1176
+ "epoch": 2.045877247365158,
1177
+ "grad_norm": 0.8644373416900635,
1178
+ "learning_rate": 0.0002,
1179
+ "loss": 0.8106,
1180
+ "step": 1650
1181
+ },
1182
+ {
1183
+ "epoch": 2.0582765034097954,
1184
+ "grad_norm": 1.2262420654296875,
1185
+ "learning_rate": 0.0002,
1186
+ "loss": 0.8578,
1187
+ "step": 1660
1188
+ },
1189
+ {
1190
+ "epoch": 2.0706757594544327,
1191
+ "grad_norm": 0.9718686938285828,
1192
+ "learning_rate": 0.0002,
1193
+ "loss": 0.8009,
1194
+ "step": 1670
1195
+ },
1196
+ {
1197
+ "epoch": 2.08307501549907,
1198
+ "grad_norm": 1.0075122117996216,
1199
+ "learning_rate": 0.0002,
1200
+ "loss": 0.831,
1201
+ "step": 1680
1202
+ },
1203
+ {
1204
+ "epoch": 2.0954742715437074,
1205
+ "grad_norm": 1.2113722562789917,
1206
+ "learning_rate": 0.0002,
1207
+ "loss": 0.8177,
1208
+ "step": 1690
1209
+ },
1210
+ {
1211
+ "epoch": 2.1078735275883447,
1212
+ "grad_norm": 0.7911604642868042,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 0.8377,
1215
+ "step": 1700
1216
+ },
1217
+ {
1218
+ "epoch": 2.120272783632982,
1219
+ "grad_norm": 0.8578933477401733,
1220
+ "learning_rate": 0.0002,
1221
+ "loss": 0.8405,
1222
+ "step": 1710
1223
+ },
1224
+ {
1225
+ "epoch": 2.1326720396776193,
1226
+ "grad_norm": 1.1782084703445435,
1227
+ "learning_rate": 0.0002,
1228
+ "loss": 0.8784,
1229
+ "step": 1720
1230
+ },
1231
+ {
1232
+ "epoch": 2.1450712957222566,
1233
+ "grad_norm": 1.3627573251724243,
1234
+ "learning_rate": 0.0002,
1235
+ "loss": 0.8543,
1236
+ "step": 1730
1237
+ },
1238
+ {
1239
+ "epoch": 2.157470551766894,
1240
+ "grad_norm": 1.2948803901672363,
1241
+ "learning_rate": 0.0002,
1242
+ "loss": 0.8404,
1243
+ "step": 1740
1244
+ },
1245
+ {
1246
+ "epoch": 2.1698698078115313,
1247
+ "grad_norm": 0.9353442788124084,
1248
+ "learning_rate": 0.0002,
1249
+ "loss": 0.8719,
1250
+ "step": 1750
1251
+ },
1252
+ {
1253
+ "epoch": 2.1822690638561686,
1254
+ "grad_norm": 0.9063374400138855,
1255
+ "learning_rate": 0.0002,
1256
+ "loss": 0.8112,
1257
+ "step": 1760
1258
+ },
1259
+ {
1260
+ "epoch": 2.194668319900806,
1261
+ "grad_norm": 1.3354851007461548,
1262
+ "learning_rate": 0.0002,
1263
+ "loss": 0.9441,
1264
+ "step": 1770
1265
+ },
1266
+ {
1267
+ "epoch": 2.2070675759454432,
1268
+ "grad_norm": 0.8388507962226868,
1269
+ "learning_rate": 0.0002,
1270
+ "loss": 0.877,
1271
+ "step": 1780
1272
+ },
1273
+ {
1274
+ "epoch": 2.2194668319900805,
1275
+ "grad_norm": 0.9509401321411133,
1276
+ "learning_rate": 0.0002,
1277
+ "loss": 0.8709,
1278
+ "step": 1790
1279
+ },
1280
+ {
1281
+ "epoch": 2.231866088034718,
1282
+ "grad_norm": 1.0458593368530273,
1283
+ "learning_rate": 0.0002,
1284
+ "loss": 0.8212,
1285
+ "step": 1800
1286
+ },
1287
+ {
1288
+ "epoch": 2.244265344079355,
1289
+ "grad_norm": 0.890088677406311,
1290
+ "learning_rate": 0.0002,
1291
+ "loss": 0.7667,
1292
+ "step": 1810
1293
+ },
1294
+ {
1295
+ "epoch": 2.2566646001239925,
1296
+ "grad_norm": 1.1933976411819458,
1297
+ "learning_rate": 0.0002,
1298
+ "loss": 0.8431,
1299
+ "step": 1820
1300
+ },
1301
+ {
1302
+ "epoch": 2.26906385616863,
1303
+ "grad_norm": 0.961398184299469,
1304
+ "learning_rate": 0.0002,
1305
+ "loss": 0.8697,
1306
+ "step": 1830
1307
+ },
1308
+ {
1309
+ "epoch": 2.281463112213267,
1310
+ "grad_norm": 1.124961495399475,
1311
+ "learning_rate": 0.0002,
1312
+ "loss": 0.8403,
1313
+ "step": 1840
1314
+ },
1315
+ {
1316
+ "epoch": 2.2938623682579045,
1317
+ "grad_norm": 0.9042379260063171,
1318
+ "learning_rate": 0.0002,
1319
+ "loss": 0.8431,
1320
+ "step": 1850
1321
+ },
1322
+ {
1323
+ "epoch": 2.306261624302542,
1324
+ "grad_norm": 1.2250864505767822,
1325
+ "learning_rate": 0.0002,
1326
+ "loss": 0.8866,
1327
+ "step": 1860
1328
+ },
1329
+ {
1330
+ "epoch": 2.318660880347179,
1331
+ "grad_norm": 1.1758817434310913,
1332
+ "learning_rate": 0.0002,
1333
+ "loss": 0.8514,
1334
+ "step": 1870
1335
+ },
1336
+ {
1337
+ "epoch": 2.3310601363918164,
1338
+ "grad_norm": 0.9863199591636658,
1339
+ "learning_rate": 0.0002,
1340
+ "loss": 0.9316,
1341
+ "step": 1880
1342
+ },
1343
+ {
1344
+ "epoch": 2.3434593924364537,
1345
+ "grad_norm": 1.1759305000305176,
1346
+ "learning_rate": 0.0002,
1347
+ "loss": 0.8854,
1348
+ "step": 1890
1349
+ },
1350
+ {
1351
+ "epoch": 2.355858648481091,
1352
+ "grad_norm": 0.995716392993927,
1353
+ "learning_rate": 0.0002,
1354
+ "loss": 0.866,
1355
+ "step": 1900
1356
+ },
1357
+ {
1358
+ "epoch": 2.3682579045257284,
1359
+ "grad_norm": 1.1816585063934326,
1360
+ "learning_rate": 0.0002,
1361
+ "loss": 0.8439,
1362
+ "step": 1910
1363
+ },
1364
+ {
1365
+ "epoch": 2.3806571605703657,
1366
+ "grad_norm": 0.7498432397842407,
1367
+ "learning_rate": 0.0002,
1368
+ "loss": 0.9284,
1369
+ "step": 1920
1370
+ },
1371
+ {
1372
+ "epoch": 2.393056416615003,
1373
+ "grad_norm": 0.9481443762779236,
1374
+ "learning_rate": 0.0002,
1375
+ "loss": 0.8243,
1376
+ "step": 1930
1377
+ },
1378
+ {
1379
+ "epoch": 2.4054556726596403,
1380
+ "grad_norm": 1.1264584064483643,
1381
+ "learning_rate": 0.0002,
1382
+ "loss": 0.8083,
1383
+ "step": 1940
1384
+ },
1385
+ {
1386
+ "epoch": 2.4178549287042777,
1387
+ "grad_norm": 0.8826232552528381,
1388
+ "learning_rate": 0.0002,
1389
+ "loss": 0.9122,
1390
+ "step": 1950
1391
+ },
1392
+ {
1393
+ "epoch": 2.430254184748915,
1394
+ "grad_norm": 0.9702113270759583,
1395
+ "learning_rate": 0.0002,
1396
+ "loss": 0.8764,
1397
+ "step": 1960
1398
+ },
1399
+ {
1400
+ "epoch": 2.4426534407935523,
1401
+ "grad_norm": 1.0663695335388184,
1402
+ "learning_rate": 0.0002,
1403
+ "loss": 0.8498,
1404
+ "step": 1970
1405
+ },
1406
+ {
1407
+ "epoch": 2.4550526968381896,
1408
+ "grad_norm": 1.1186119318008423,
1409
+ "learning_rate": 0.0002,
1410
+ "loss": 0.888,
1411
+ "step": 1980
1412
+ },
1413
+ {
1414
+ "epoch": 2.467451952882827,
1415
+ "grad_norm": 1.428774118423462,
1416
+ "learning_rate": 0.0002,
1417
+ "loss": 0.9327,
1418
+ "step": 1990
1419
+ },
1420
+ {
1421
+ "epoch": 2.4798512089274642,
1422
+ "grad_norm": 1.3054901361465454,
1423
+ "learning_rate": 0.0002,
1424
+ "loss": 0.9423,
1425
+ "step": 2000
1426
+ },
1427
+ {
1428
+ "epoch": 2.4922504649721016,
1429
+ "grad_norm": 0.9893805384635925,
1430
+ "learning_rate": 0.0002,
1431
+ "loss": 0.8494,
1432
+ "step": 2010
1433
+ },
1434
+ {
1435
+ "epoch": 2.504649721016739,
1436
+ "grad_norm": 1.149538516998291,
1437
+ "learning_rate": 0.0002,
1438
+ "loss": 0.9982,
1439
+ "step": 2020
1440
+ },
1441
+ {
1442
+ "epoch": 2.517048977061376,
1443
+ "grad_norm": 0.8716336488723755,
1444
+ "learning_rate": 0.0002,
1445
+ "loss": 0.881,
1446
+ "step": 2030
1447
+ },
1448
+ {
1449
+ "epoch": 2.5294482331060135,
1450
+ "grad_norm": 1.0464730262756348,
1451
+ "learning_rate": 0.0002,
1452
+ "loss": 0.8483,
1453
+ "step": 2040
1454
+ },
1455
+ {
1456
+ "epoch": 2.541847489150651,
1457
+ "grad_norm": 1.1451894044876099,
1458
+ "learning_rate": 0.0002,
1459
+ "loss": 0.9475,
1460
+ "step": 2050
1461
+ },
1462
+ {
1463
+ "epoch": 2.554246745195288,
1464
+ "grad_norm": 1.3266205787658691,
1465
+ "learning_rate": 0.0002,
1466
+ "loss": 0.8238,
1467
+ "step": 2060
1468
+ },
1469
+ {
1470
+ "epoch": 2.5666460012399255,
1471
+ "grad_norm": 1.2838176488876343,
1472
+ "learning_rate": 0.0002,
1473
+ "loss": 0.8457,
1474
+ "step": 2070
1475
+ },
1476
+ {
1477
+ "epoch": 2.579045257284563,
1478
+ "grad_norm": 1.0352915525436401,
1479
+ "learning_rate": 0.0002,
1480
+ "loss": 0.7813,
1481
+ "step": 2080
1482
+ },
1483
+ {
1484
+ "epoch": 2.5914445133292,
1485
+ "grad_norm": 1.181416392326355,
1486
+ "learning_rate": 0.0002,
1487
+ "loss": 0.895,
1488
+ "step": 2090
1489
+ },
1490
+ {
1491
+ "epoch": 2.6038437693738374,
1492
+ "grad_norm": 1.2425765991210938,
1493
+ "learning_rate": 0.0002,
1494
+ "loss": 0.8537,
1495
+ "step": 2100
1496
+ },
1497
+ {
1498
+ "epoch": 2.6162430254184748,
1499
+ "grad_norm": 1.2885762453079224,
1500
+ "learning_rate": 0.0002,
1501
+ "loss": 0.8561,
1502
+ "step": 2110
1503
+ },
1504
+ {
1505
+ "epoch": 2.628642281463112,
1506
+ "grad_norm": 1.0179181098937988,
1507
+ "learning_rate": 0.0002,
1508
+ "loss": 0.8024,
1509
+ "step": 2120
1510
+ },
1511
+ {
1512
+ "epoch": 2.6410415375077494,
1513
+ "grad_norm": 1.4908100366592407,
1514
+ "learning_rate": 0.0002,
1515
+ "loss": 0.8747,
1516
+ "step": 2130
1517
+ },
1518
+ {
1519
+ "epoch": 2.6534407935523867,
1520
+ "grad_norm": 1.4854460954666138,
1521
+ "learning_rate": 0.0002,
1522
+ "loss": 0.8475,
1523
+ "step": 2140
1524
+ },
1525
+ {
1526
+ "epoch": 2.665840049597024,
1527
+ "grad_norm": 0.994413435459137,
1528
+ "learning_rate": 0.0002,
1529
+ "loss": 0.8579,
1530
+ "step": 2150
1531
+ },
1532
+ {
1533
+ "epoch": 2.6782393056416613,
1534
+ "grad_norm": 1.177201271057129,
1535
+ "learning_rate": 0.0002,
1536
+ "loss": 0.8606,
1537
+ "step": 2160
1538
+ },
1539
+ {
1540
+ "epoch": 2.6906385616862987,
1541
+ "grad_norm": 1.2680933475494385,
1542
+ "learning_rate": 0.0002,
1543
+ "loss": 0.9233,
1544
+ "step": 2170
1545
+ },
1546
+ {
1547
+ "epoch": 2.703037817730936,
1548
+ "grad_norm": 1.2201054096221924,
1549
+ "learning_rate": 0.0002,
1550
+ "loss": 0.8443,
1551
+ "step": 2180
1552
+ },
1553
+ {
1554
+ "epoch": 2.7154370737755733,
1555
+ "grad_norm": 1.2058831453323364,
1556
+ "learning_rate": 0.0002,
1557
+ "loss": 0.8437,
1558
+ "step": 2190
1559
+ },
1560
+ {
1561
+ "epoch": 2.7278363298202106,
1562
+ "grad_norm": 1.1667239665985107,
1563
+ "learning_rate": 0.0002,
1564
+ "loss": 0.9894,
1565
+ "step": 2200
1566
+ },
1567
+ {
1568
+ "epoch": 2.740235585864848,
1569
+ "grad_norm": 1.1243321895599365,
1570
+ "learning_rate": 0.0002,
1571
+ "loss": 0.8501,
1572
+ "step": 2210
1573
+ },
1574
+ {
1575
+ "epoch": 2.7526348419094857,
1576
+ "grad_norm": 1.0543156862258911,
1577
+ "learning_rate": 0.0002,
1578
+ "loss": 0.9387,
1579
+ "step": 2220
1580
+ },
1581
+ {
1582
+ "epoch": 2.765034097954123,
1583
+ "grad_norm": 1.1922553777694702,
1584
+ "learning_rate": 0.0002,
1585
+ "loss": 0.9488,
1586
+ "step": 2230
1587
+ },
1588
+ {
1589
+ "epoch": 2.7774333539987603,
1590
+ "grad_norm": 1.1266813278198242,
1591
+ "learning_rate": 0.0002,
1592
+ "loss": 0.8558,
1593
+ "step": 2240
1594
+ },
1595
+ {
1596
+ "epoch": 2.7898326100433977,
1597
+ "grad_norm": 0.9645159840583801,
1598
+ "learning_rate": 0.0002,
1599
+ "loss": 0.8459,
1600
+ "step": 2250
1601
+ },
1602
+ {
1603
+ "epoch": 2.802231866088035,
1604
+ "grad_norm": 1.0672235488891602,
1605
+ "learning_rate": 0.0002,
1606
+ "loss": 0.8862,
1607
+ "step": 2260
1608
+ },
1609
+ {
1610
+ "epoch": 2.8146311221326723,
1611
+ "grad_norm": 1.5650453567504883,
1612
+ "learning_rate": 0.0002,
1613
+ "loss": 0.869,
1614
+ "step": 2270
1615
+ },
1616
+ {
1617
+ "epoch": 2.8270303781773096,
1618
+ "grad_norm": 1.0414438247680664,
1619
+ "learning_rate": 0.0002,
1620
+ "loss": 0.8,
1621
+ "step": 2280
1622
+ },
1623
+ {
1624
+ "epoch": 2.839429634221947,
1625
+ "grad_norm": 0.8878290057182312,
1626
+ "learning_rate": 0.0002,
1627
+ "loss": 0.8419,
1628
+ "step": 2290
1629
+ },
1630
+ {
1631
+ "epoch": 2.8518288902665843,
1632
+ "grad_norm": 1.0500553846359253,
1633
+ "learning_rate": 0.0002,
1634
+ "loss": 0.9148,
1635
+ "step": 2300
1636
+ },
1637
+ {
1638
+ "epoch": 2.8642281463112216,
1639
+ "grad_norm": 0.9779142737388611,
1640
+ "learning_rate": 0.0002,
1641
+ "loss": 0.8706,
1642
+ "step": 2310
1643
+ },
1644
+ {
1645
+ "epoch": 2.876627402355859,
1646
+ "grad_norm": 0.8904196619987488,
1647
+ "learning_rate": 0.0002,
1648
+ "loss": 0.8385,
1649
+ "step": 2320
1650
+ },
1651
+ {
1652
+ "epoch": 2.889026658400496,
1653
+ "grad_norm": 1.103608250617981,
1654
+ "learning_rate": 0.0002,
1655
+ "loss": 0.8768,
1656
+ "step": 2330
1657
+ },
1658
+ {
1659
+ "epoch": 2.9014259144451335,
1660
+ "grad_norm": 1.2064822912216187,
1661
+ "learning_rate": 0.0002,
1662
+ "loss": 0.8659,
1663
+ "step": 2340
1664
+ },
1665
+ {
1666
+ "epoch": 2.913825170489771,
1667
+ "grad_norm": 1.3073748350143433,
1668
+ "learning_rate": 0.0002,
1669
+ "loss": 0.9299,
1670
+ "step": 2350
1671
+ },
1672
+ {
1673
+ "epoch": 2.926224426534408,
1674
+ "grad_norm": 1.4792760610580444,
1675
+ "learning_rate": 0.0002,
1676
+ "loss": 0.778,
1677
+ "step": 2360
1678
+ },
1679
+ {
1680
+ "epoch": 2.9386236825790455,
1681
+ "grad_norm": 1.1670116186141968,
1682
+ "learning_rate": 0.0002,
1683
+ "loss": 0.9773,
1684
+ "step": 2370
1685
+ },
1686
+ {
1687
+ "epoch": 2.951022938623683,
1688
+ "grad_norm": 1.235465168952942,
1689
+ "learning_rate": 0.0002,
1690
+ "loss": 0.8973,
1691
+ "step": 2380
1692
+ },
1693
+ {
1694
+ "epoch": 2.96342219466832,
1695
+ "grad_norm": 1.7734158039093018,
1696
+ "learning_rate": 0.0002,
1697
+ "loss": 0.8646,
1698
+ "step": 2390
1699
+ },
1700
+ {
1701
+ "epoch": 2.9758214507129574,
1702
+ "grad_norm": 1.3497414588928223,
1703
+ "learning_rate": 0.0002,
1704
+ "loss": 0.8784,
1705
+ "step": 2400
1706
+ },
1707
+ {
1708
+ "epoch": 2.9882207067575948,
1709
+ "grad_norm": 1.1425493955612183,
1710
+ "learning_rate": 0.0002,
1711
+ "loss": 0.9116,
1712
+ "step": 2410
1713
+ },
1714
+ {
1715
+ "epoch": 2.999380037197768,
1716
+ "eval_loss": 1.2303974628448486,
1717
+ "eval_runtime": 126.4856,
1718
+ "eval_samples_per_second": 3.605,
1719
+ "eval_steps_per_second": 0.451,
1720
+ "step": 2419
1721
+ }
1722
+ ],
1723
+ "logging_steps": 10,
1724
+ "max_steps": 6448,
1725
+ "num_input_tokens_seen": 0,
1726
+ "num_train_epochs": 8,
1727
+ "save_steps": 200,
1728
+ "stateful_callbacks": {
1729
+ "TrainerControl": {
1730
+ "args": {
1731
+ "should_epoch_stop": false,
1732
+ "should_evaluate": false,
1733
+ "should_log": false,
1734
+ "should_save": true,
1735
+ "should_training_stop": false
1736
+ },
1737
+ "attributes": {}
1738
+ }
1739
+ },
1740
+ "total_flos": 1.061549012680704e+17,
1741
+ "train_batch_size": 1,
1742
+ "trial_name": null,
1743
+ "trial_params": null
1744
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-2419/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0a54cf05b51cc3ca7cba649c3e96685958c9d310c181dff0c31954ec4641225
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5272faaeb909365f53df3d81564ee9751b14467acb7f059b654643e4ea7e4016
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fa080a88bb511d21d0560f2d8bca5e012619588ab01c58c25e32826c2e229ff
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15ac5ea13d2e8ce3c4c210e69db0f4ab9a202cfd737fb121deabf8e012216b46
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f37fd11b98c56b2bb9423a13020156309a19c186f1b079cca5de9c3a565ad2b
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/trainer_state.json ADDED
@@ -0,0 +1,2319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2014765739440918,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613",
4
+ "epoch": 4.0,
5
+ "eval_steps": 10,
6
+ "global_step": 3226,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.012399256044637322,
13
+ "grad_norm": 1.6176791191101074,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.8616,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.024798512089274645,
20
+ "grad_norm": 0.7599679827690125,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5953,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.037197768133911964,
27
+ "grad_norm": 0.8452111482620239,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.5705,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.04959702417854929,
34
+ "grad_norm": 0.8393070101737976,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5647,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.06199628022318661,
41
+ "grad_norm": 1.117109775543213,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4628,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.07439553626782393,
48
+ "grad_norm": 0.8330236077308655,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.3492,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.08679479231246125,
55
+ "grad_norm": 0.8670704960823059,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.367,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.09919404835709858,
62
+ "grad_norm": 0.6262535452842712,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.2357,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.1115933044017359,
69
+ "grad_norm": 0.753338098526001,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.3651,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.12399256044637322,
76
+ "grad_norm": 0.6324933171272278,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.2789,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.13639181649101054,
83
+ "grad_norm": 0.7270851135253906,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.2393,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.14879107253564786,
90
+ "grad_norm": 0.7036070227622986,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.177,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.16119032858028517,
97
+ "grad_norm": 0.6269583106040955,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.2808,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.1735895846249225,
104
+ "grad_norm": 0.6848828792572021,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.3039,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.1859888406695598,
111
+ "grad_norm": 0.5589784383773804,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1925,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.19838809671419716,
118
+ "grad_norm": 0.8350988626480103,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.2724,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.21078735275883448,
125
