ManziBryan commited on
Commit
8efa7e2
·
1 Parent(s): 9b4f51b

Kinyarwanda Model

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -1
  2. Kinyarwanda_model.nemo +3 -0
  3. README.md +104 -0
  4. readme_template