+ "grad_norm": 1.1780346632003784,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.2093,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2231866088034718,
132
+ "grad_norm": 0.674608588218689,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.2573,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.23558586484810912,
139
+ "grad_norm": 0.6972184181213379,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.2629,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.24798512089274644,
146
+ "grad_norm": 0.5187845230102539,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.2618,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.26038437693738375,
153
+ "grad_norm": 0.7513871192932129,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.3478,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.2727836329820211,
160
+ "grad_norm": 0.5859110951423645,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.1843,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.2851828890266584,
167
+ "grad_norm": 0.5547062754631042,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.1784,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2975821450712957,
174
+ "grad_norm": 3.5287671089172363,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.2564,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.30998140111593303,
181
+ "grad_norm": 0.8644460439682007,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.313,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.32238065716057035,
188
+ "grad_norm": 0.6270064115524292,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.2187,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.33477991320520767,
195
+ "grad_norm": 1.170295000076294,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.2017,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.347179169249845,
202
+ "grad_norm": 0.5701245069503784,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.1075,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.3595784252944823,
209
+ "grad_norm": 0.6373095512390137,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.1185,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.3719776813391196,
216
+ "grad_norm": 0.5740704536437988,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.1738,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.384376937383757,
223
+ "grad_norm": 0.5516835451126099,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.2858,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3967761934283943,
230
+ "grad_norm": 0.5212382078170776,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.2315,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.40917544947303164,
237
+ "grad_norm": 0.540307343006134,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.172,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.42157470551766896,
244
+ "grad_norm": 0.7454301714897156,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.2736,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.4339739615623063,
251
+ "grad_norm": 0.7390317916870117,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.3013,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.4463732176069436,
258
+ "grad_norm": 0.5498788356781006,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.0615,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.4587724736515809,
265
+ "grad_norm": 0.5776252150535583,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.2251,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.47117172969621823,
272
+ "grad_norm": 0.6941552758216858,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.1932,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.48357098574085555,
279
+ "grad_norm": 0.7936233282089233,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.23,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.49597024178549287,
286
+ "grad_norm": 0.5257220268249512,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.1137,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.5083694978301302,
293
+ "grad_norm": 0.5740510821342468,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.1867,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.5207687538747675,
300
+ "grad_norm": 0.6181507110595703,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.1049,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.5331680099194048,
307
+ "grad_norm": 0.6333999037742615,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.2303,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.5455672659640421,
314
+ "grad_norm": 0.5667845010757446,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.2457,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.5579665220086795,
321
+ "grad_norm": 0.5254231095314026,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.2547,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.5703657780533168,
328
+ "grad_norm": 0.5938495993614197,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.2118,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.5827650340979541,
335
+ "grad_norm": 0.7733635902404785,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.2409,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.5951642901425914,
342
+ "grad_norm": 0.6114753484725952,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.2343,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.6075635461872287,
349
+ "grad_norm": 0.5587155818939209,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.1779,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.6199628022318661,
356
+ "grad_norm": 0.7636917233467102,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.2136,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.6323620582765034,
363
+ "grad_norm": 0.5896942615509033,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.1301,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.6447613143211407,
370
+ "grad_norm": 0.8594750165939331,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.2089,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.657160570365778,
377
+ "grad_norm": 0.6459881067276001,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.1551,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.6695598264104153,
384
+ "grad_norm": 0.650656521320343,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.175,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.6819590824550527,
391
+ "grad_norm": 0.7238242626190186,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.2143,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.69435833849969,
398
+ "grad_norm": 0.6289859414100647,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.0961,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.7067575945443273,
405
+ "grad_norm": 0.6108142137527466,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.2316,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.7191568505889646,
412
+ "grad_norm": 0.6905024647712708,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.1315,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.7315561066336019,
419
+ "grad_norm": 0.5975471138954163,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.2368,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.7439553626782393,
426
+ "grad_norm": 0.49540066719055176,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.1014,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.7563546187228767,
433
+ "grad_norm": 0.5365461707115173,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.1359,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.768753874767514,
440
+ "grad_norm": 0.6156648993492126,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.2552,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.7811531308121513,
447
+ "grad_norm": 0.656879186630249,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.1929,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.7935523868567886,
454
+ "grad_norm": 0.8963037729263306,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.3063,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.805951642901426,
461
+ "grad_norm": 1.0569753646850586,
462
+ "learning_rate": 0.0002,
463
+ "loss": 1.219,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.8183508989460633,
468
+ "grad_norm": 0.7332107424736023,
469
+ "learning_rate": 0.0002,
470
+ "loss": 1.2563,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.8307501549907006,
475
+ "grad_norm": 0.589097797870636,
476
+ "learning_rate": 0.0002,
477
+ "loss": 1.1029,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.8431494110353379,
482
+ "grad_norm": 0.9553480744361877,
483
+ "learning_rate": 0.0002,
484
+ "loss": 1.1705,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.8555486670799752,
489
+ "grad_norm": 0.7076331973075867,
490
+ "learning_rate": 0.0002,
491
+ "loss": 1.1605,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.8679479231246126,
496
+ "grad_norm": 0.597531795501709,
497
+ "learning_rate": 0.0002,
498
+ "loss": 1.2346,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.8803471791692499,
503
+ "grad_norm": 0.7023149132728577,
504
+ "learning_rate": 0.0002,
505
+ "loss": 1.1637,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.8927464352138872,
510
+ "grad_norm": 1.4393764734268188,
511
+ "learning_rate": 0.0002,
512
+ "loss": 1.2717,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.9051456912585245,
517
+ "grad_norm": 0.5944231152534485,
518
+ "learning_rate": 0.0002,
519
+ "loss": 1.216,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.9175449473031618,
524
+ "grad_norm": 0.5712162852287292,
525
+ "learning_rate": 0.0002,
526
+ "loss": 1.148,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.9299442033477991,
531
+ "grad_norm": 0.5335281491279602,
532
+ "learning_rate": 0.0002,
533
+ "loss": 1.2318,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.9423434593924365,
538
+ "grad_norm": 0.8050292730331421,
539
+ "learning_rate": 0.0002,
540
+ "loss": 1.149,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.9547427154370738,
545
+ "grad_norm": 0.6092700958251953,
546
+ "learning_rate": 0.0002,
547
+ "loss": 1.0862,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.9671419714817111,
552
+ "grad_norm": 0.7012797594070435,
553
+ "learning_rate": 0.0002,
554
+ "loss": 1.3204,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.9795412275263484,
559
+ "grad_norm": 0.6228184103965759,
560
+ "learning_rate": 0.0002,
561
+ "loss": 1.1641,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.9919404835709857,
566
+ "grad_norm": 0.5482686161994934,
567
+ "learning_rate": 0.0002,
568
+ "loss": 1.131,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.9993800371977681,
573
+ "eval_loss": 1.2057286500930786,
574
+ "eval_runtime": 164.6087,
575
+ "eval_samples_per_second": 2.77,
576
+ "eval_steps_per_second": 0.346,
577
+ "step": 806
578
+ },
579
+ {
580
+ "epoch": 1.004339739615623,
581
+ "grad_norm": 0.6331814527511597,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.0899,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.0167389956602604,
588
+ "grad_norm": 0.6160872578620911,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.0551,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.0291382517048977,
595
+ "grad_norm": 0.6104072332382202,
596
+ "learning_rate": 0.0002,
597
+ "loss": 0.9934,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.041537507749535,
602
+ "grad_norm": 0.7619274854660034,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.0776,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.0539367637941723,
609
+ "grad_norm": 0.761172890663147,
610
+ "learning_rate": 0.0002,
611
+ "loss": 0.9929,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.0663360198388097,
616
+ "grad_norm": 0.7563514113426208,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.0543,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.078735275883447,
623
+ "grad_norm": 0.521998941898346,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.0812,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.0911345319280843,
630
+ "grad_norm": 0.824347972869873,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.1417,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.1035337879727216,
637
+ "grad_norm": 0.5645424127578735,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.1096,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.115933044017359,
644
+ "grad_norm": 0.8568223714828491,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.1005,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.1283323000619963,
651
+ "grad_norm": 0.68181312084198,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.088,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.1407315561066336,
658
+ "grad_norm": 0.7577647566795349,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.0281,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.153130812151271,
665
+ "grad_norm": 0.6968798637390137,
666
+ "learning_rate": 0.0002,
667
+ "loss": 0.9812,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.1655300681959082,
672
+ "grad_norm": 0.5769661664962769,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.0539,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.1779293242405455,
679
+ "grad_norm": 0.6399155259132385,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.0831,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.1903285802851828,
686
+ "grad_norm": 0.9824289679527283,
687
+ "learning_rate": 0.0002,
688
+ "loss": 1.0464,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.2027278363298202,
693
+ "grad_norm": 0.7485893964767456,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.1068,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.2151270923744575,
700
+ "grad_norm": 0.668736457824707,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.0047,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.2275263484190948,
707
+ "grad_norm": 0.7041404843330383,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.0818,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.2399256044637321,
714
+ "grad_norm": 0.7070603966712952,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.0847,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.2523248605083694,
721
+ "grad_norm": 0.7828628420829773,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.047,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.2647241165530068,
728
+ "grad_norm": 0.7149654626846313,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.0658,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.277123372597644,
735
+ "grad_norm": 0.7691766619682312,
736
+ "learning_rate": 0.0002,
737
+ "loss": 0.9791,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.2895226286422814,
742
+ "grad_norm": 0.8022137880325317,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.0242,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.3019218846869187,
749
+ "grad_norm": 0.6709204316139221,
750
+ "learning_rate": 0.0002,
751
+ "loss": 1.0837,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.314321140731556,
756
+ "grad_norm": 0.7368158102035522,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.0382,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.3267203967761934,
763
+ "grad_norm": 0.8408007621765137,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.0371,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.3391196528208307,
770
+ "grad_norm": 1.2165539264678955,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.9633,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.351518908865468,
777
+ "grad_norm": 0.7284916043281555,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.0079,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.3639181649101053,
784
+ "grad_norm": 0.7994557619094849,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.0211,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.3763174209547429,
791
+ "grad_norm": 0.9658345580101013,
792
+ "learning_rate": 0.0002,
793
+ "loss": 1.0892,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.3887166769993802,
798
+ "grad_norm": 0.6312829852104187,
799
+ "learning_rate": 0.0002,
800
+ "loss": 1.2088,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.4011159330440175,
805
+ "grad_norm": 0.7263661026954651,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.1055,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.4135151890886548,
812
+ "grad_norm": 0.829082727432251,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.0232,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.4259144451332921,
819
+ "grad_norm": 0.6168127059936523,
820
+ "learning_rate": 0.0002,
821
+ "loss": 1.1413,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.4383137011779294,
826
+ "grad_norm": 0.8351425528526306,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.0283,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.4507129572225668,
833
+ "grad_norm": 0.8814472556114197,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.1146,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.463112213267204,
840
+ "grad_norm": 0.6913689970970154,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.0932,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.4755114693118414,
847
+ "grad_norm": 0.7907165884971619,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.1066,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.4879107253564787,
854
+ "grad_norm": 0.8361626267433167,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.0738,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.500309981401116,
861
+ "grad_norm": 1.073534607887268,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.0559,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.5127092374457534,
868
+ "grad_norm": 0.8416345119476318,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.0204,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.5251084934903907,
875
+ "grad_norm": 1.0225597620010376,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.0941,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.537507749535028,
882
+ "grad_norm": 0.6662965416908264,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.0854,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.5499070055796653,
889
+ "grad_norm": 0.7363991737365723,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.0816,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.5623062616243026,
896
+ "grad_norm": 0.9029574990272522,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.0271,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.57470551766894,
903
+ "grad_norm": 0.7992424368858337,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.0206,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.5871047737135773,
910
+ "grad_norm": 0.8108977675437927,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.0114,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.5995040297582146,
917
+ "grad_norm": 0.8257458806037903,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.0264,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.611903285802852,
924
+ "grad_norm": 0.8265092968940735,
925
+ "learning_rate": 0.0002,
926
+ "loss": 1.0944,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.6243025418474892,
931
+ "grad_norm": 0.6568580269813538,
932
+ "learning_rate": 0.0002,
933
+ "loss": 1.0136,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.6367017978921266,
938
+ "grad_norm": 0.7608488202095032,
939
+ "learning_rate": 0.0002,
940
+ "loss": 1.009,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.6491010539367639,
945
+ "grad_norm": 0.7511259317398071,
946
+ "learning_rate": 0.0002,
947
+ "loss": 1.1202,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.6615003099814012,
952
+ "grad_norm": 0.7942162752151489,
953
+ "learning_rate": 0.0002,
954
+ "loss": 1.0528,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.6738995660260385,
959
+ "grad_norm": 0.8253659605979919,
960
+ "learning_rate": 0.0002,
961
+ "loss": 1.0411,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.6862988220706758,
966
+ "grad_norm": 1.1318382024765015,
967
+ "learning_rate": 0.0002,
968
+ "loss": 1.001,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.6986980781153131,
973
+ "grad_norm": 0.693403959274292,
974
+ "learning_rate": 0.0002,
975
+ "loss": 1.0727,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.7110973341599505,
980
+ "grad_norm": 0.7107617259025574,
981
+ "learning_rate": 0.0002,
982
+ "loss": 1.073,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.7234965902045878,
987
+ "grad_norm": 0.8169032335281372,
988
+ "learning_rate": 0.0002,
989
+ "loss": 1.0849,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.735895846249225,
994
+ "grad_norm": 0.8940841555595398,
995
+ "learning_rate": 0.0002,
996
+ "loss": 1.0578,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.7482951022938624,
1001
+ "grad_norm": 0.7862188220024109,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 1.0891,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.7606943583384997,
1008
+ "grad_norm": 1.136338472366333,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.9962,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.773093614383137,
1015
+ "grad_norm": 0.9534069895744324,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 1.0943,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.7854928704277744,
1022
+ "grad_norm": 1.0747562646865845,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 1.1257,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.7978921264724117,
1029
+ "grad_norm": 0.8557891249656677,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 1.0556,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.810291382517049,
1036
+ "grad_norm": 0.6829259991645813,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 1.0128,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.8226906385616863,
1043
+ "grad_norm": 0.8164441585540771,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 1.0313,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.8350898946063237,
1050
+ "grad_norm": 0.9458068609237671,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 1.1136,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.847489150650961,
1057
+ "grad_norm": 0.743009626865387,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 1.0457,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.8598884066955983,
1064
+ "grad_norm": 0.7137694358825684,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 1.0107,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.8722876627402356,
1071
+ "grad_norm": 0.7618028521537781,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 1.0633,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.884686918784873,
1078
+ "grad_norm": 0.8153398633003235,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 1.103,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.8970861748295103,
1085
+ "grad_norm": 0.9127124547958374,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 1.2094,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.9094854308741476,
1092
+ "grad_norm": 0.7699425220489502,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 1.0379,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.921884686918785,
1099
+ "grad_norm": 0.8807545304298401,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.9849,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.9342839429634222,
1106
+ "grad_norm": 0.7340815663337708,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 1.033,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.9466831990080595,
1113
+ "grad_norm": 1.070056676864624,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 1.0083,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.9590824550526968,
1120
+ "grad_norm": 0.8195573687553406,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 1.0023,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.9714817110973342,
1127
+ "grad_norm": 0.7938687205314636,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 1.029,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.9838809671419715,
1134
+ "grad_norm": 0.7632259726524353,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 1.0512,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.9962802231866088,
1141
+ "grad_norm": 0.7921916246414185,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 1.0426,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 2.0,
1148
+ "eval_loss": 1.2014765739440918,
1149
+ "eval_runtime": 159.8677,
1150
+ "eval_samples_per_second": 2.852,
1151
+ "eval_steps_per_second": 0.357,
1152
+ "step": 1613
1153
+ },
1154
+ {
1155
+ "epoch": 2.008679479231246,
1156
+ "grad_norm": 1.1764529943466187,
1157
+ "learning_rate": 0.0002,
1158
+ "loss": 0.9239,
1159
+ "step": 1620
1160
+ },
1161
+ {
1162
+ "epoch": 2.0210787352758834,
1163
+ "grad_norm": 1.0271947383880615,
1164
+ "learning_rate": 0.0002,
1165
+ "loss": 0.7995,
1166
+ "step": 1630
1167
+ },
1168
+ {
1169
+ "epoch": 2.0334779913205208,
1170
+ "grad_norm": 0.7138071656227112,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 0.8592,
1173
+ "step": 1640
1174
+ },
1175
+ {
1176
+ "epoch": 2.045877247365158,
1177
+ "grad_norm": 0.8644373416900635,
1178
+ "learning_rate": 0.0002,
1179
+ "loss": 0.8106,
1180
+ "step": 1650
1181
+ },
1182
+ {
1183
+ "epoch": 2.0582765034097954,
1184
+ "grad_norm": 1.2262420654296875,
1185
+ "learning_rate": 0.0002,
1186
+ "loss": 0.8578,
1187
+ "step": 1660
1188
+ },
1189
+ {
1190
+ "epoch": 2.0706757594544327,
1191
+ "grad_norm": 0.9718686938285828,
1192
+ "learning_rate": 0.0002,
1193
+ "loss": 0.8009,
1194
+ "step": 1670
1195
+ },
1196
+ {
1197
+ "epoch": 2.08307501549907,
1198
+ "grad_norm": 1.0075122117996216,
1199
+ "learning_rate": 0.0002,
1200
+ "loss": 0.831,
1201
+ "step": 1680
1202
+ },
1203
+ {
1204
+ "epoch": 2.0954742715437074,
1205
+ "grad_norm": 1.2113722562789917,
1206
+ "learning_rate": 0.0002,
1207
+ "loss": 0.8177,
1208
+ "step": 1690
1209
+ },
1210
+ {
1211
+ "epoch": 2.1078735275883447,
1212
+ "grad_norm": 0.7911604642868042,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 0.8377,
1215
+ "step": 1700
1216
+ },
1217
+ {
1218
+ "epoch": 2.120272783632982,
1219
+ "grad_norm": 0.8578933477401733,
1220
+ "learning_rate": 0.0002,
1221
+ "loss": 0.8405,
1222
+ "step": 1710
1223
+ },
1224
+ {
1225
+ "epoch": 2.1326720396776193,
1226
+ "grad_norm": 1.1782084703445435,
1227
+ "learning_rate": 0.0002,
1228
+ "loss": 0.8784,
1229
+ "step": 1720
1230
+ },
1231
+ {
1232
+ "epoch": 2.1450712957222566,
1233
+ "grad_norm": 1.3627573251724243,
1234
+ "learning_rate": 0.0002,
1235
+ "loss": 0.8543,
1236
+ "step": 1730
1237
+ },
1238
+ {
1239
+ "epoch": 2.157470551766894,
1240
+ "grad_norm": 1.2948803901672363,
1241
+ "learning_rate": 0.0002,
1242
+ "loss": 0.8404,
1243
+ "step": 1740
1244
+ },
1245
+ {
1246
+ "epoch": 2.1698698078115313,
1247
+ "grad_norm": 0.9353442788124084,
1248
+ "learning_rate": 0.0002,
1249
+ "loss": 0.8719,
1250
+ "step": 1750
1251
+ },
1252
+ {
1253
+ "epoch": 2.1822690638561686,
1254
+ "grad_norm": 0.9063374400138855,
1255
+ "learning_rate": 0.0002,
1256
+ "loss": 0.8112,
1257
+ "step": 1760
1258
+ },
1259
+ {
1260
+ "epoch": 2.194668319900806,
1261
+ "grad_norm": 1.3354851007461548,
1262
+ "learning_rate": 0.0002,
1263
+ "loss": 0.9441,
1264
+ "step": 1770
1265
+ },
1266
+ {
1267
+ "epoch": 2.2070675759454432,
1268
+ "grad_norm": 0.8388507962226868,
1269
+ "learning_rate": 0.0002,
1270
+ "loss": 0.877,
1271
+ "step": 1780
1272
+ },
1273
+ {
1274
+ "epoch": 2.2194668319900805,
1275
+ "grad_norm": 0.9509401321411133,
1276
+ "learning_rate": 0.0002,
1277
+ "loss": 0.8709,
1278
+ "step": 1790
1279
+ },
1280
+ {
1281
+ "epoch": 2.231866088034718,
1282
+ "grad_norm": 1.0458593368530273,
1283
+ "learning_rate": 0.0002,
1284
+ "loss": 0.8212,
1285
+ "step": 1800
1286
+ },
1287
+ {
1288
+ "epoch": 2.244265344079355,
1289
+ "grad_norm": 0.890088677406311,
1290
+ "learning_rate": 0.0002,
1291
+ "loss": 0.7667,
1292
+ "step": 1810
1293
+ },
1294
+ {
1295
+ "epoch": 2.2566646001239925,
1296
+ "grad_norm": 1.1933976411819458,
1297
+ "learning_rate": 0.0002,
1298
+ "loss": 0.8431,
1299
+ "step": 1820
1300
+ },
1301
+ {
1302
+ "epoch": 2.26906385616863,
1303
+ "grad_norm": 0.961398184299469,
1304
+ "learning_rate": 0.0002,
1305
+ "loss": 0.8697,
1306
+ "step": 1830
1307
+ },
1308
+ {
1309
+ "epoch": 2.281463112213267,
1310
+ "grad_norm": 1.124961495399475,
1311
+ "learning_rate": 0.0002,
1312
+ "loss": 0.8403,
1313
+ "step": 1840
1314
+ },
1315
+ {
1316
+ "epoch": 2.2938623682579045,
1317
+ "grad_norm": 0.9042379260063171,
1318
+ "learning_rate": 0.0002,
1319
+ "loss": 0.8431,
1320
+ "step": 1850
1321
+ },
1322
+ {
1323
+ "epoch": 2.306261624302542,
1324
+ "grad_norm": 1.2250864505767822,
1325
+ "learning_rate": 0.0002,
1326
+ "loss": 0.8866,
1327
+ "step": 1860
1328
+ },
1329
+ {
1330
+ "epoch": 2.318660880347179,
1331
+ "grad_norm": 1.1758817434310913,
1332
+ "learning_rate": 0.0002,
1333
+ "loss": 0.8514,
1334
+ "step": 1870
1335
+ },
1336
+ {
1337
+ "epoch": 2.3310601363918164,
1338
+ "grad_norm": 0.9863199591636658,
1339
+ "learning_rate": 0.0002,
1340
+ "loss": 0.9316,
1341
+ "step": 1880
1342
+ },
1343
+ {
1344
+ "epoch": 2.3434593924364537,
1345
+ "grad_norm": 1.1759305000305176,
1346
+ "learning_rate": 0.0002,
1347
+ "loss": 0.8854,
1348
+ "step": 1890
1349
+ },
1350
+ {
1351
+ "epoch": 2.355858648481091,
1352
+ "grad_norm": 0.995716392993927,
1353
+ "learning_rate": 0.0002,
1354
+ "loss": 0.866,
1355
+ "step": 1900
1356
+ },
1357
+ {
1358
+ "epoch": 2.3682579045257284,
1359
+ "grad_norm": 1.1816585063934326,
1360
+ "learning_rate": 0.0002,
1361
+ "loss": 0.8439,
1362
+ "step": 1910
1363
+ },
1364
+ {
1365
+ "epoch": 2.3806571605703657,
1366
+ "grad_norm": 0.7498432397842407,
1367
+ "learning_rate": 0.0002,
1368
+ "loss": 0.9284,
1369
+ "step": 1920
1370
+ },
1371
+ {
1372
+ "epoch": 2.393056416615003,
1373
+ "grad_norm": 0.9481443762779236,
1374
+ "learning_rate": 0.0002,
1375
+ "loss": 0.8243,
1376
+ "step": 1930
1377
+ },
1378
+ {
1379
+ "epoch": 2.4054556726596403,
1380
+ "grad_norm": 1.1264584064483643,
1381
+ "learning_rate": 0.0002,
1382
+ "loss": 0.8083,
1383
+ "step": 1940
1384
+ },
1385
+ {
1386
+ "epoch": 2.4178549287042777,
1387
+ "grad_norm": 0.8826232552528381,
1388
+ "learning_rate": 0.0002,
1389
+ "loss": 0.9122,
1390
+ "step": 1950
1391
+ },
1392
+ {
1393
+ "epoch": 2.430254184748915,
1394
+ "grad_norm": 0.9702113270759583,
1395
+ "learning_rate": 0.0002,
1396
+ "loss": 0.8764,
1397
+ "step": 1960
1398
+ },
1399
+ {
1400
+ "epoch": 2.4426534407935523,
1401
+ "grad_norm": 1.0663695335388184,
1402
+ "learning_rate": 0.0002,
1403
+ "loss": 0.8498,
1404
+ "step": 1970
1405
+ },
1406
+ {
1407
+ "epoch": 2.4550526968381896,
1408
+ "grad_norm": 1.1186119318008423,
1409
+ "learning_rate": 0.0002,
1410
+ "loss": 0.888,
1411
+ "step": 1980
1412
+ },
1413
+ {
1414
+ "epoch": 2.467451952882827,
1415
+ "grad_norm": 1.428774118423462,
1416
+ "learning_rate": 0.0002,
1417
+ "loss": 0.9327,
1418
+ "step": 1990
1419
+ },
1420
+ {
1421
+ "epoch": 2.4798512089274642,
1422
+ "grad_norm": 1.3054901361465454,
1423
+ "learning_rate": 0.0002,
1424
+ "loss": 0.9423,
1425
+ "step": 2000
1426
+ },
1427
+ {
1428
+ "epoch": 2.4922504649721016,
1429
+ "grad_norm": 0.9893805384635925,
1430
+ "learning_rate": 0.0002,
1431
+ "loss": 0.8494,
1432
+ "step": 2010
1433
+ },
1434
+ {
1435
+ "epoch": 2.504649721016739,
1436
+ "grad_norm": 1.149538516998291,
1437
+ "learning_rate": 0.0002,
1438
+ "loss": 0.9982,
1439
+ "step": 2020
1440
+ },
1441
+ {
1442
+ "epoch": 2.517048977061376,
1443
+ "grad_norm": 0.8716336488723755,
1444
+ "learning_rate": 0.0002,
1445
+ "loss": 0.881,
1446
+ "step": 2030
1447
+ },
1448
+ {
1449
+ "epoch": 2.5294482331060135,
1450
+ "grad_norm": 1.0464730262756348,
1451
+ "learning_rate": 0.0002,
1452
+ "loss": 0.8483,
1453
+ "step": 2040
1454
+ },
1455
+ {
1456
+ "epoch": 2.541847489150651,
1457
+ "grad_norm": 1.1451894044876099,
1458
+ "learning_rate": 0.0002,
1459
+ "loss": 0.9475,
1460
+ "step": 2050
1461
+ },
1462
+ {
1463
+ "epoch": 2.554246745195288,
1464
+ "grad_norm": 1.3266205787658691,
1465
+ "learning_rate": 0.0002,
1466
+ "loss": 0.8238,
1467
+ "step": 2060
1468
+ },
1469
+ {
1470
+ "epoch": 2.5666460012399255,
1471
+ "grad_norm": 1.2838176488876343,
1472
+ "learning_rate": 0.0002,
1473
+ "loss": 0.8457,
1474
+ "step": 2070
1475
+ },
1476
+ {
1477
+ "epoch": 2.579045257284563,
1478
+ "grad_norm": 1.0352915525436401,
1479
+ "learning_rate": 0.0002,
1480
+ "loss": 0.7813,
1481
+ "step": 2080
1482
+ },
1483
+ {
1484
+ "epoch": 2.5914445133292,
1485
+ "grad_norm": 1.181416392326355,
1486
+ "learning_rate": 0.0002,
1487
+ "loss": 0.895,
1488
+ "step": 2090
1489
+ },
1490
+ {
1491
+ "epoch": 2.6038437693738374,
1492
+ "grad_norm": 1.2425765991210938,
1493
+ "learning_rate": 0.0002,
1494
+ "loss": 0.8537,
1495
+ "step": 2100
1496
+ },
1497
+ {
1498
+ "epoch": 2.6162430254184748,
1499
+ "grad_norm": 1.2885762453079224,
1500
+ "learning_rate": 0.0002,
1501
+ "loss": 0.8561,
1502
+ "step": 2110
1503
+ },
1504
+ {
1505
+ "epoch": 2.628642281463112,
1506
+ "grad_norm": 1.0179181098937988,
1507
+ "learning_rate": 0.0002,
1508
+ "loss": 0.8024,
1509
+ "step": 2120
1510
+ },
1511
+ {
1512
+ "epoch": 2.6410415375077494,
1513
+ "grad_norm": 1.4908100366592407,
1514
+ "learning_rate": 0.0002,
1515
+ "loss": 0.8747,
1516
+ "step": 2130
1517
+ },
1518
+ {
1519
+ "epoch": 2.6534407935523867,
1520
+ "grad_norm": 1.4854460954666138,
1521
+ "learning_rate": 0.0002,
1522
+ "loss": 0.8475,
1523
+ "step": 2140
1524
+ },
1525
+ {
1526
+ "epoch": 2.665840049597024,
1527
+ "grad_norm": 0.994413435459137,
1528
+ "learning_rate": 0.0002,
1529
+ "loss": 0.8579,
1530
+ "step": 2150
1531
+ },
1532
+ {
1533
+ "epoch": 2.6782393056416613,
1534
+ "grad_norm": 1.177201271057129,
1535
+ "learning_rate": 0.0002,
1536
+ "loss": 0.8606,
1537
+ "step": 2160
1538
+ },
1539
+ {
1540
+ "epoch": 2.6906385616862987,
1541
+ "grad_norm": 1.2680933475494385,
1542
+ "learning_rate": 0.0002,
1543
+ "loss": 0.9233,
1544
+ "step": 2170
1545
+ },
1546
+ {
1547
+ "epoch": 2.703037817730936,
1548
+ "grad_norm": 1.2201054096221924,
1549
+ "learning_rate": 0.0002,
1550
+ "loss": 0.8443,
1551
+ "step": 2180
1552
+ },
1553
+ {
1554
+ "epoch": 2.7154370737755733,
1555
+ "grad_norm": 1.2058831453323364,
1556
+ "learning_rate": 0.0002,
1557
+ "loss": 0.8437,
1558
+ "step": 2190
1559
+ },
1560
+ {
1561
+ "epoch": 2.7278363298202106,
1562
+ "grad_norm": 1.1667239665985107,
1563
+ "learning_rate": 0.0002,
1564
+ "loss": 0.9894,
1565
+ "step": 2200
1566
+ },
1567
+ {
1568
+ "epoch": 2.740235585864848,
1569
+ "grad_norm": 1.1243321895599365,
1570
+ "learning_rate": 0.0002,
1571
+ "loss": 0.8501,
1572
+ "step": 2210
1573
+ },
1574
+ {
1575
+ "epoch": 2.7526348419094857,
1576
+ "grad_norm": 1.0543156862258911,
1577
+ "learning_rate": 0.0002,
1578
+ "loss": 0.9387,
1579
+ "step": 2220
1580
+ },
1581
+ {
1582
+ "epoch": 2.765034097954123,
1583
+ "grad_norm": 1.1922553777694702,
1584
+ "learning_rate": 0.0002,
1585
+ "loss": 0.9488,
1586
+ "step": 2230
1587
+ },
1588
+ {
1589
+ "epoch": 2.7774333539987603,
1590
+ "grad_norm": 1.1266813278198242,
1591
+ "learning_rate": 0.0002,
1592
+ "loss": 0.8558,
1593
+ "step": 2240
1594
+ },
1595
+ {
1596
+ "epoch": 2.7898326100433977,
1597
+ "grad_norm": 0.9645159840583801,
1598
+ "learning_rate": 0.0002,
1599
+ "loss": 0.8459,
1600
+ "step": 2250
1601
+ },
1602
+ {
1603
+ "epoch": 2.802231866088035,
1604
+ "grad_norm": 1.0672235488891602,
1605
+ "learning_rate": 0.0002,
1606
+ "loss": 0.8862,
1607
+ "step": 2260
1608
+ },
1609
+ {
1610
+ "epoch": 2.8146311221326723,
1611
+ "grad_norm": 1.5650453567504883,
1612
+ "learning_rate": 0.0002,
1613
+ "loss": 0.869,
1614
+ "step": 2270
1615
+ },
1616
+ {
1617
+ "epoch": 2.8270303781773096,
1618
+ "grad_norm": 1.0414438247680664,
1619
+ "learning_rate": 0.0002,
1620
+ "loss": 0.8,
1621
+ "step": 2280
1622
+ },
1623
+ {
1624
+ "epoch": 2.839429634221947,
1625
+ "grad_norm": 0.8878290057182312,
1626
+ "learning_rate": 0.0002,
1627
+ "loss": 0.8419,
1628
+ "step": 2290
1629
+ },
1630
+ {
1631
+ "epoch": 2.8518288902665843,
1632
+ "grad_norm": 1.0500553846359253,
1633
+ "learning_rate": 0.0002,
1634
+ "loss": 0.9148,
1635
+ "step": 2300
1636
+ },
1637
+ {
1638
+ "epoch": 2.8642281463112216,
1639
+ "grad_norm": 0.9779142737388611,
1640
+ "learning_rate": 0.0002,
1641
+ "loss": 0.8706,
1642
+ "step": 2310
1643
+ },
1644
+ {
1645
+ "epoch": 2.876627402355859,
1646
+ "grad_norm": 0.8904196619987488,
1647
+ "learning_rate": 0.0002,
1648
+ "loss": 0.8385,
1649
+ "step": 2320
1650
+ },
1651
+ {
1652
+ "epoch": 2.889026658400496,
1653
+ "grad_norm": 1.103608250617981,
1654
+ "learning_rate": 0.0002,
1655
+ "loss": 0.8768,
1656
+ "step": 2330
1657
+ },
1658
+ {
1659
+ "epoch": 2.9014259144451335,
1660
+ "grad_norm": 1.2064822912216187,
1661
+ "learning_rate": 0.0002,
1662
+ "loss": 0.8659,
1663
+ "step": 2340
1664
+ },
1665
+ {
1666
+ "epoch": 2.913825170489771,
1667
+ "grad_norm": 1.3073748350143433,
1668
+ "learning_rate": 0.0002,
1669
+ "loss": 0.9299,
1670
+ "step": 2350
1671
+ },
1672
+ {
1673
+ "epoch": 2.926224426534408,
1674
+ "grad_norm": 1.4792760610580444,
1675
+ "learning_rate": 0.0002,
1676
+ "loss": 0.778,
1677
+ "step": 2360
1678
+ },
1679
+ {
1680
+ "epoch": 2.9386236825790455,
1681
+ "grad_norm": 1.1670116186141968,
1682
+ "learning_rate": 0.0002,
1683
+ "loss": 0.9773,
1684
+ "step": 2370
1685
+ },
1686
+ {
1687
+ "epoch": 2.951022938623683,
1688
+ "grad_norm": 1.235465168952942,
1689
+ "learning_rate": 0.0002,
1690
+ "loss": 0.8973,
1691
+ "step": 2380
1692
+ },
1693
+ {
1694
+ "epoch": 2.96342219466832,
1695
+ "grad_norm": 1.7734158039093018,
1696
+ "learning_rate": 0.0002,
1697
+ "loss": 0.8646,
1698
+ "step": 2390
1699
+ },
1700
+ {
1701
+ "epoch": 2.9758214507129574,
1702
+ "grad_norm": 1.3497414588928223,
1703
+ "learning_rate": 0.0002,
1704
+ "loss": 0.8784,
1705
+ "step": 2400
1706
+ },
1707
+ {
1708
+ "epoch": 2.9882207067575948,
1709
+ "grad_norm": 1.1425493955612183,
1710
+ "learning_rate": 0.0002,
1711
+ "loss": 0.9116,
1712
+ "step": 2410
1713
+ },
1714
+ {
1715
+ "epoch": 2.999380037197768,
1716
+ "eval_loss": 1.2303974628448486,
1717
+ "eval_runtime": 126.4856,
1718
+ "eval_samples_per_second": 3.605,
1719
+ "eval_steps_per_second": 0.451,
1720
+ "step": 2419
1721
+ },
1722
+ {
1723
+ "epoch": 3.000619962802232,
1724
+ "grad_norm": 1.4001394510269165,
1725
+ "learning_rate": 0.0002,
1726
+ "loss": 0.9395,
1727
+ "step": 2420
1728
+ },
1729
+ {
1730
+ "epoch": 3.0130192188468694,
1731
+ "grad_norm": 2.4510438442230225,
1732
+ "learning_rate": 0.0002,
1733
+ "loss": 0.6538,
1734
+ "step": 2430
1735
+ },
1736
+ {
1737
+ "epoch": 3.0254184748915067,
1738
+ "grad_norm": 1.5374444723129272,
1739
+ "learning_rate": 0.0002,
1740
+ "loss": 0.6732,
1741
+ "step": 2440
1742
+ },
1743
+ {
1744
+ "epoch": 3.037817730936144,
1745
+ "grad_norm": 1.632250428199768,
1746
+ "learning_rate": 0.0002,
1747
+ "loss": 0.6934,
1748
+ "step": 2450
1749
+ },
1750
+ {
1751
+ "epoch": 3.0502169869807814,
1752
+ "grad_norm": 1.5456780195236206,
1753
+ "learning_rate": 0.0002,
1754
+ "loss": 0.6266,
1755
+ "step": 2460
1756
+ },
1757
+ {
1758
+ "epoch": 3.0626162430254187,
1759
+ "grad_norm": 1.3664451837539673,
1760
+ "learning_rate": 0.0002,
1761
+ "loss": 0.6467,
1762
+ "step": 2470
1763
+ },
1764
+ {
1765
+ "epoch": 3.075015499070056,
1766
+ "grad_norm": 1.344169020652771,
1767
+ "learning_rate": 0.0002,
1768
+ "loss": 0.6351,
1769
+ "step": 2480
1770
+ },
1771
+ {
1772
+ "epoch": 3.0874147551146933,
1773
+ "grad_norm": 0.9710949659347534,
1774
+ "learning_rate": 0.0002,
1775
+ "loss": 0.664,
1776
+ "step": 2490
1777
+ },
1778
+ {
1779
+ "epoch": 3.0998140111593306,
1780
+ "grad_norm": 2.324171304702759,
1781
+ "learning_rate": 0.0002,
1782
+ "loss": 0.6232,
1783
+ "step": 2500
1784
+ },
1785
+ {
1786
+ "epoch": 3.112213267203968,
1787
+ "grad_norm": 1.2885396480560303,
1788
+ "learning_rate": 0.0002,
1789
+ "loss": 0.7336,
1790
+ "step": 2510
1791
+ },
1792
+ {
1793
+ "epoch": 3.1246125232486053,
1794
+ "grad_norm": 1.224718451499939,
1795
+ "learning_rate": 0.0002,
1796
+ "loss": 0.7095,
1797
+ "step": 2520
1798
+ },
1799
+ {
1800
+ "epoch": 3.1370117792932426,
1801
+ "grad_norm": 1.1158969402313232,
1802
+ "learning_rate": 0.0002,
1803
+ "loss": 0.6451,
1804
+ "step": 2530
1805
+ },
1806
+ {
1807
+ "epoch": 3.14941103533788,
1808
+ "grad_norm": 1.189963698387146,
1809
+ "learning_rate": 0.0002,
1810
+ "loss": 0.6024,
1811
+ "step": 2540
1812
+ },
1813
+ {
1814
+ "epoch": 3.1618102913825172,
1815
+ "grad_norm": 1.2543222904205322,
1816
+ "learning_rate": 0.0002,
1817
+ "loss": 0.6996,
1818
+ "step": 2550
1819
+ },
1820
+ {
1821
+ "epoch": 3.1742095474271546,
1822
+ "grad_norm": 1.4986658096313477,
1823
+ "learning_rate": 0.0002,
1824
+ "loss": 0.6854,
1825
+ "step": 2560
1826
+ },
1827
+ {
1828
+ "epoch": 3.186608803471792,
1829
+ "grad_norm": 1.5848976373672485,
1830
+ "learning_rate": 0.0002,
1831
+ "loss": 0.5936,
1832
+ "step": 2570
1833
+ },
1834
+ {
1835
+ "epoch": 3.199008059516429,
1836
+ "grad_norm": 1.2306287288665771,
1837
+ "learning_rate": 0.0002,
1838
+ "loss": 0.64,
1839
+ "step": 2580
1840
+ },
1841
+ {
1842
+ "epoch": 3.2114073155610665,
1843
+ "grad_norm": 1.6327801942825317,
1844
+ "learning_rate": 0.0002,
1845
+ "loss": 0.6381,
1846
+ "step": 2590
1847
+ },
1848
+ {
1849
+ "epoch": 3.223806571605704,
1850
+ "grad_norm": 1.191624402999878,
1851
+ "learning_rate": 0.0002,
1852
+ "loss": 0.6614,
1853
+ "step": 2600
1854
+ },
1855
+ {
1856
+ "epoch": 3.236205827650341,
1857
+ "grad_norm": 1.546857476234436,
1858
+ "learning_rate": 0.0002,
1859
+ "loss": 0.5862,
1860
+ "step": 2610
1861
+ },
1862
+ {
1863
+ "epoch": 3.2486050836949785,
1864
+ "grad_norm": 1.7683172225952148,
1865
+ "learning_rate": 0.0002,
1866
+ "loss": 0.697,
1867
+ "step": 2620
1868
+ },
1869
+ {
1870
+ "epoch": 3.261004339739616,
1871
+ "grad_norm": 1.3910621404647827,
1872
+ "learning_rate": 0.0002,
1873
+ "loss": 0.6909,
1874
+ "step": 2630
1875
+ },
1876
+ {
1877
+ "epoch": 3.273403595784253,
1878
+ "grad_norm": 1.205353021621704,
1879
+ "learning_rate": 0.0002,
1880
+ "loss": 0.6322,
1881
+ "step": 2640
1882
+ },
1883
+ {
1884
+ "epoch": 3.2858028518288904,
1885
+ "grad_norm": 1.1997911930084229,
1886
+ "learning_rate": 0.0002,
1887
+ "loss": 0.6923,
1888
+ "step": 2650
1889
+ },
1890
+ {
1891
+ "epoch": 3.2982021078735277,
1892
+ "grad_norm": 1.6746608018875122,
1893
+ "learning_rate": 0.0002,
1894
+ "loss": 0.6291,
1895
+ "step": 2660
1896
+ },
1897
+ {
1898
+ "epoch": 3.310601363918165,
1899
+ "grad_norm": 1.0251612663269043,
1900
+ "learning_rate": 0.0002,
1901
+ "loss": 0.7021,
1902
+ "step": 2670
1903
+ },
1904
+ {
1905
+ "epoch": 3.3230006199628024,
1906
+ "grad_norm": 1.3690581321716309,
1907
+ "learning_rate": 0.0002,
1908
+ "loss": 0.6958,
1909
+ "step": 2680
1910
+ },
1911
+ {
1912
+ "epoch": 3.3353998760074397,
1913
+ "grad_norm": 1.5537537336349487,
1914
+ "learning_rate": 0.0002,
1915
+ "loss": 0.7439,
1916
+ "step": 2690
1917
+ },
1918
+ {
1919
+ "epoch": 3.347799132052077,
1920
+ "grad_norm": 1.5438767671585083,
1921
+ "learning_rate": 0.0002,
1922
+ "loss": 0.692,
1923
+ "step": 2700
1924
+ },
1925
+ {
1926
+ "epoch": 3.3601983880967143,
1927
+ "grad_norm": 1.2430849075317383,
1928
+ "learning_rate": 0.0002,
1929
+ "loss": 0.6698,
1930
+ "step": 2710
1931
+ },
1932
+ {
1933
+ "epoch": 3.3725976441413517,
1934
+ "grad_norm": 1.1905370950698853,
1935
+ "learning_rate": 0.0002,
1936
+ "loss": 0.7447,
1937
+ "step": 2720
1938
+ },
1939
+ {
1940
+ "epoch": 3.384996900185989,
1941
+ "grad_norm": 1.5106539726257324,
1942
+ "learning_rate": 0.0002,
1943
+ "loss": 0.6583,
1944
+ "step": 2730
1945
+ },
1946
+ {
1947
+ "epoch": 3.3973961562306263,
1948
+ "grad_norm": 1.8480169773101807,
1949
+ "learning_rate": 0.0002,
1950
+ "loss": 0.6812,
1951
+ "step": 2740
1952
+ },
1953
+ {
1954
+ "epoch": 3.4097954122752636,
1955
+ "grad_norm": 1.0991253852844238,
1956
+ "learning_rate": 0.0002,
1957
+ "loss": 0.6523,
1958
+ "step": 2750
1959
+ },
1960
+ {
1961
+ "epoch": 3.422194668319901,
1962
+ "grad_norm": 1.5110164880752563,
1963
+ "learning_rate": 0.0002,
1964
+ "loss": 0.7371,
1965
+ "step": 2760
1966
+ },
1967
+ {
1968
+ "epoch": 3.4345939243645383,
1969
+ "grad_norm": 1.7006158828735352,
1970
+ "learning_rate": 0.0002,
1971
+ "loss": 0.6632,
1972
+ "step": 2770
1973
+ },
1974
+ {
1975
+ "epoch": 3.4469931804091756,
1976
+ "grad_norm": 1.3995729684829712,
1977
+ "learning_rate": 0.0002,
1978
+ "loss": 0.6938,
1979
+ "step": 2780
1980
+ },
1981
+ {
1982
+ "epoch": 3.459392436453813,
1983
+ "grad_norm": 1.5709624290466309,
1984
+ "learning_rate": 0.0002,
1985
+ "loss": 0.704,
1986
+ "step": 2790
1987
+ },
1988
+ {
1989
+ "epoch": 3.47179169249845,
1990
+ "grad_norm": 1.2154548168182373,
1991
+ "learning_rate": 0.0002,
1992
+ "loss": 0.629,
1993
+ "step": 2800
1994
+ },
1995
+ {
1996
+ "epoch": 3.4841909485430875,
1997
+ "grad_norm": 1.5075860023498535,
1998
+ "learning_rate": 0.0002,
1999
+ "loss": 0.709,
2000
+ "step": 2810
2001
+ },
2002
+ {
2003
+ "epoch": 3.496590204587725,
2004
+ "grad_norm": 2.296370029449463,
2005
+ "learning_rate": 0.0002,
2006
+ "loss": 0.6838,
2007
+ "step": 2820
2008
+ },
2009
+ {
2010
+ "epoch": 3.508989460632362,
2011
+ "grad_norm": 1.5329245328903198,
2012
+ "learning_rate": 0.0002,
2013
+ "loss": 0.7216,
2014
+ "step": 2830
2015
+ },
2016
+ {
2017
+ "epoch": 3.5213887166769995,
2018
+ "grad_norm": 2.391974925994873,
2019
+ "learning_rate": 0.0002,
2020
+ "loss": 0.702,
2021
+ "step": 2840
2022
+ },
2023
+ {
2024
+ "epoch": 3.533787972721637,
2025
+ "grad_norm": 1.7627687454223633,
2026
+ "learning_rate": 0.0002,
2027
+ "loss": 0.6122,
2028
+ "step": 2850
2029
+ },
2030
+ {
2031
+ "epoch": 3.546187228766274,
2032
+ "grad_norm": 1.8143539428710938,
2033
+ "learning_rate": 0.0002,
2034
+ "loss": 0.6612,
2035
+ "step": 2860
2036
+ },
2037
+ {
2038
+ "epoch": 3.5585864848109114,
2039
+ "grad_norm": 1.8639698028564453,
2040
+ "learning_rate": 0.0002,
2041
+ "loss": 0.6875,
2042
+ "step": 2870
2043
+ },
2044
+ {
2045
+ "epoch": 3.5709857408555488,
2046
+ "grad_norm": 1.9081439971923828,
2047
+ "learning_rate": 0.0002,
2048
+ "loss": 0.7133,
2049
+ "step": 2880
2050
+ },
2051
+ {
2052
+ "epoch": 3.583384996900186,
2053
+ "grad_norm": 1.707095742225647,
2054
+ "learning_rate": 0.0002,
2055
+ "loss": 0.6669,
2056
+ "step": 2890
2057
+ },
2058
+ {
2059
+ "epoch": 3.5957842529448234,
2060
+ "grad_norm": 1.561742901802063,
2061
+ "learning_rate": 0.0002,
2062
+ "loss": 0.6834,
2063
+ "step": 2900
2064
+ },
2065
+ {
2066
+ "epoch": 3.6081835089894607,
2067
+ "grad_norm": 1.6129803657531738,
2068
+ "learning_rate": 0.0002,
2069
+ "loss": 0.7545,
2070
+ "step": 2910
2071
+ },
2072
+ {
2073
+ "epoch": 3.620582765034098,
2074
+ "grad_norm": 1.1192500591278076,
2075
+ "learning_rate": 0.0002,
2076
+ "loss": 0.7182,
2077
+ "step": 2920
2078
+ },
2079
+ {
2080
+ "epoch": 3.6329820210787354,
2081
+ "grad_norm": 1.420279622077942,
2082
+ "learning_rate": 0.0002,
2083
+ "loss": 0.6339,
2084
+ "step": 2930
2085
+ },
2086
+ {
2087
+ "epoch": 3.6453812771233727,
2088
+ "grad_norm": 1.5851093530654907,
2089
+ "learning_rate": 0.0002,
2090
+ "loss": 0.7365,
2091
+ "step": 2940
2092
+ },
2093
+ {
2094
+ "epoch": 3.65778053316801,
2095
+ "grad_norm": 1.4390369653701782,
2096
+ "learning_rate": 0.0002,
2097
+ "loss": 0.661,
2098
+ "step": 2950
2099
+ },
2100
+ {
2101
+ "epoch": 3.6701797892126473,
2102
+ "grad_norm": 1.4419100284576416,
2103
+ "learning_rate": 0.0002,
2104
+ "loss": 0.7262,
2105
+ "step": 2960
2106
+ },
2107
+ {
2108
+ "epoch": 3.6825790452572846,
2109
+ "grad_norm": 0.9472342133522034,
2110
+ "learning_rate": 0.0002,
2111
+ "loss": 0.7449,
2112
+ "step": 2970
2113
+ },
2114
+ {
2115
+ "epoch": 3.694978301301922,
2116
+ "grad_norm": 1.194284200668335,
2117
+ "learning_rate": 0.0002,
2118
+ "loss": 0.696,
2119
+ "step": 2980
2120
+ },
2121
+ {
2122
+ "epoch": 3.7073775573465593,
2123
+ "grad_norm": 1.233306884765625,
2124
+ "learning_rate": 0.0002,
2125
+ "loss": 0.6603,
2126
+ "step": 2990
2127
+ },
2128
+ {
2129
+ "epoch": 3.7197768133911966,
2130
+ "grad_norm": 1.703479528427124,
2131
+ "learning_rate": 0.0002,
2132
+ "loss": 0.7155,
2133
+ "step": 3000
2134
+ },
2135
+ {
2136
+ "epoch": 3.732176069435834,
2137
+ "grad_norm": 1.3840128183364868,
2138
+ "learning_rate": 0.0002,
2139
+ "loss": 0.6779,
2140
+ "step": 3010
2141
+ },
2142
+ {
2143
+ "epoch": 3.7445753254804712,
2144
+ "grad_norm": 1.042277455329895,
2145
+ "learning_rate": 0.0002,
2146
+ "loss": 0.7428,
2147
+ "step": 3020
2148
+ },
2149
+ {
2150
+ "epoch": 3.7569745815251085,
2151
+ "grad_norm": 1.3294179439544678,
2152
+ "learning_rate": 0.0002,
2153
+ "loss": 0.6937,
2154
+ "step": 3030
2155
+ },
2156
+ {
2157
+ "epoch": 3.769373837569746,
2158
+ "grad_norm": 1.327108383178711,
2159
+ "learning_rate": 0.0002,
2160
+ "loss": 0.7233,
2161
+ "step": 3040
2162
+ },
2163
+ {
2164
+ "epoch": 3.781773093614383,
2165
+ "grad_norm": 1.2039794921875,
2166
+ "learning_rate": 0.0002,
2167
+ "loss": 0.6109,
2168
+ "step": 3050
2169
+ },
2170
+ {
2171
+ "epoch": 3.7941723496590205,
2172
+ "grad_norm": 1.2900311946868896,
2173
+ "learning_rate": 0.0002,
2174
+ "loss": 0.7614,
2175
+ "step": 3060
2176
+ },
2177
+ {
2178
+ "epoch": 3.806571605703658,
2179
+ "grad_norm": 1.2003637552261353,
2180
+ "learning_rate": 0.0002,
2181
+ "loss": 0.7134,
2182
+ "step": 3070
2183
+ },
2184
+ {
2185
+ "epoch": 3.818970861748295,
2186
+ "grad_norm": 1.2668299674987793,
2187
+ "learning_rate": 0.0002,
2188
+ "loss": 0.7145,
2189
+ "step": 3080
2190
+ },
2191
+ {
2192
+ "epoch": 3.8313701177929325,
2193
+ "grad_norm": 1.5786389112472534,
2194
+ "learning_rate": 0.0002,
2195
+ "loss": 0.7429,
2196
+ "step": 3090
2197
+ },
2198
+ {
2199
+ "epoch": 3.84376937383757,
2200
+ "grad_norm": 1.283626675605774,
2201
+ "learning_rate": 0.0002,
2202
+ "loss": 0.7045,
2203
+ "step": 3100
2204
+ },
2205
+ {
2206
+ "epoch": 3.856168629882207,
2207
+ "grad_norm": 1.5252535343170166,
2208
+ "learning_rate": 0.0002,
2209
+ "loss": 0.6966,
2210
+ "step": 3110
2211
+ },
2212
+ {
2213
+ "epoch": 3.8685678859268444,
2214
+ "grad_norm": 1.152452826499939,
2215
+ "learning_rate": 0.0002,
2216
+ "loss": 0.6737,
2217
+ "step": 3120
2218
+ },
2219
+ {
2220
+ "epoch": 3.8809671419714817,
2221
+ "grad_norm": 1.3349536657333374,
2222
+ "learning_rate": 0.0002,
2223
+ "loss": 0.793,
2224
+ "step": 3130
2225
+ },
2226
+ {
2227
+ "epoch": 3.893366398016119,
2228
+ "grad_norm": 1.3839694261550903,
2229
+ "learning_rate": 0.0002,
2230
+ "loss": 0.7107,
2231
+ "step": 3140
2232
+ },
2233
+ {
2234
+ "epoch": 3.9057656540607564,
2235
+ "grad_norm": 1.668792724609375,
2236
+ "learning_rate": 0.0002,
2237
+ "loss": 0.8068,
2238
+ "step": 3150
2239
+ },
2240
+ {
2241
+ "epoch": 3.9181649101053937,
2242
+ "grad_norm": 1.598772644996643,
2243
+ "learning_rate": 0.0002,
2244
+ "loss": 0.6843,
2245
+ "step": 3160
2246
+ },
2247
+ {
2248
+ "epoch": 3.930564166150031,
2249
+ "grad_norm": 1.6434032917022705,
2250
+ "learning_rate": 0.0002,
2251
+ "loss": 0.6564,
2252
+ "step": 3170
2253
+ },
2254
+ {
2255
+ "epoch": 3.9429634221946683,
2256
+ "grad_norm": 1.5382963418960571,
2257
+ "learning_rate": 0.0002,
2258
+ "loss": 0.7559,
2259
+ "step": 3180
2260
+ },
2261
+ {
2262
+ "epoch": 3.9553626782393057,
2263
+ "grad_norm": 1.6733973026275635,
2264
+ "learning_rate": 0.0002,
2265
+ "loss": 0.7089,
2266
+ "step": 3190
2267
+ },
2268
+ {
2269
+ "epoch": 3.967761934283943,
2270
+ "grad_norm": 1.5769109725952148,
2271
+ "learning_rate": 0.0002,
2272
+ "loss": 0.7051,
2273
+ "step": 3200
2274
+ },
2275
+ {
2276
+ "epoch": 3.9801611903285803,
2277
+ "grad_norm": 1.5158107280731201,
2278
+ "learning_rate": 0.0002,
2279
+ "loss": 0.7548,
2280
+ "step": 3210
2281
+ },
2282
+ {
2283
+ "epoch": 3.9925604463732176,
2284
+ "grad_norm": 2.034385919570923,
2285
+ "learning_rate": 0.0002,
2286
+ "loss": 0.6742,
2287
+ "step": 3220
2288
+ },
2289
+ {
2290
+ "epoch": 4.0,
2291
+ "eval_loss": 1.3322206735610962,
2292
+ "eval_runtime": 127.309,
2293
+ "eval_samples_per_second": 3.582,
2294
+ "eval_steps_per_second": 0.448,
2295
+ "step": 3226
2296
+ }
2297
+ ],
2298
+ "logging_steps": 10,
2299
+ "max_steps": 6448,
2300
+ "num_input_tokens_seen": 0,
2301
+ "num_train_epochs": 8,
2302
+ "save_steps": 200,
2303
+ "stateful_callbacks": {
2304
+ "TrainerControl": {
2305
+ "args": {
2306
+ "should_epoch_stop": false,
2307
+ "should_evaluate": false,
2308
+ "should_log": false,
2309
+ "should_save": true,
2310
+ "should_training_stop": false
2311
+ },
2312
+ "attributes": {}
2313
+ }
2314
+ },
2315
+ "total_flos": 1.415398683574272e+17,
2316
+ "train_batch_size": 1,
2317
+ "trial_name": null,
2318
+ "trial_params": null
2319
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-3226/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0a54cf05b51cc3ca7cba649c3e96685958c9d310c181dff0c31954ec4641225
3
+ size 5560
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1aa44b577cdc47963b0c98990ce3bf9e021eb1a602311326175685b3ff19c72
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9faff594bc1fb7c3c19d5a2dd8c8bbae732045a22a48bf3179d8ca89e8f3f923
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ff3a1f2938602107fc8a6c87063e374ddcc67f7de4cffb03659d643be751c1a
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f4b25a929ec0550000ba9a4c4c598bf8752e2d277877020980e873b4c9e03e5
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-4032/trainer_state.json ADDED
@@ -0,0 +1,2894 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2014765739440918,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.5-num-4904-sd-1/checkpoint-1613",
4
+ "epoch": 4.999380037197768,
5
+ "eval_steps": 10,
6
+ "global_step": 4032,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.012399256044637322,
13
+ "grad_norm": 1.6176791191101074,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.8616,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.024798512089274645,
20
+ "grad_norm": 0.7599679827690125,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5953,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.037197768133911964,
27
+ "grad_norm": 0.8452111482620239,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.5705,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.04959702417854929,
34
+ "grad_norm": 0.8393070101737976,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5647,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.06199628022318661,
41
+ "grad_norm": 1.117109775543213,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4628,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.07439553626782393,
48
+ "grad_norm": 0.8330236077308655,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.3492,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.08679479231246125,
55
+ "grad_norm": 0.8670704960823059,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.367,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.09919404835709858,
62
+ "grad_norm": 0.6262535452842712,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.2357,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.1115933044017359,
69
+ "grad_norm": 0.753338098526001,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.3651,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.12399256044637322,
76
+ "grad_norm": 0.6324933171272278,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.2789,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.13639181649101054,
83
+ "grad_norm": 0.7270851135253906,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.2393,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.14879107253564786,
90
+ "grad_norm": 0.7036070227622986,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.177,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.16119032858028517,
97
+ "grad_norm": 0.6269583106040955,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.2808,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.1735895846249225,
104
+ "grad_norm": 0.6848828792572021,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.3039,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.1859888406695598,
111
+ "grad_norm": 0.5589784383773804,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1925,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.19838809671419716,
118
+ "grad_norm": 0.8350988626480103,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.2724,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.21078735275883448,
125
+ "grad_norm": 1.1780346632003784,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.2093,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.2231866088034718,
132
+ "grad_norm": 0.674608588218689,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.2573,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.23558586484810912,
139
+ "grad_norm": 0.6972184181213379,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.2629,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.24798512089274644,
146
+ "grad_norm": 0.5187845230102539,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.2618,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.26038437693738375,
153
+ "grad_norm": 0.7513871192932129,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.3478,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.2727836329820211,
160
+ "grad_norm": 0.5859110951423645,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.1843,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.2851828890266584,
167
+ "grad_norm": 0.5547062754631042,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.1784,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2975821450712957,
174
+ "grad_norm": 3.5287671089172363,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.2564,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.30998140111593303,
181
+ "grad_norm": 0.8644460439682007,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.313,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.32238065716057035,
188
+ "grad_norm": 0.6270064115524292,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.2187,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.33477991320520767,
195
+ "grad_norm": 1.170295000076294,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.2017,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.347179169249845,
202
+ "grad_norm": 0.5701245069503784,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.1075,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.3595784252944823,
209
+ "grad_norm": 0.6373095512390137,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.1185,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.3719776813391196,
216
+ "grad_norm": 0.5740704536437988,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.1738,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.384376937383757,
223
+ "grad_norm": 0.5516835451126099,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.2858,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3967761934283943,
230
+ "grad_norm": 0.5212382078170776,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.2315,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.40917544947303164,
237
+ "grad_norm": 0.540307343006134,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.172,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.42157470551766896,
244
+ "grad_norm": 0.7454301714897156,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.2736,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.4339739615623063,
251
+ "grad_norm": 0.7390317916870117,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.3013,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.4463732176069436,
258
+ "grad_norm": 0.5498788356781006,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.0615,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.4587724736515809,
265
+ "grad_norm": 0.5776252150535583,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.2251,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.47117172969621823,
272
+ "grad_norm": 0.6941552758216858,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.1932,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.48357098574085555,
279
+ "grad_norm": 0.7936233282089233,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.23,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.49597024178549287,
286
+ "grad_norm": 0.5257220268249512,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.1137,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.5083694978301302,
293
+ "grad_norm": 0.5740510821342468,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.1867,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.5207687538747675,
300
+ "grad_norm": 0.6181507110595703,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.1049,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.5331680099194048,
307
+ "grad_norm": 0.6333999037742615,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.2303,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.5455672659640421,
314
+ "grad_norm": 0.5667845010757446,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.2457,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.5579665220086795,
321
+ "grad_norm": 0.5254231095314026,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.2547,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.5703657780533168,
328
+ "grad_norm": 0.5938495993614197,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.2118,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.5827650340979541,
335
+ "grad_norm": 0.7733635902404785,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.2409,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.5951642901425914,
342
+ "grad_norm": 0.6114753484725952,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.2343,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.6075635461872287,
349
+ "grad_norm": 0.5587155818939209,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.1779,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.6199628022318661,
356
+ "grad_norm": 0.7636917233467102,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.2136,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.6323620582765034,
363
+ "grad_norm": 0.5896942615509033,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.1301,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.6447613143211407,
370
+ "grad_norm": 0.8594750165939331,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.2089,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.657160570365778,
377
+ "grad_norm": 0.6459881067276001,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.1551,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.6695598264104153,
384
+ "grad_norm": 0.650656521320343,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.175,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.6819590824550527,
391
+ "grad_norm": 0.7238242626190186,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.2143,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.69435833849969,
398
+ "grad_norm": 0.6289859414100647,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.0961,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.7067575945443273,
405
+ "grad_norm": 0.6108142137527466,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.2316,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.7191568505889646,
412
+ "grad_norm": 0.6905024647712708,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.1315,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.7315561066336019,
419
+ "grad_norm": 0.5975471138954163,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.2368,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.7439553626782393,
426
+ "grad_norm": 0.49540066719055176,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.1014,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.7563546187228767,
433
+ "grad_norm": 0.5365461707115173,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.1359,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.768753874767514,
440
+ "grad_norm": 0.6156648993492126,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.2552,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.7811531308121513,
447
+ "grad_norm": 0.656879186630249,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.1929,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.7935523868567886,
454
+ "grad_norm": 0.8963037729263306,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.3063,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.805951642901426,
461
+ "grad_norm": 1.0569753646850586,
462
+ "learning_rate": 0.0002,
463
+ "loss": 1.219,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.8183508989460633,
468
+ "grad_norm": 0.7332107424736023,
469
+ "learning_rate": 0.0002,
470
+ "loss": 1.2563,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.8307501549907006,
475
+ "grad_norm": 0.589097797870636,
476
+ "learning_rate": 0.0002,
477
+ "loss": 1.1029,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.8431494110353379,
482
+ "grad_norm": 0.9553480744361877,
483
+ "learning_rate": 0.0002,
484
+ "loss": 1.1705,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.8555486670799752,
489
+ "grad_norm": 0.7076331973075867,
490
+ "learning_rate": 0.0002,
491
+ "loss": 1.1605,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.8679479231246126,
496
+ "grad_norm": 0.597531795501709,
497
+ "learning_rate": 0.0002,
498
+ "loss": 1.2346,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.8803471791692499,
503
+ "grad_norm": 0.7023149132728577,
504
+ "learning_rate": 0.0002,
505
+ "loss": 1.1637,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.8927464352138872,
510
+ "grad_norm": 1.4393764734268188,
511
+ "learning_rate": 0.0002,
512
+ "loss": 1.2717,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.9051456912585245,
517
+ "grad_norm": 0.5944231152534485,
518
+ "learning_rate": 0.0002,
519
+ "loss": 1.216,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.9175449473031618,
524
+ "grad_norm": 0.5712162852287292,
525
+ "learning_rate": 0.0002,
526
+ "loss": 1.148,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.9299442033477991,
531
+ "grad_norm": 0.5335281491279602,
532
+ "learning_rate": 0.0002,
533
+ "loss": 1.2318,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.9423434593924365,
538
+ "grad_norm": 0.8050292730331421,
539
+ "learning_rate": 0.0002,
540
+ "loss": 1.149,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.9547427154370738,
545
+ "grad_norm": 0.6092700958251953,
546
+ "learning_rate": 0.0002,
547
+ "loss": 1.0862,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.9671419714817111,
552
+ "grad_norm": 0.7012797594070435,
553
+ "learning_rate": 0.0002,
554
+ "loss": 1.3204,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.9795412275263484,
559
+ "grad_norm": 0.6228184103965759,
560
+ "learning_rate": 0.0002,
561
+ "loss": 1.1641,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.9919404835709857,
566
+ "grad_norm": 0.5482686161994934,
567
+ "learning_rate": 0.0002,
568
+ "loss": 1.131,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.9993800371977681,
573
+ "eval_loss": 1.2057286500930786,
574
+ "eval_runtime": 164.6087,
575
+ "eval_samples_per_second": 2.77,
576
+ "eval_steps_per_second": 0.346,
577
+ "step": 806
578
+ },
579
+ {
580
+ "epoch": 1.004339739615623,
581
+ "grad_norm": 0.6331814527511597,
582
+ "learning_rate": 0.0002,
583
+ "loss": 1.0899,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 1.0167389956602604,
588
+ "grad_norm": 0.6160872578620911,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.0551,
591
+ "step": 820
592
+ },
593
+ {
594
+ "epoch": 1.0291382517048977,
595
+ "grad_norm": 0.6104072332382202,
596
+ "learning_rate": 0.0002,
597
+ "loss": 0.9934,
598
+ "step": 830
599
+ },
600
+ {
601
+ "epoch": 1.041537507749535,
602
+ "grad_norm": 0.7619274854660034,
603
+ "learning_rate": 0.0002,
604
+ "loss": 1.0776,
605
+ "step": 840
606
+ },
607
+ {
608
+ "epoch": 1.0539367637941723,
609
+ "grad_norm": 0.761172890663147,
610
+ "learning_rate": 0.0002,
611
+ "loss": 0.9929,
612
+ "step": 850
613
+ },
614
+ {
615
+ "epoch": 1.0663360198388097,
616
+ "grad_norm": 0.7563514113426208,
617
+ "learning_rate": 0.0002,
618
+ "loss": 1.0543,
619
+ "step": 860
620
+ },
621
+ {
622
+ "epoch": 1.078735275883447,
623
+ "grad_norm": 0.521998941898346,
624
+ "learning_rate": 0.0002,
625
+ "loss": 1.0812,
626
+ "step": 870
627
+ },
628
+ {
629
+ "epoch": 1.0911345319280843,
630
+ "grad_norm": 0.824347972869873,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.1417,
633
+ "step": 880
634
+ },
635
+ {
636
+ "epoch": 1.1035337879727216,
637
+ "grad_norm": 0.5645424127578735,
638
+ "learning_rate": 0.0002,
639
+ "loss": 1.1096,
640
+ "step": 890
641
+ },
642
+ {
643
+ "epoch": 1.115933044017359,
644
+ "grad_norm": 0.8568223714828491,
645
+ "learning_rate": 0.0002,
646
+ "loss": 1.1005,
647
+ "step": 900
648
+ },
649
+ {
650
+ "epoch": 1.1283323000619963,
651
+ "grad_norm": 0.68181312084198,
652
+ "learning_rate": 0.0002,
653
+ "loss": 1.088,
654
+ "step": 910
655
+ },
656
+ {
657
+ "epoch": 1.1407315561066336,
658
+ "grad_norm": 0.7577647566795349,
659
+ "learning_rate": 0.0002,
660
+ "loss": 1.0281,
661
+ "step": 920
662
+ },
663
+ {
664
+ "epoch": 1.153130812151271,
665
+ "grad_norm": 0.6968798637390137,
666
+ "learning_rate": 0.0002,
667
+ "loss": 0.9812,
668
+ "step": 930
669
+ },
670
+ {
671
+ "epoch": 1.1655300681959082,
672
+ "grad_norm": 0.5769661664962769,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.0539,
675
+ "step": 940
676
+ },
677
+ {
678
+ "epoch": 1.1779293242405455,
679
+ "grad_norm": 0.6399155259132385,
680
+ "learning_rate": 0.0002,
681
+ "loss": 1.0831,
682
+ "step": 950
683
+ },
684
+ {
685
+ "epoch": 1.1903285802851828,
686
+ "grad_norm": 0.9824289679527283,
687
+ "learning_rate": 0.0002,
688
+ "loss": 1.0464,
689
+ "step": 960
690
+ },
691
+ {
692
+ "epoch": 1.2027278363298202,
693
+ "grad_norm": 0.7485893964767456,
694
+ "learning_rate": 0.0002,
695
+ "loss": 1.1068,
696
+ "step": 970
697
+ },
698
+ {
699
+ "epoch": 1.2151270923744575,
700
+ "grad_norm": 0.668736457824707,
701
+ "learning_rate": 0.0002,
702
+ "loss": 1.0047,
703
+ "step": 980
704
+ },
705
+ {
706
+ "epoch": 1.2275263484190948,
707
+ "grad_norm": 0.7041404843330383,
708
+ "learning_rate": 0.0002,
709
+ "loss": 1.0818,
710
+ "step": 990
711
+ },
712
+ {
713
+ "epoch": 1.2399256044637321,
714
+ "grad_norm": 0.7070603966712952,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.0847,
717
+ "step": 1000
718
+ },
719
+ {
720
+ "epoch": 1.2523248605083694,
721
+ "grad_norm": 0.7828628420829773,
722
+ "learning_rate": 0.0002,
723
+ "loss": 1.047,
724
+ "step": 1010
725
+ },
726
+ {
727
+ "epoch": 1.2647241165530068,
728
+ "grad_norm": 0.7149654626846313,
729
+ "learning_rate": 0.0002,
730
+ "loss": 1.0658,
731
+ "step": 1020
732
+ },
733
+ {
734
+ "epoch": 1.277123372597644,
735
+ "grad_norm": 0.7691766619682312,
736
+ "learning_rate": 0.0002,
737
+ "loss": 0.9791,
738
+ "step": 1030
739
+ },
740
+ {
741
+ "epoch": 1.2895226286422814,
742
+ "grad_norm": 0.8022137880325317,
743
+ "learning_rate": 0.0002,
744
+ "loss": 1.0242,
745
+ "step": 1040
746
+ },
747
+ {
748
+ "epoch": 1.3019218846869187,
749
+ "grad_norm": 0.6709204316139221,
750
+ "learning_rate": 0.0002,
751
+ "loss": 1.0837,
752
+ "step": 1050
753
+ },
754
+ {
755
+ "epoch": 1.314321140731556,
756
+ "grad_norm": 0.7368158102035522,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.0382,
759
+ "step": 1060
760
+ },
761
+ {
762
+ "epoch": 1.3267203967761934,
763
+ "grad_norm": 0.8408007621765137,
764
+ "learning_rate": 0.0002,
765
+ "loss": 1.0371,
766
+ "step": 1070
767
+ },
768
+ {
769
+ "epoch": 1.3391196528208307,
770
+ "grad_norm": 1.2165539264678955,
771
+ "learning_rate": 0.0002,
772
+ "loss": 0.9633,
773
+ "step": 1080
774
+ },
775
+ {
776
+ "epoch": 1.351518908865468,
777
+ "grad_norm": 0.7284916043281555,
778
+ "learning_rate": 0.0002,
779
+ "loss": 1.0079,
780
+ "step": 1090
781
+ },
782
+ {
783
+ "epoch": 1.3639181649101053,
784
+ "grad_norm": 0.7994557619094849,
785
+ "learning_rate": 0.0002,
786
+ "loss": 1.0211,
787
+ "step": 1100
788
+ },
789
+ {
790
+ "epoch": 1.3763174209547429,
791
+ "grad_norm": 0.9658345580101013,
792
+ "learning_rate": 0.0002,
793
+ "loss": 1.0892,
794
+ "step": 1110
795
+ },
796
+ {
797
+ "epoch": 1.3887166769993802,
798
+ "grad_norm": 0.6312829852104187,
799
+ "learning_rate": 0.0002,
800
+ "loss": 1.2088,
801
+ "step": 1120
802
+ },
803
+ {
804
+ "epoch": 1.4011159330440175,
805
+ "grad_norm": 0.7263661026954651,
806
+ "learning_rate": 0.0002,
807
+ "loss": 1.1055,
808
+ "step": 1130
809
+ },
810
+ {
811
+ "epoch": 1.4135151890886548,
812
+ "grad_norm": 0.829082727432251,
813
+ "learning_rate": 0.0002,
814
+ "loss": 1.0232,
815
+ "step": 1140
816
+ },
817
+ {
818
+ "epoch": 1.4259144451332921,
819
+ "grad_norm": 0.6168127059936523,
820
+ "learning_rate": 0.0002,
821
+ "loss": 1.1413,
822
+ "step": 1150
823
+ },
824
+ {
825
+ "epoch": 1.4383137011779294,
826
+ "grad_norm": 0.8351425528526306,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.0283,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.4507129572225668,
833
+ "grad_norm": 0.8814472556114197,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.1146,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.463112213267204,
840
+ "grad_norm": 0.6913689970970154,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.0932,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.4755114693118414,
847
+ "grad_norm": 0.7907165884971619,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.1066,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.4879107253564787,
854
+ "grad_norm": 0.8361626267433167,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.0738,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.500309981401116,
861
+ "grad_norm": 1.073534607887268,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.0559,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.5127092374457534,
868
+ "grad_norm": 0.8416345119476318,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.0204,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.5251084934903907,
875
+ "grad_norm": 1.0225597620010376,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.0941,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.537507749535028,
882
+ "grad_norm": 0.6662965416908264,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.0854,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.5499070055796653,
889
+ "grad_norm": 0.7363991737365723,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.0816,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.5623062616243026,
896
+ "grad_norm": 0.9029574990272522,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.0271,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.57470551766894,
903
+ "grad_norm": 0.7992424368858337,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.0206,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.5871047737135773,
910
+ "grad_norm": 0.8108977675437927,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.0114,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.5995040297582146,
917
+ "grad_norm": 0.8257458806037903,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.0264,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.611903285802852,
924
+ "grad_norm": 0.8265092968940735,
925
+ "learning_rate": 0.0002,
926
+ "loss": 1.0944,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.6243025418474892,
931
+ "grad_norm": 0.6568580269813538,
932
+ "learning_rate": 0.0002,
933
+ "loss": 1.0136,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.6367017978921266,
938
+ "grad_norm": 0.7608488202095032,
939
+ "learning_rate": 0.0002,
940
+ "loss": 1.009,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.6491010539367639,
945
+ "grad_norm": 0.7511259317398071,
946
+ "learning_rate": 0.0002,
947
+ "loss": 1.1202,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.6615003099814012,
952
+ "grad_norm": 0.7942162752151489,
953
+ "learning_rate": 0.0002,
954
+ "loss": 1.0528,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.6738995660260385,
959
+ "grad_norm": 0.8253659605979919,
960
+ "learning_rate": 0.0002,
961
+ "loss": 1.0411,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.6862988220706758,
966
+ "grad_norm": 1.1318382024765015,
967
+ "learning_rate": 0.0002,
968
+ "loss": 1.001,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.6986980781153131,
973
+ "grad_norm": 0.693403959274292,
974
+ "learning_rate": 0.0002,
975
+ "loss": 1.0727,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.7110973341599505,
980
+ "grad_norm": 0.7107617259025574,
981
+ "learning_rate": 0.0002,
982
+ "loss": 1.073,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.7234965902045878,
987
+ "grad_norm": 0.8169032335281372,
988
+ "learning_rate": 0.0002,
989
+ "loss": 1.0849,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.735895846249225,
994
+ "grad_norm": 0.8940841555595398,
995
+ "learning_rate": 0.0002,
996
+ "loss": 1.0578,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.7482951022938624,
1001
+ "grad_norm": 0.7862188220024109,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 1.0891,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.7606943583384997,
1008
+ "grad_norm": 1.136338472366333,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 0.9962,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.773093614383137,
1015
+ "grad_norm": 0.9534069895744324,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 1.0943,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.7854928704277744,
1022
+ "grad_norm": 1.0747562646865845,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 1.1257,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.7978921264724117,
1029
+ "grad_norm": 0.8557891249656677,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 1.0556,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.810291382517049,
1036
+ "grad_norm": 0.6829259991645813,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 1.0128,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.8226906385616863,
1043
+ "grad_norm": 0.8164441585540771,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 1.0313,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.8350898946063237,
1050
+ "grad_norm": 0.9458068609237671,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 1.1136,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.847489150650961,
1057
+ "grad_norm": 0.743009626865387,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 1.0457,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.8598884066955983,
1064
+ "grad_norm": 0.7137694358825684,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 1.0107,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.8722876627402356,
1071
+ "grad_norm": 0.7618028521537781,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 1.0633,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.884686918784873,
1078
+ "grad_norm": 0.8153398633003235,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 1.103,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.8970861748295103,
1085
+ "grad_norm": 0.9127124547958374,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 1.2094,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.9094854308741476,
1092
+ "grad_norm": 0.7699425220489502,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 1.0379,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.921884686918785,
1099
+ "grad_norm": 0.8807545304298401,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 0.9849,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.9342839429634222,
1106
+ "grad_norm": 0.7340815663337708,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 1.033,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.9466831990080595,
1113
+ "grad_norm": 1.070056676864624,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 1.0083,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.9590824550526968,
1120
+ "grad_norm": 0.8195573687553406,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 1.0023,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.9714817110973342,
1127
+ "grad_norm": 0.7938687205314636,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 1.029,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.9838809671419715,
1134
+ "grad_norm": 0.7632259726524353,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 1.0512,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.9962802231866088,
1141
+ "grad_norm": 0.7921916246414185,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 1.0426,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 2.0,
1148
+ "eval_loss": 1.2014765739440918,
1149
+ "eval_runtime": 159.8677,
1150
+ "eval_samples_per_second": 2.852,
1151
+ "eval_steps_per_second": 0.357,
1152
+ "step": 1613
1153
+ },
1154
+ {
1155
+ "epoch": 2.008679479231246,
1156
+ "grad_norm": 1.1764529943466187,
1157
+ "learning_rate": 0.0002,
1158
+ "loss": 0.9239,
1159
+ "step": 1620
1160
+ },
1161
+ {
1162
+ "epoch": 2.0210787352758834,
1163
+ "grad_norm": 1.0271947383880615,
1164
+ "learning_rate": 0.0002,
1165
+ "loss": 0.7995,
1166
+ "step": 1630
1167
+ },
1168
+ {
1169
+ "epoch": 2.0334779913205208,
1170
+ "grad_norm": 0.7138071656227112,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 0.8592,
1173
+ "step": 1640
1174
+ },
1175
+ {
1176
+ "epoch": 2.045877247365158,
1177
+ "grad_norm": 0.8644373416900635,
1178
+ "learning_rate": 0.0002,
1179
+ "loss": 0.8106,
1180
+ "step": 1650
1181
+ },
1182
+ {
1183
+ "epoch": 2.0582765034097954,
1184
+ "grad_norm": 1.2262420654296875,
1185
+ "learning_rate": 0.0002,
1186
+ "loss": 0.8578,
1187
+ "step": 1660
1188
+ },
1189
+ {
1190
+ "epoch": 2.0706757594544327,
1191
+ "grad_norm": 0.9718686938285828,
1192
+ "learning_rate": 0.0002,
1193
+ "loss": 0.8009,
1194
+ "step": 1670
1195
+ },
1196
+ {
1197
+ "epoch": 2.08307501549907,
1198
+ "grad_norm": 1.0075122117996216,
1199
+ "learning_rate": 0.0002,
1200
+ "loss": 0.831,
1201
+ "step": 1680
1202
+ },
1203
+ {
1204
+ "epoch": 2.0954742715437074,
1205
+ "grad_norm": 1.2113722562789917,
1206
+ "learning_rate": 0.0002,
1207
+ "loss": 0.8177,
1208
+ "step": 1690
1209
+ },
1210
+ {
1211
+ "epoch": 2.1078735275883447,
1212
+ "grad_norm": 0.7911604642868042,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 0.8377,
1215
+ "step": 1700
1216
+ },
1217
+ {
1218
+ "epoch": 2.120272783632982,
1219
+ "grad_norm": 0.8578933477401733,
1220
+ "learning_rate": 0.0002,
1221
+ "loss": 0.8405,
1222
+ "step": 1710
1223
+ },
1224
+ {
1225
+ "epoch": 2.1326720396776193,
1226
+ "grad_norm": 1.1782084703445435,
1227
+ "learning_rate": 0.0002,
1228
+ "loss": 0.8784,
1229
+ "step": 1720
1230
+ },
1231
+ {
1232
+ "epoch": 2.1450712957222566,
1233
+ "grad_norm": 1.3627573251724243,
1234
+ "learning_rate": 0.0002,
1235
+ "loss": 0.8543,
1236
+ "step": 1730
1237
+ },
1238
+ {
1239
+ "epoch": 2.157470551766894,
1240
+ "grad_norm": 1.2948803901672363,
1241
+ "learning_rate": 0.0002,
1242
+ "loss": 0.8404,
1243
+ "step": 1740
1244
+ },
1245
+ {
1246
+ "epoch": 2.1698698078115313,
1247
+ "grad_norm": 0.9353442788124084,
1248
+ "learning_rate": 0.0002,
1249
+ "loss": 0.8719,
1250
+ "step": 1750
1251
+ },
1252
+ {
1253
+ "epoch": 2.1822690638561686,
1254
+ "grad_norm": 0.9063374400138855,
1255
+ "learning_rate": 0.0002,
1256
+ "loss": 0.8112,
1257
+ "step": 1760
1258
+ },
1259
+ {
1260
+ "epoch": 2.194668319900806,
1261
+ "grad_norm": 1.3354851007461548,
1262
+ "learning_rate": 0.0002,
1263
+ "loss": 0.9441,
1264
+ "step": 1770
1265
+ },
1266
+ {
1267
+ "epoch": 2.2070675759454432,
1268
+ "grad_norm": 0.8388507962226868,
1269
+ "learning_rate": 0.0002,
1270
+ "loss": 0.877,
1271
+ "step": 1780
1272
+ },
1273
+ {
1274
+ "epoch": 2.2194668319900805,
1275
+ "grad_norm": 0.9509401321411133,
1276
+ "learning_rate": 0.0002,
1277
+ "loss": 0.8709,
1278
+ "step": 1790
1279
+ },
1280
+ {
1281
+ "epoch": 2.231866088034718,
1282
+ "grad_norm": 1.0458593368530273,
1283
+ "learning_rate": 0.0002,
1284
+ "loss": 0.8212,
1285
+ "step": 1800
1286
+ },
1287
+ {
1288
+ "epoch": 2.244265344079355,
1289
+ "grad_norm": 0.890088677406311,
1290
+ "learning_rate": 0.0002,
1291
+ "loss": 0.7667,
1292
+ "step": 1810
1293
+ },
1294
+ {
1295
+ "epoch": 2.2566646001239925,
1296
+ "grad_norm": 1.1933976411819458,
1297
+ "learning_rate": 0.0002,
1298
+ "loss": 0.8431,
1299
+ "step": 1820
1300
+ },
1301
+ {
1302
+ "epoch": 2.26906385616863,
1303
+ "grad_norm": 0.961398184299469,
1304
+ "learning_rate": 0.0002,
1305
+ "loss": 0.8697,
1306
+ "step": 1830
1307
+ },
1308
+ {
1309
+ "epoch": 2.281463112213267,
1310
+ "grad_norm": 1.124961495399475,
1311
+ "learning_rate": 0.0002,
1312
+ "loss": 0.8403,
1313
+ "step": 1840
1314
+ },
1315
+ {
1316
+ "epoch": 2.2938623682579045,
1317
+ "grad_norm": 0.9042379260063171,
1318
+ "learning_rate": 0.0002,
1319
+ "loss": 0.8431,
1320
+ "step": 1850
1321
+ },
1322
+ {
1323
+ "epoch": 2.306261624302542,
1324
+ "grad_norm": 1.2250864505767822,
1325
+ "learning_rate": 0.0002,
1326
+ "loss": 0.8866,
1327
+ "step": 1860
1328
+ },
1329
+ {
1330
+ "epoch": 2.318660880347179,
1331
+ "grad_norm": 1.1758817434310913,
1332
+ "learning_rate": 0.0002,
1333
+ "loss": 0.8514,
1334
+ "step": 1870
1335
+ },
1336
+ {
1337
+ "epoch": 2.3310601363918164,
1338
+ "grad_norm": 0.9863199591636658,
1339
+ "learning_rate": 0.0002,
1340
+ "loss": 0.9316,
1341
+ "step": 1880
1342
+ },
1343
+ {
1344
+ "epoch": 2.3434593924364537,
1345
+ "grad_norm": 1.1759305000305176,
1346
+ "learning_rate": 0.0002,
1347
+ "loss": 0.8854,
1348
+ "step": 1890
1349
+ },
1350
+ {
1351
+ "epoch": 2.355858648481091,
1352
+ "grad_norm": 0.995716392993927,
1353
+ "learning_rate": 0.0002,
1354
+ "loss": 0.866,
1355
+ "step": 1900
1356
+ },
1357
+ {
1358
+ "epoch": 2.3682579045257284,
1359
+ "grad_norm": 1.1816585063934326,
1360
+ "learning_rate": 0.0002,
1361
+ "loss": 0.8439,
1362
+ "step": 1910
1363
+ },
1364
+ {
1365
+ "epoch": 2.3806571605703657,
1366
+ "grad_norm": 0.7498432397842407,
1367
+ "learning_rate": 0.0002,
1368
+ "loss": 0.9284,
1369
+ "step": 1920
1370
+ },
1371
+ {
1372
+ "epoch": 2.393056416615003,
1373
+ "grad_norm": 0.9481443762779236,
1374
+ "learning_rate": 0.0002,
1375
+ "loss": 0.8243,
1376
+ "step": 1930
1377
+ },
1378
+ {
1379
+ "epoch": 2.4054556726596403,
1380
+ "grad_norm": 1.1264584064483643,
1381
+ "learning_rate": 0.0002,
1382
+ "loss": 0.8083,
1383
+ "step": 1940
1384
+ },
1385
+ {
1386
+ "epoch": 2.4178549287042777,
1387
+ "grad_norm": 0.8826232552528381,
1388
+ "learning_rate": 0.0002,
1389
+ "loss": 0.9122,
1390
+ "step": 1950
1391
+ },
1392
+ {
1393
+ "epoch": 2.430254184748915,
1394
+ "grad_norm": 0.9702113270759583,
1395
+ "learning_rate": 0.0002,
1396
+ "loss": 0.8764,
1397
+ "step": 1960
1398
+ },
1399
+ {
1400
+ "epoch": 2.4426534407935523,
1401
+ "grad_norm": 1.0663695335388184,
1402
+ "learning_rate": 0.0002,
1403
+ "loss": 0.8498,
1404
+ "step": 1970
1405
+ },
1406
+ {
1407
+ "epoch": 2.4550526968381896,
1408
+ "grad_norm": 1.1186119318008423,
1409
+ "learning_rate": 0.0002,
1410
+ "loss": 0.888,
1411
+ "step": 1980
1412
+ },
1413
+ {
1414
+ "epoch": 2.467451952882827,
1415
+ "grad_norm": 1.428774118423462,
1416
+ "learning_rate": 0.0002,
1417
+ "loss": 0.9327,
1418
+ "step": 1990
1419
+ },
1420
+ {
1421
+ "epoch": 2.4798512089274642,
1422
+ "grad_norm": 1.3054901361465454,
1423
+ "learning_rate": 0.0002,
1424
+ "loss": 0.9423,
1425
+ "step": 2000
1426
+ },
1427
+ {
1428
+ "epoch": 2.4922504649721016,
1429
+ "grad_norm": 0.9893805384635925,
1430
+ "learning_rate": 0.0002,
1431
+ "loss": 0.8494,
1432
+ "step": 2010
1433
+ },
1434
+ {
1435
+ "epoch": 2.504649721016739,
1436
+ "grad_norm": 1.149538516998291,
1437
+ "learning_rate": 0.0002,
1438
+ "loss": 0.9982,
1439
+ "step": 2020
1440
+ },
1441
+ {
1442
+ "epoch": 2.517048977061376,
1443
+ "grad_norm": 0.8716336488723755,
1444
+ "learning_rate": 0.0002,
1445
+ "loss": 0.881,
1446
+ "step": 2030
1447
+ },
1448
+ {
1449
+ "epoch": 2.5294482331060135,
1450
+ "grad_norm": 1.0464730262756348,
1451
+ "learning_rate": 0.0002,
1452
+ "loss": 0.8483,
1453
+ "step": 2040
1454
+ },
1455
+ {
1456
+ "epoch": 2.541847489150651,
1457
+ "grad_norm": 1.1451894044876099,
1458
+ "learning_rate": 0.0002,
1459
+ "loss": 0.9475,
1460
+ "step": 2050
1461
+ },
1462
+ {
1463
+ "epoch": 2.554246745195288,
1464
+ "grad_norm": 1.3266205787658691,
1465
+ "learning_rate": 0.0002,
1466
+ "loss": 0.8238,
1467
+ "step": 2060
1468
+ },
1469
+ {
1470
+ "epoch": 2.5666460012399255,
1471
+ "grad_norm": 1.2838176488876343,
1472
+ "learning_rate": 0.0002,
1473
+ "loss": 0.8457,
1474
+ "step": 2070
1475
+ },
1476
+ {
1477
+ "epoch": 2.579045257284563,
1478
+ "grad_norm": 1.0352915525436401,
1479
+ "learning_rate": 0.0002,
1480
+ "loss": 0.7813,
1481
+ "step": 2080
1482
+ },
1483
+ {
1484
+ "epoch": 2.5914445133292,
1485
+ "grad_norm": 1.181416392326355,
1486
+ "learning_rate": 0.0002,
1487
+ "loss": 0.895,
1488
+ "step": 2090
1489
+ },
1490
+ {
1491
+ "epoch": 2.6038437693738374,
1492
+ "grad_norm": 1.2425765991210938,
1493
+ "learning_rate": 0.0002,
1494
+ "loss": 0.8537,
1495
+ "step": 2100
1496
+ },
1497
+ {
1498
+ "epoch": 2.6162430254184748,
1499
+ "grad_norm": 1.2885762453079224,
1500
+ "learning_rate": 0.0002,
1501
+ "loss": 0.8561,
1502
+ "step": 2110
1503
+ },
1504
+ {
1505
+ "epoch": 2.628642281463112,
1506
+ "grad_norm": 1.0179181098937988,
1507
+ "learning_rate": 0.0002,
1508
+ "loss": 0.8024,
1509
+ "step": 2120
1510
+ },
1511
+ {
1512
+ "epoch": 2.6410415375077494,
1513
+ "grad_norm": 1.4908100366592407,
1514
+ "learning_rate": 0.0002,
1515
+ "loss": 0.8747,
1516
+ "step": 2130
1517
+ },
1518
+ {
1519
+ "epoch": 2.6534407935523867,
1520
+ "grad_norm": 1.4854460954666138,
1521
+ "learning_rate": 0.0002,
1522
+ "loss": 0.8475,
1523
+ "step": 2140
1524
+ },
1525
+ {
1526
+ "epoch": 2.665840049597024,
1527
+ "grad_norm": 0.994413435459137,
1528
+ "learning_rate": 0.0002,
1529
+ "loss": 0.8579,
1530
+ "step": 2150
1531
+ },
1532
+ {
1533
+ "epoch": 2.6782393056416613,
1534
+ "grad_norm": 1.177201271057129,
1535
+ "learning_rate": 0.0002,
1536
+ "loss": 0.8606,
1537
+ "step": 2160
1538
+ },
1539
+ {
1540
+ "epoch": 2.6906385616862987,
1541
+ "grad_norm": 1.2680933475494385,
1542
+ "learning_rate": 0.0002,
1543
+ "loss": 0.9233,
1544
+ "step": 2170
1545
+ },
1546
+ {
1547
+ "epoch": 2.703037817730936,
1548
+ "grad_norm": 1.2201054096221924,
1549
+ "learning_rate": 0.0002,
1550
+ "loss": 0.8443,
1551
+ "step": 2180
1552
+ },
1553
+ {
1554
+ "epoch": 2.7154370737755733,
1555
+ "grad_norm": 1.2058831453323364,
1556
+ "learning_rate": 0.0002,
1557
+ "loss": 0.8437,
1558
+ "step": 2190
1559
+ },
1560
+ {
1561
+ "epoch": 2.7278363298202106,
1562
+ "grad_norm": 1.1667239665985107,
1563
+ "learning_rate": 0.0002,
1564
+ "loss": 0.9894,
1565
+ "step": 2200
1566
+ },
1567
+ {
1568
+ "epoch": 2.740235585864848,
1569
+ "grad_norm": 1.1243321895599365,
1570
+ "learning_rate": 0.0002,
1571
+ "loss": 0.8501,
1572
+ "step": 2210
1573
+ },
1574
+ {
1575
+ "epoch": 2.7526348419094857,
1576
+ "grad_norm": 1.0543156862258911,
1577
+ "learning_rate": 0.0002,
1578
+ "loss": 0.9387,
1579
+ "step": 2220
1580
+ },
1581
+ {
1582
+ "epoch": 2.765034097954123,
1583
+ "grad_norm": 1.1922553777694702,
1584
+ "learning_rate": 0.0002,
1585
+ "loss": 0.9488,
1586
+ "step": 2230
1587
+ },
1588
+ {
1589
+ "epoch": 2.7774333539987603,
1590
+ "grad_norm": 1.1266813278198242,
1591
+ "learning_rate": 0.0002,
1592
+ "loss": 0.8558,
1593
+ "step": 2240
1594
+ },
1595
+ {
1596
+ "epoch": 2.7898326100433977,
1597
+ "grad_norm": 0.9645159840583801,
1598
+ "learning_rate": 0.0002,
1599
+ "loss": 0.8459,
1600
+ "step": 2250
1601
+ },
1602
+ {
1603
+ "epoch": 2.802231866088035,
1604
+ "grad_norm": 1.0672235488891602,
1605
+ "learning_rate": 0.0002,
1606
+ "loss": 0.8862,
1607
+ "step": 2260
1608
+ },
1609
+ {
1610
+ "epoch": 2.8146311221326723,
1611
+ "grad_norm": 1.5650453567504883,
1612
+ "learning_rate": 0.0002,
1613
+ "loss": 0.869,
1614
+ "step": 2270
1615
+ },
1616
+ {
1617
+ "epoch": 2.8270303781773096,
1618
+ "grad_norm": 1.0414438247680664,
1619
+ "learning_rate": 0.0002,
1620
+ "loss": 0.8,
1621
+ "step": 2280
1622
+ },
1623
+ {
1624
+ "epoch": 2.839429634221947,
1625
+ "grad_norm": 0.8878290057182312,
1626
+ "learning_rate": 0.0002,
1627
+ "loss": 0.8419,
1628
+ "step": 2290
1629
+ },
1630
+ {
1631
+ "epoch": 2.8518288902665843,
1632
+ "grad_norm": 1.0500553846359253,
1633
+ "learning_rate": 0.0002,
1634
+ "loss": 0.9148,
1635
+ "step": 2300
1636
+ },
1637
+ {
1638
+ "epoch": 2.8642281463112216,
1639
+ "grad_norm": 0.9779142737388611,
1640
+ "learning_rate": 0.0002,
1641
+ "loss": 0.8706,
1642
+ "step": 2310
1643
+ },
1644
+ {
1645
+ "epoch": 2.876627402355859,
1646
+ "grad_norm": 0.8904196619987488,
1647
+ "learning_rate": 0.0002,
1648
+ "loss": 0.8385,
1649
+ "step": 2320
1650
+ },
1651
+ {
1652
+ "epoch": 2.889026658400496,
1653
+ "grad_norm": 1.103608250617981,
1654
+ "learning_rate": 0.0002,
1655
+ "loss": 0.8768,
1656
+ "step": 2330
1657
+ },
1658
+ {
1659
+ "epoch": 2.9014259144451335,
1660
+ "grad_norm": 1.2064822912216187,
1661
+ "learning_rate": 0.0002,
1662
+ "loss": 0.8659,
1663
+ "step": 2340
1664
+ },
1665
+ {
1666
+ "epoch": 2.913825170489771,
1667
+ "grad_norm": 1.3073748350143433,
1668
+ "learning_rate": 0.0002,
1669
+ "loss": 0.9299,
1670
+ "step": 2350
1671
+ },
1672
+ {
1673
+ "epoch": 2.926224426534408,
1674
+ "grad_norm": 1.4792760610580444,
1675
+ "learning_rate": 0.0002,
1676
+ "loss": 0.778,
1677
+ "step": 2360
1678
+ },
1679
+ {
1680
+ "epoch": 2.9386236825790455,
1681
+ "grad_norm": 1.1670116186141968,
1682
+ "learning_rate": 0.0002,
1683
+ "loss": 0.9773,
1684
+ "step": 2370
1685
+ },
1686
+ {
1687
+ "epoch": 2.951022938623683,
1688
+ "grad_norm": 1.235465168952942,
1689
+ "learning_rate": 0.0002,
1690
+ "loss": 0.8973,
1691
+ "step": 2380
1692
+ },
1693
+ {
1694
+ "epoch": 2.96342219466832,
1695
+ "grad_norm": 1.7734158039093018,
1696
+ "learning_rate": 0.0002,
1697
+ "loss": 0.8646,
1698
+ "step": 2390
1699
+ },
1700
+ {
1701
+ "epoch": 2.9758214507129574,
1702
+ "grad_norm": 1.3497414588928223,
1703
+ "learning_rate": 0.0002,
1704
+ "loss": 0.8784,
1705
+ "step": 2400
1706
+ },
1707
+ {
1708
+ "epoch": 2.9882207067575948,
1709
+ "grad_norm": 1.1425493955612183,
1710
+ "learning_rate": 0.0002,
1711
+ "loss": 0.9116,
1712
+ "step": 2410
1713
+ },
1714
+ {
1715
+ "epoch": 2.999380037197768,
1716
+ "eval_loss": 1.2303974628448486,
1717
+ "eval_runtime": 126.4856,
1718
+ "eval_samples_per_second": 3.605,
1719
+ "eval_steps_per_second": 0.451,
1720
+ "step": 2419
1721
+ },
1722
+ {
1723
+ "epoch": 3.000619962802232,
1724
+ "grad_norm": 1.4001394510269165,
1725
+ "learning_rate": 0.0002,
1726
+ "loss": 0.9395,
1727
+ "step": 2420
1728
+ },
1729
+ {
1730
+ "epoch": 3.0130192188468694,
1731
+ "grad_norm": 2.4510438442230225,
1732
+ "learning_rate": 0.0002,
1733
+ "loss": 0.6538,
1734
+ "step": 2430
1735
+ },
1736
+ {
1737
+ "epoch": 3.0254184748915067,
1738
+ "grad_norm": 1.5374444723129272,
1739
+ "learning_rate": 0.0002,
1740
+ "loss": 0.6732,
1741
+ "step": 2440
1742
+ },
1743
+ {
1744
+ "epoch": 3.037817730936144,
1745
+ "grad_norm": 1.632250428199768,
1746
+ "learning_rate": 0.0002,
1747
+ "loss": 0.6934,
1748
+ "step": 2450
1749
+ },
1750
+ {
1751
+ "epoch": 3.0502169869807814,
1752
+ "grad_norm": 1.5456780195236206,
1753
+ "learning_rate": 0.0002,
1754
+ "loss": 0.6266,
1755
+ "step": 2460
1756
+ },
1757
+ {
1758
+ "epoch": 3.0626162430254187,
1759
+ "grad_norm": 1.3664451837539673,
1760
+ "learning_rate": 0.0002,
1761
+ "loss": 0.6467,
1762
+ "step": 2470
1763
+ },
1764
+ {
1765
+ "epoch": 3.075015499070056,
1766
+ "grad_norm": 1.344169020652771,
1767
+ "learning_rate": 0.0002,
1768
+ "loss": 0.6351,
1769
+ "step": 2480
1770
+ },
1771
+ {
1772
+ "epoch": 3.0874147551146933,
1773
+ "grad_norm": 0.9710949659347534,
1774
+ "learning_rate": 0.0002,
1775
+ "loss": 0.664,
1776
+ "step": 2490
1777
+ },
1778
+ {
1779
+ "epoch": 3.0998140111593306,
1780
+ "grad_norm": 2.324171304702759,
1781
+ "learning_rate": 0.0002,
1782
+ "loss": 0.6232,
1783
+ "step": 2500
1784
+ },
1785
+ {
1786
+ "epoch": 3.112213267203968,
1787
+ "grad_norm": 1.2885396480560303,
1788
+ "learning_rate": 0.0002,
1789
+ "loss": 0.7336,
1790
+ "step": 2510
1791
+ },
1792
+ {
1793
+ "epoch": 3.1246125232486053,
1794
+ "grad_norm": 1.224718451499939,
1795
+ "learning_rate": 0.0002,
1796
+ "loss": 0.7095,
1797
+ "step": 2520
1798
+ },
1799
+ {
1800
+ "epoch": 3.1370117792932426,
1801
+ "grad_norm": 1.1158969402313232,
1802
+ "learning_rate": 0.0002,
1803
+ "loss": 0.6451,
1804
+ "step": 2530
1805
+ },
1806
+ {
1807
+ "epoch": 3.14941103533788,
1808
+ "grad_norm": 1.189963698387146,
1809
+ "learning_rate": 0.0002,
1810
+ "loss": 0.6024,
1811
+ "step": 2540
1812
+ },
1813
+ {
1814
+ "epoch": 3.1618102913825172,
1815
+ "grad_norm": 1.2543222904205322,
1816
+ "learning_rate": 0.0002,
1817
+ "loss": 0.6996,
1818
+ "step": 2550
1819
+ },
1820
+ {
1821
+ "epoch": 3.1742095474271546,
1822
+ "grad_norm": 1.4986658096313477,
1823
+ "learning_rate": 0.0002,
1824
+ "loss": 0.6854,
1825
+ "step": 2560
1826
+ },
1827
+ {
1828
+ "epoch": 3.186608803471792,
1829
+ "grad_norm": 1.5848976373672485,
1830
+ "learning_rate": 0.0002,
1831
+ "loss": 0.5936,
1832
+ "step": 2570
1833
+ },
1834
+ {
1835
+ "epoch": 3.199008059516429,
1836
+ "grad_norm": 1.2306287288665771,
1837
+ "learning_rate": 0.0002,
1838
+ "loss": 0.64,
1839
+ "step": 2580
1840
+ },
1841
+ {
1842
+ "epoch": 3.2114073155610665,
1843
+ "grad_norm": 1.6327801942825317,
1844
+ "learning_rate": 0.0002,
1845
+ "loss": 0.6381,
1846
+ "step": 2590
1847
+ },
1848
+ {
1849
+ "epoch": 3.223806571605704,
1850
+ "grad_norm": 1.191624402999878,
1851
+ "learning_rate": 0.0002,
1852
+ "loss": 0.6614,
1853
+ "step": 2600
1854
+ },
1855
+ {
1856
+ "epoch": 3.236205827650341,
1857
+ "grad_norm": 1.546857476234436,
1858
+ "learning_rate": 0.0002,
1859
+ "loss": 0.5862,
1860
+ "step": 2610
1861
+ },
1862
+ {
1863
+ "epoch": 3.2486050836949785,
1864
+ "grad_norm": 1.7683172225952148,
1865
+ "learning_rate": 0.0002,
1866
+ "loss": 0.697,
1867
+ "step": 2620
1868
+ },
1869
+ {
1870
+ "epoch": 3.261004339739616,
1871
+ "grad_norm": 1.3910621404647827,
1872
+ "learning_rate": 0.0002,
1873
+ "loss": 0.6909,
1874
+ "step": 2630
1875
+ },
1876
+ {
1877
+ "epoch": 3.273403595784253,
1878
+ "grad_norm": 1.205353021621704,
1879
+ "learning_rate": 0.0002,
1880
+ "loss": 0.6322,
1881
+ "step": 2640
1882
+ },
1883
+ {
1884
+ "epoch": 3.2858028518288904,
1885
+ "grad_norm": 1.1997911930084229,
1886
+ "learning_rate": 0.0002,
1887
+ "loss": 0.6923,
1888
+ "step": 2650
1889
+ },
1890
+ {
1891
+ "epoch": 3.2982021078735277,
1892
+ "grad_norm": 1.6746608018875122,
1893
+ "learning_rate": 0.0002,
1894
+ "loss": 0.6291,
1895
+ "step": 2660
1896
+ },
1897
+ {
1898
+ "epoch": 3.310601363918165,
1899
+ "grad_norm": 1.0251612663269043,
1900
+ "learning_rate": 0.0002,
1901
+ "loss": 0.7021,
1902
+ "step": 2670
1903
+ },
1904
+ {
1905
+ "epoch": 3.3230006199628024,
1906
+ "grad_norm": 1.3690581321716309,
1907
+ "learning_rate": 0.0002,
1908
+ "loss": 0.6958,
1909
+ "step": 2680
1910
+ },
1911
+ {
1912
+ "epoch": 3.3353998760074397,
1913
+ "grad_norm": 1.5537537336349487,
1914
+ "learning_rate": 0.0002,
1915
+ "loss": 0.7439,
1916
+ "step": 2690
1917
+ },
1918
+ {
1919
+ "epoch": 3.347799132052077,
1920
+ "grad_norm": 1.5438767671585083,
1921
+ "learning_rate": 0.0002,
1922
+ "loss": 0.692,
1923
+ "step": 2700
1924
+ },
1925
+ {
1926
+ "epoch": 3.3601983880967143,
1927
+ "grad_norm": 1.2430849075317383,
1928
+ "learning_rate": 0.0002,
1929
+ "loss": 0.6698,
1930
+ "step": 2710
1931
+ },
1932
+ {
1933
+ "epoch": 3.3725976441413517,
1934
+ "grad_norm": 1.1905370950698853,
1935
+ "learning_rate": 0.0002,
1936
+ "loss": 0.7447,
1937
+ "step": 2720
1938
+ },
1939
+ {
1940
+ "epoch": 3.384996900185989,
1941
+ "grad_norm": 1.5106539726257324,
1942
+ "learning_rate": 0.0002,
1943
+ "loss": 0.6583,
1944
+ "step": 2730
1945
+ },
1946
+ {
1947
+ "epoch": 3.3973961562306263,
1948
+ "grad_norm": 1.8480169773101807,
1949
+ "learning_rate": 0.0002,
1950
+ "loss": 0.6812,
1951
+ "step": 2740
1952
+ },
1953
+ {
1954
+ "epoch": 3.4097954122752636,
1955
+ "grad_norm": 1.0991253852844238,
1956
+ "learning_rate": 0.0002,
1957
+ "loss": 0.6523,
1958
+ "step": 2750
1959
+ },
1960
+ {
1961
+ "epoch": 3.422194668319901,
1962
+ "grad_norm": 1.5110164880752563,
1963
+ "learning_rate": 0.0002,
1964
+ "loss": 0.7371,
1965
+ "step": 2760
1966
+ },
1967
+ {
1968
+ "epoch": 3.4345939243645383,
1969
+ "grad_norm": 1.7006158828735352,
1970
+ "learning_rate": 0.0002,
1971
+ "loss": 0.6632,
1972
+ "step": 2770
1973
+ },
1974
+ {
1975
+ "epoch": 3.4469931804091756,
1976
+ "grad_norm": 1.3995729684829712,
1977
+ "learning_rate": 0.0002,
1978
+ "loss": 0.6938,
1979
+ "step": 2780
1980
+ },
1981
+ {
1982
+ "epoch": 3.459392436453813,
1983
+ "grad_norm": 1.5709624290466309,
1984
+ "learning_rate": 0.0002,
1985
+ "loss": 0.704,
1986
+ "step": 2790
1987
+ },
1988
+ {
1989
+ "epoch": 3.47179169249845,
1990
+ "grad_norm": 1.2154548168182373,
1991
+ "learning_rate": 0.0002,
1992
+ "loss": 0.629,
1993
+ "step": 2800
1994
+ },
1995
+ {
1996
+ "epoch": 3.4841909485430875,
1997
+ "grad_norm": 1.5075860023498535,
1998
+ "learning_rate": 0.0002,
1999
+ "loss": 0.709,
2000
+ "step": 2810
2001
+ },
2002
+ {
2003
+ "epoch": 3.496590204587725,
2004
+ "grad_norm": 2.296370029449463,
2005
+ "learning_rate": 0.0002,
2006
+ "loss": 0.6838,
2007
+ "step": 2820
2008
+ },
2009
+ {
2010
+ "epoch": 3.508989460632362,
2011
+ "grad_norm": 1.5329245328903198,
2012
+ "learning_rate": 0.0002,
2013
+ "loss": 0.7216,
2014
+ "step": 2830
2015
+ },
2016
+ {
2017
+ "epoch": 3.5213887166769995,
2018
+ "grad_norm": 2.391974925994873,
2019
+ "learning_rate": 0.0002,
2020
+ "loss": 0.702,
2021
+ "step": 2840
2022
+ },
2023
+ {
2024
+ "epoch": 3.533787972721637,
2025
+ "grad_norm": 1.7627687454223633,
2026
+ "learning_rate": 0.0002,
2027
+ "loss": 0.6122,
2028
+ "step": 2850
2029
+ },
2030
+ {
2031
+ "epoch": 3.546187228766274,
2032
+ "grad_norm": 1.8143539428710938,
2033
+ "learning_rate": 0.0002,
2034
+ "loss": 0.6612,
2035
+ "step": 2860
2036
+ },
2037
+ {
2038
+ "epoch": 3.5585864848109114,
2039
+ "grad_norm": 1.8639698028564453,
2040
+ "learning_rate": 0.0002,
2041
+ "loss": 0.6875,
2042
+ "step": 2870
2043
+ },
2044
+ {
2045
+ "epoch": 3.5709857408555488,
2046
+ "grad_norm": 1.9081439971923828,
2047
+ "learning_rate": 0.0002,
2048
+ "loss": 0.7133,
2049
+ "step": 2880
2050
+ },
2051
+ {
2052
+ "epoch": 3.583384996900186,
2053
+ "grad_norm": 1.707095742225647,
2054
+ "learning_rate": 0.0002,
2055
+ "loss": 0.6669,
2056
+ "step": 2890
2057
+ },
2058
+ {
2059
+ "epoch": 3.5957842529448234,
2060
+ "grad_norm": 1.561742901802063,
2061
+ "learning_rate": 0.0002,
2062
+ "loss": 0.6834,
2063
+ "step": 2900
2064
+ },
2065
+ {
2066
+ "epoch": 3.6081835089894607,
2067
+ "grad_norm": 1.6129803657531738,
2068
+ "learning_rate": 0.0002,
2069
+ "loss": 0.7545,
2070
+ "step": 2910
2071
+ },
2072
+ {
2073
+ "epoch": 3.620582765034098,
2074
+ "grad_norm": 1.1192500591278076,
2075
+ "learning_rate": 0.0002,
2076
+ "loss": 0.7182,
2077
+ "step": 2920
2078
+ },
2079
+ {
2080
+ "epoch": 3.6329820210787354,
2081
+ "grad_norm": 1.420279622077942,
2082
+ "learning_rate": 0.0002,
2083
+ "loss": 0.6339,
2084
+ "step": 2930
2085
+ },
2086
+ {
2087
+ "epoch": 3.6453812771233727,
2088
+ "grad_norm": 1.5851093530654907,
2089
+ "learning_rate": 0.0002,
2090
+ "loss": 0.7365,
2091
+ "step": 2940
2092
+ },
2093
+ {
2094
+ "epoch": 3.65778053316801,
2095
+ "grad_norm": 1.4390369653701782,
2096
+ "learning_rate": 0.0002,
2097
+ "loss": 0.661,
2098
+ "step": 2950
2099
+ },
2100
+ {
2101
+ "epoch": 3.6701797892126473,
2102
+ "grad_norm": 1.4419100284576416,
2103
+ "learning_rate": 0.0002,
2104
+ "loss": 0.7262,
2105
+ "step": 2960
2106
+ },
2107
+ {
2108
+ "epoch": 3.6825790452572846,
2109
+ "grad_norm": 0.9472342133522034,
2110
+ "learning_rate": 0.0002,
2111
+ "loss": 0.7449,
2112
+ "step": 2970
2113
+ },
2114
+ {
2115
+ "epoch": 3.694978301301922,
2116
+ "grad_norm": 1.194284200668335,
2117
+ "learning_rate": 0.0002,
2118
+ "loss": 0.696,
2119
+ "step": 2980
2120
+ },
2121
+ {
2122
+ "epoch": 3.7073775573465593,
2123
+ "grad_norm": 1.233306884765625,
2124
+ "learning_rate": 0.0002,
2125
+ "loss": 0.6603,
2126
+ "step": 2990
2127
+ },
2128
+ {
2129
+ "epoch": 3.7197768133911966,
2130
+ "grad_norm": 1.703479528427124,
2131
+ "learning_rate": 0.0002,
2132
+ "loss": 0.7155,
2133
+ "step": 3000
2134
+ },
2135
+ {
2136
+ "epoch": 3.732176069435834,
2137
+ "grad_norm": 1.3840128183364868,
2138
+ "learning_rate": 0.0002,
2139
+ "loss": 0.6779,
2140
+ "step": 3010
2141
+ },
2142
+ {
2143
+ "epoch": 3.7445753254804712,
2144
+ "grad_norm": 1.042277455329895,
2145
+ "learning_rate": 0.0002,
2146
+ "loss": 0.7428,
2147
+ "step": 3020
2148
+ },
2149
+ {
2150
+ "epoch": 3.7569745815251085,
2151
+ "grad_norm": 1.3294179439544678,
2152
+ "learning_rate": 0.0002,
2153
+ "loss": 0.6937,
2154
+ "step": 3030
2155
+ },
2156
+ {
2157
+ "epoch": 3.769373837569746,
2158
+ "grad_norm": 1.327108383178711,
2159
+ "learning_rate": 0.0002,
2160
+ "loss": 0.7233,
2161
+ "step": 3040
2162
+ },
2163
+ {
2164
+ "epoch": 3.781773093614383,
2165
+ "grad_norm": 1.2039794921875,
2166
+ "learning_rate": 0.0002,
2167
+ "loss": 0.6109,
2168
+ "step": 3050
2169
+ },
2170
+ {
2171
+ "epoch": 3.7941723496590205,
2172
+ "grad_norm": 1.2900311946868896,
2173
+ "learning_rate": 0.0002,
2174
+ "loss": 0.7614,
2175
+ "step": 3060
2176
+ },
2177
+ {
2178
+ "epoch": 3.806571605703658,
2179
+ "grad_norm": 1.2003637552261353,
2180
+ "learning_rate": 0.0002,
2181
+ "loss": 0.7134,
2182
+ "step": 3070
2183
+ },
2184
+ {
2185
+ "epoch": 3.818970861748295,
2186
+ "grad_norm": 1.2668299674987793,
2187
+ "learning_rate": 0.0002,
2188
+ "loss": 0.7145,
2189
+ "step": 3080
2190
+ },
2191
+ {
2192
+ "epoch": 3.8313701177929325,
2193
+ "grad_norm": 1.5786389112472534,
2194
+ "learning_rate": 0.0002,
2195
+ "loss": 0.7429,
2196
+ "step": 3090
2197
+ },
2198
+ {
2199
+ "epoch": 3.84376937383757,
2200
+ "grad_norm": 1.283626675605774,
2201
+ "learning_rate": 0.0002,
2202
+ "loss": 0.7045,
2203
+ "step": 3100
2204
+ },
2205
+ {
2206
+ "epoch": 3.856168629882207,
2207
+ "grad_norm": 1.5252535343170166,
2208
+ "learning_rate": 0.0002,
2209
+ "loss": 0.6966,
2210
+ "step": 3110
2211
+ },
2212
+ {
2213
+ "epoch": 3.8685678859268444,
2214
+ "grad_norm": 1.152452826499939,
2215
+ "learning_rate": 0.0002,
2216
+ "loss": 0.6737,
2217
+ "step": 3120
2218
+ },
2219
+ {
2220
+ "epoch": 3.8809671419714817,
2221
+ "grad_norm": 1.3349536657333374,
2222
+ "learning_rate": 0.0002,
2223
+ "loss": 0.793,
2224
+ "step": 3130
2225
+ },
2226
+ {
2227
+ "epoch": 3.893366398016119,
2228
+ "grad_norm": 1.3839694261550903,
2229
+ "learning_rate": 0.0002,
2230
+ "loss": 0.7107,
2231
+ "step": 3140
2232
+ },
2233
+ {
2234
+ "epoch": 3.9057656540607564,
2235
+ "grad_norm": 1.668792724609375,
2236
+ "learning_rate": 0.0002,
2237
+ "loss": 0.8068,
2238
+ "step": 3150
2239
+ },
2240
+ {
2241
+ "epoch": 3.9181649101053937,
2242
+ "grad_norm": 1.598772644996643,
2243
+ "learning_rate": 0.0002,
2244
+ "loss": 0.6843,
2245
+ "step": 3160
2246
+ },
2247
+ {
2248
+ "epoch": 3.930564166150031,
2249
+ "grad_norm": 1.6434032917022705,
2250
+ "learning_rate": 0.0002,
2251
+ "loss": 0.6564,
2252
+ "step": 3170
2253
+ },
2254
+ {
2255
+ "epoch": 3.9429634221946683,
2256
+ "grad_norm": 1.5382963418960571,
2257
+ "learning_rate": 0.0002,
2258
+ "loss": 0.7559,
2259
+ "step": 3180
2260
+ },
2261
+ {
2262
+ "epoch": 3.9553626782393057,
2263
+ "grad_norm": 1.6733973026275635,
2264
+ "learning_rate": 0.0002,
2265
+ "loss": 0.7089,
2266
+ "step": 3190
2267
+ },
2268
+ {
2269
+ "epoch": 3.967761934283943,
2270
+ "grad_norm": 1.5769109725952148,
2271
+ "learning_rate": 0.0002,
2272
+ "loss": 0.7051,
2273
+ "step": 3200
2274
+ },
2275
+ {
2276
+ "epoch": 3.9801611903285803,
2277
+ "grad_norm": 1.5158107280731201,
2278
+ "learning_rate": 0.0002,
2279
+ "loss": 0.7548,
2280
+ "step": 3210
2281
+ },
2282
+ {
2283
+ "epoch": 3.9925604463732176,
2284
+ "grad_norm": 2.034385919570923,
2285
+ "learning_rate": 0.0002,
2286
+ "loss": 0.6742,
2287
+ "step": 3220
2288
+ },
2289
+ {
2290
+ "epoch": 4.0,
2291
+ "eval_loss": 1.3322206735610962,
2292
+ "eval_runtime": 127.309,
2293
+ "eval_samples_per_second": 3.582,
2294
+ "eval_steps_per_second": 0.448,
2295
+ "step": 3226
2296
+ },
2297
+ {
2298
+ "epoch": 4.004959702417855,
2299
+ "grad_norm": 1.1264082193374634,
2300
+ "learning_rate": 0.0002,
2301
+ "loss": 0.5965,
2302
+ "step": 3230
2303
+ },
2304
+ {
2305
+ "epoch": 4.017358958462492,
2306
+ "grad_norm": 2.171586275100708,
2307
+ "learning_rate": 0.0002,
2308
+ "loss": 0.5094,
2309
+ "step": 3240
2310
+ },
2311
+ {
2312
+ "epoch": 4.02975821450713,
2313
+ "grad_norm": 1.413804292678833,
2314
+ "learning_rate": 0.0002,
2315
+ "loss": 0.479,
2316
+ "step": 3250
2317
+ },
2318
+ {
2319
+ "epoch": 4.042157470551767,
2320
+ "grad_norm": 1.952918291091919,
2321
+ "learning_rate": 0.0002,
2322
+ "loss": 0.4871,
2323
+ "step": 3260
2324
+ },
2325
+ {
2326
+ "epoch": 4.054556726596404,
2327
+ "grad_norm": 1.3221994638442993,
2328
+ "learning_rate": 0.0002,
2329
+ "loss": 0.4945,
2330
+ "step": 3270
2331
+ },
2332
+ {
2333
+ "epoch": 4.0669559826410415,
2334
+ "grad_norm": 1.3864725828170776,
2335
+ "learning_rate": 0.0002,
2336
+ "loss": 0.5096,
2337
+ "step": 3280
2338
+ },
2339
+ {
2340
+ "epoch": 4.079355238685679,
2341
+ "grad_norm": 1.9392046928405762,
2342
+ "learning_rate": 0.0002,
2343
+ "loss": 0.4855,
2344
+ "step": 3290
2345
+ },
2346
+ {
2347
+ "epoch": 4.091754494730316,
2348
+ "grad_norm": 3.3523409366607666,
2349
+ "learning_rate": 0.0002,
2350
+ "loss": 0.4907,
2351
+ "step": 3300
2352
+ },
2353
+ {
2354
+ "epoch": 4.1041537507749535,
2355
+ "grad_norm": 1.8055517673492432,
2356
+ "learning_rate": 0.0002,
2357
+ "loss": 0.5436,
2358
+ "step": 3310
2359
+ },
2360
+ {
2361
+ "epoch": 4.116553006819591,
2362
+ "grad_norm": 1.217043399810791,
2363
+ "learning_rate": 0.0002,
2364
+ "loss": 0.5105,
2365
+ "step": 3320
2366
+ },
2367
+ {
2368
+ "epoch": 4.128952262864228,
2369
+ "grad_norm": 1.752600908279419,
2370
+ "learning_rate": 0.0002,
2371
+ "loss": 0.542,
2372
+ "step": 3330
2373
+ },
2374
+ {
2375
+ "epoch": 4.141351518908865,
2376
+ "grad_norm": 1.8071316480636597,
2377
+ "learning_rate": 0.0002,
2378
+ "loss": 0.4927,
2379
+ "step": 3340
2380
+ },
2381
+ {
2382
+ "epoch": 4.153750774953503,
2383
+ "grad_norm": 1.793209433555603,
2384
+ "learning_rate": 0.0002,
2385
+ "loss": 0.4872,
2386
+ "step": 3350
2387
+ },
2388
+ {
2389
+ "epoch": 4.16615003099814,
2390
+ "grad_norm": 1.6746844053268433,
2391
+ "learning_rate": 0.0002,
2392
+ "loss": 0.5381,
2393
+ "step": 3360
2394
+ },
2395
+ {
2396
+ "epoch": 4.178549287042777,
2397
+ "grad_norm": 1.5232614278793335,
2398
+ "learning_rate": 0.0002,
2399
+ "loss": 0.4707,
2400
+ "step": 3370
2401
+ },
2402
+ {
2403
+ "epoch": 4.190948543087415,
2404
+ "grad_norm": 1.7812004089355469,
2405
+ "learning_rate": 0.0002,
2406
+ "loss": 0.5028,
2407
+ "step": 3380
2408
+ },
2409
+ {
2410
+ "epoch": 4.203347799132052,
2411
+ "grad_norm": 2.0417628288269043,
2412
+ "learning_rate": 0.0002,
2413
+ "loss": 0.5712,
2414
+ "step": 3390
2415
+ },
2416
+ {
2417
+ "epoch": 4.215747055176689,
2418
+ "grad_norm": 1.4618799686431885,
2419
+ "learning_rate": 0.0002,
2420
+ "loss": 0.5198,
2421
+ "step": 3400
2422
+ },
2423
+ {
2424
+ "epoch": 4.228146311221327,
2425
+ "grad_norm": 2.140191078186035,
2426
+ "learning_rate": 0.0002,
2427
+ "loss": 0.4982,
2428
+ "step": 3410
2429
+ },
2430
+ {
2431
+ "epoch": 4.240545567265964,
2432
+ "grad_norm": 1.8133856058120728,
2433
+ "learning_rate": 0.0002,
2434
+ "loss": 0.5411,
2435
+ "step": 3420
2436
+ },
2437
+ {
2438
+ "epoch": 4.252944823310601,
2439
+ "grad_norm": 1.4271091222763062,
2440
+ "learning_rate": 0.0002,
2441
+ "loss": 0.5225,
2442
+ "step": 3430
2443
+ },
2444
+ {
2445
+ "epoch": 4.265344079355239,
2446
+ "grad_norm": 1.3198683261871338,
2447
+ "learning_rate": 0.0002,
2448
+ "loss": 0.5175,
2449
+ "step": 3440
2450
+ },
2451
+ {
2452
+ "epoch": 4.277743335399876,
2453
+ "grad_norm": 1.88148832321167,
2454
+ "learning_rate": 0.0002,
2455
+ "loss": 0.5247,
2456
+ "step": 3450
2457
+ },
2458
+ {
2459
+ "epoch": 4.290142591444513,
2460
+ "grad_norm": 1.277328372001648,
2461
+ "learning_rate": 0.0002,
2462
+ "loss": 0.5331,
2463
+ "step": 3460
2464
+ },
2465
+ {
2466
+ "epoch": 4.302541847489151,
2467
+ "grad_norm": 1.8816628456115723,
2468
+ "learning_rate": 0.0002,
2469
+ "loss": 0.5732,
2470
+ "step": 3470
2471
+ },
2472
+ {
2473
+ "epoch": 4.314941103533788,
2474
+ "grad_norm": 1.7252274751663208,
2475
+ "learning_rate": 0.0002,
2476
+ "loss": 0.5297,
2477
+ "step": 3480
2478
+ },
2479
+ {
2480
+ "epoch": 4.327340359578425,
2481
+ "grad_norm": 1.7671009302139282,
2482
+ "learning_rate": 0.0002,
2483
+ "loss": 0.4707,
2484
+ "step": 3490
2485
+ },
2486
+ {
2487
+ "epoch": 4.3397396156230625,
2488
+ "grad_norm": 1.9531593322753906,
2489
+ "learning_rate": 0.0002,
2490
+ "loss": 0.5508,
2491
+ "step": 3500
2492
+ },
2493
+ {
2494
+ "epoch": 4.3521388716677,
2495
+ "grad_norm": 2.207097053527832,
2496
+ "learning_rate": 0.0002,
2497
+ "loss": 0.5321,
2498
+ "step": 3510
2499
+ },
2500
+ {
2501
+ "epoch": 4.364538127712337,
2502
+ "grad_norm": 1.564458966255188,
2503
+ "learning_rate": 0.0002,
2504
+ "loss": 0.5312,
2505
+ "step": 3520
2506
+ },
2507
+ {
2508
+ "epoch": 4.3769373837569745,
2509
+ "grad_norm": 1.2955191135406494,
2510
+ "learning_rate": 0.0002,
2511
+ "loss": 0.4301,
2512
+ "step": 3530
2513
+ },
2514
+ {
2515
+ "epoch": 4.389336639801612,
2516
+ "grad_norm": 1.745345950126648,
2517
+ "learning_rate": 0.0002,
2518
+ "loss": 0.5036,
2519
+ "step": 3540
2520
+ },
2521
+ {
2522
+ "epoch": 4.401735895846249,
2523
+ "grad_norm": 1.7884204387664795,
2524
+ "learning_rate": 0.0002,
2525
+ "loss": 0.5743,
2526
+ "step": 3550
2527
+ },
2528
+ {
2529
+ "epoch": 4.4141351518908865,
2530
+ "grad_norm": 1.654018759727478,
2531
+ "learning_rate": 0.0002,
2532
+ "loss": 0.5793,
2533
+ "step": 3560
2534
+ },
2535
+ {
2536
+ "epoch": 4.426534407935524,
2537
+ "grad_norm": 2.1989598274230957,
2538
+ "learning_rate": 0.0002,
2539
+ "loss": 0.5579,
2540
+ "step": 3570
2541
+ },
2542
+ {
2543
+ "epoch": 4.438933663980161,
2544
+ "grad_norm": 1.7936158180236816,
2545
+ "learning_rate": 0.0002,
2546
+ "loss": 0.5972,
2547
+ "step": 3580
2548
+ },
2549
+ {
2550
+ "epoch": 4.451332920024798,
2551
+ "grad_norm": 1.3981733322143555,
2552
+ "learning_rate": 0.0002,
2553
+ "loss": 0.5629,
2554
+ "step": 3590
2555
+ },
2556
+ {
2557
+ "epoch": 4.463732176069436,
2558
+ "grad_norm": 2.0535473823547363,
2559
+ "learning_rate": 0.0002,
2560
+ "loss": 0.5179,
2561
+ "step": 3600
2562
+ },
2563
+ {
2564
+ "epoch": 4.476131432114073,
2565
+ "grad_norm": 1.6257543563842773,
2566
+ "learning_rate": 0.0002,
2567
+ "loss": 0.5872,
2568
+ "step": 3610
2569
+ },
2570
+ {
2571
+ "epoch": 4.48853068815871,
2572
+ "grad_norm": 1.5662637948989868,
2573
+ "learning_rate": 0.0002,
2574
+ "loss": 0.5461,
2575
+ "step": 3620
2576
+ },
2577
+ {
2578
+ "epoch": 4.500929944203348,
2579
+ "grad_norm": 1.8960483074188232,
2580
+ "learning_rate": 0.0002,
2581
+ "loss": 0.5815,
2582
+ "step": 3630
2583
+ },
2584
+ {
2585
+ "epoch": 4.513329200247985,
2586
+ "grad_norm": 1.3862426280975342,
2587
+ "learning_rate": 0.0002,
2588
+ "loss": 0.5599,
2589
+ "step": 3640
2590
+ },
2591
+ {
2592
+ "epoch": 4.525728456292622,
2593
+ "grad_norm": 1.855873942375183,
2594
+ "learning_rate": 0.0002,
2595
+ "loss": 0.5722,
2596
+ "step": 3650
2597
+ },
2598
+ {
2599
+ "epoch": 4.53812771233726,
2600
+ "grad_norm": 1.422516942024231,
2601
+ "learning_rate": 0.0002,
2602
+ "loss": 0.5686,
2603
+ "step": 3660
2604
+ },
2605
+ {
2606
+ "epoch": 4.550526968381897,
2607
+ "grad_norm": 1.4135394096374512,
2608
+ "learning_rate": 0.0002,
2609
+ "loss": 0.5521,
2610
+ "step": 3670
2611
+ },
2612
+ {
2613
+ "epoch": 4.562926224426534,
2614
+ "grad_norm": 1.860640287399292,
2615
+ "learning_rate": 0.0002,
2616
+ "loss": 0.5544,
2617
+ "step": 3680
2618
+ },
2619
+ {
2620
+ "epoch": 4.575325480471172,
2621
+ "grad_norm": 2.173950672149658,
2622
+ "learning_rate": 0.0002,
2623
+ "loss": 0.5778,
2624
+ "step": 3690
2625
+ },
2626
+ {
2627
+ "epoch": 4.587724736515809,
2628
+ "grad_norm": 1.5037490129470825,
2629
+ "learning_rate": 0.0002,
2630
+ "loss": 0.5598,
2631
+ "step": 3700
2632
+ },
2633
+ {
2634
+ "epoch": 4.600123992560446,
2635
+ "grad_norm": 1.5990253686904907,
2636
+ "learning_rate": 0.0002,
2637
+ "loss": 0.5129,
2638
+ "step": 3710
2639
+ },
2640
+ {
2641
+ "epoch": 4.612523248605084,
2642
+ "grad_norm": 1.2791721820831299,
2643
+ "learning_rate": 0.0002,
2644
+ "loss": 0.548,
2645
+ "step": 3720
2646
+ },
2647
+ {
2648
+ "epoch": 4.624922504649721,
2649
+ "grad_norm": 1.767350435256958,
2650
+ "learning_rate": 0.0002,
2651
+ "loss": 0.553,
2652
+ "step": 3730
2653
+ },
2654
+ {
2655
+ "epoch": 4.637321760694358,
2656
+ "grad_norm": 1.9509570598602295,
2657
+ "learning_rate": 0.0002,
2658
+ "loss": 0.5862,
2659
+ "step": 3740
2660
+ },
2661
+ {
2662
+ "epoch": 4.6497210167389955,
2663
+ "grad_norm": 1.6632015705108643,
2664
+ "learning_rate": 0.0002,
2665
+ "loss": 0.5838,
2666
+ "step": 3750
2667
+ },
2668
+ {
2669
+ "epoch": 4.662120272783633,
2670
+ "grad_norm": 1.7643373012542725,
2671
+ "learning_rate": 0.0002,
2672
+ "loss": 0.5603,
2673
+ "step": 3760
2674
+ },
2675
+ {
2676
+ "epoch": 4.67451952882827,
2677
+ "grad_norm": 1.7088392972946167,
2678
+ "learning_rate": 0.0002,
2679
+ "loss": 0.5575,
2680
+ "step": 3770
2681
+ },
2682
+ {
2683
+ "epoch": 4.6869187848729075,
2684
+ "grad_norm": 1.802544116973877,
2685
+ "learning_rate": 0.0002,
2686
+ "loss": 0.5595,
2687
+ "step": 3780
2688
+ },
2689
+ {
2690
+ "epoch": 4.699318040917545,
2691
+ "grad_norm": 1.8390076160430908,
2692
+ "learning_rate": 0.0002,
2693
+ "loss": 0.564,
2694
+ "step": 3790
2695
+ },
2696
+ {
2697
+ "epoch": 4.711717296962182,
2698
+ "grad_norm": 1.5216279029846191,
2699
+ "learning_rate": 0.0002,
2700
+ "loss": 0.6185,
2701
+ "step": 3800
2702
+ },
2703
+ {
2704
+ "epoch": 4.724116553006819,
2705
+ "grad_norm": 1.5545401573181152,
2706
+ "learning_rate": 0.0002,
2707
+ "loss": 0.5452,
2708
+ "step": 3810
2709
+ },
2710
+ {
2711
+ "epoch": 4.736515809051457,
2712
+ "grad_norm": 1.71843683719635,
2713
+ "learning_rate": 0.0002,
2714
+ "loss": 0.5512,
2715
+ "step": 3820
2716
+ },
2717
+ {
2718
+ "epoch": 4.748915065096094,
2719
+ "grad_norm": 2.1453139781951904,
2720
+ "learning_rate": 0.0002,
2721
+ "loss": 0.5768,
2722
+ "step": 3830
2723
+ },
2724
+ {
2725
+ "epoch": 4.761314321140731,
2726
+ "grad_norm": 2.3012070655822754,
2727
+ "learning_rate": 0.0002,
2728
+ "loss": 0.5805,
2729
+ "step": 3840
2730
+ },
2731
+ {
2732
+ "epoch": 4.773713577185369,
2733
+ "grad_norm": 1.6964452266693115,
2734
+ "learning_rate": 0.0002,
2735
+ "loss": 0.5789,
2736
+ "step": 3850
2737
+ },
2738
+ {
2739
+ "epoch": 4.786112833230006,
2740
+ "grad_norm": 1.7206791639328003,
2741
+ "learning_rate": 0.0002,
2742
+ "loss": 0.5861,
2743
+ "step": 3860
2744
+ },
2745
+ {
2746
+ "epoch": 4.798512089274643,
2747
+ "grad_norm": 1.5777926445007324,
2748
+ "learning_rate": 0.0002,
2749
+ "loss": 0.5877,
2750
+ "step": 3870
2751
+ },
2752
+ {
2753
+ "epoch": 4.810911345319281,
2754
+ "grad_norm": 1.7264010906219482,
2755
+ "learning_rate": 0.0002,
2756
+ "loss": 0.5583,
2757
+ "step": 3880
2758
+ },
2759
+ {
2760
+ "epoch": 4.823310601363918,
2761
+ "grad_norm": 1.6638274192810059,
2762
+ "learning_rate": 0.0002,
2763
+ "loss": 0.5259,
2764
+ "step": 3890
2765
+ },
2766
+ {
2767
+ "epoch": 4.835709857408555,
2768
+ "grad_norm": 1.8086934089660645,
2769
+ "learning_rate": 0.0002,
2770
+ "loss": 0.6181,
2771
+ "step": 3900
2772
+ },
2773
+ {
2774
+ "epoch": 4.848109113453193,
2775
+ "grad_norm": 1.5027598142623901,
2776
+ "learning_rate": 0.0002,
2777
+ "loss": 0.5042,
2778
+ "step": 3910
2779
+ },
2780
+ {
2781
+ "epoch": 4.86050836949783,
2782
+ "grad_norm": 1.8851488828659058,
2783
+ "learning_rate": 0.0002,
2784
+ "loss": 0.5322,
2785
+ "step": 3920
2786
+ },
2787
+ {
2788
+ "epoch": 4.872907625542467,
2789
+ "grad_norm": 1.2437249422073364,
2790
+ "learning_rate": 0.0002,
2791
+ "loss": 0.5928,
2792
+ "step": 3930
2793
+ },
2794
+ {
2795
+ "epoch": 4.885306881587105,
2796
+ "grad_norm": 1.7656266689300537,
2797
+ "learning_rate": 0.0002,
2798
+ "loss": 0.5724,
2799
+ "step": 3940
2800
+ },
2801
+ {
2802
+ "epoch": 4.897706137631742,
2803
+ "grad_norm": 1.3089631795883179,
2804
+ "learning_rate": 0.0002,
2805
+ "loss": 0.5116,
2806
+ "step": 3950
2807
+ },
2808
+ {
2809
+ "epoch": 4.910105393676379,
2810
+ "grad_norm": 1.8345088958740234,
2811
+ "learning_rate": 0.0002,
2812
+ "loss": 0.5473,
2813
+ "step": 3960
2814
+ },
2815
+ {
2816
+ "epoch": 4.9225046497210165,
2817
+ "grad_norm": 1.8577536344528198,
2818
+ "learning_rate": 0.0002,
2819
+ "loss": 0.5865,
2820
+ "step": 3970
2821
+ },
2822
+ {
2823
+ "epoch": 4.934903905765654,
2824
+ "grad_norm": 1.9529849290847778,
2825
+ "learning_rate": 0.0002,
2826
+ "loss": 0.6106,
2827
+ "step": 3980
2828
+ },
2829
+ {
2830
+ "epoch": 4.947303161810291,
2831
+ "grad_norm": 1.7244911193847656,
2832
+ "learning_rate": 0.0002,
2833
+ "loss": 0.5968,
2834
+ "step": 3990
2835
+ },
2836
+ {
2837
+ "epoch": 4.9597024178549285,
2838
+ "grad_norm": 1.7554820775985718,
2839
+ "learning_rate": 0.0002,
2840
+ "loss": 0.6262,
2841
+ "step": 4000
2842
+ },
2843
+ {
2844
+ "epoch": 4.972101673899566,
2845
+ "grad_norm": 1.5834285020828247,
2846
+ "learning_rate": 0.0002,
2847
+ "loss": 0.6047,
2848
+ "step": 4010
2849
+ },
2850
+ {
2851
+ "epoch": 4.984500929944203,
2852
+ "grad_norm": 2.1360528469085693,
2853
+ "learning_rate": 0.0002,
2854
+ "loss": 0.6312,
2855
+ "step": 4020
2856
+ },
2857
+ {
2858
+ "epoch": 4.9969001859888404,
2859
+ "grad_norm": 1.5836342573165894,
2860
+ "learning_rate": 0.0002,
2861
+ "loss": 0.5715,
2862
+ "step": 4030
2863
+ },
2864
+ {
2865
+ "epoch": 4.999380037197768,
2866
+ "eval_loss": 1.438460111618042,
2867
+ "eval_runtime": 126.5486,
2868
+ "eval_samples_per_second": 3.603,
2869
+ "eval_steps_per_second": 0.45,
2870
+ "step": 4032
2871
+ }
2872
+ ],
2873
+ "logging_steps": 10,
2874
+ "max_steps": 6448,
2875
+ "num_input_tokens_seen": 0,
2876
+ "num_train_epochs": 8,
2877
+ "save_steps": 200,
2878
+ "stateful_callbacks": {
2879
+ "TrainerControl": {
2880
+ "args": {
2881
+ "should_epoch_stop": false,
2882
+ "should_evaluate": false,
2883
+ "should_log": false,
2884
+ "should_save": true,
2885
+ "should_training_stop": false
2886
+ },
2887
+ "attributes": {}
2888
+ }
2889
+ },
2890
+ "total_flos": 1.76924835446784e+17,
2891
+ "train_batch_size": 1,
2892
+ "trial_name": null,
2893
+ "trial_params": null
2894
+ }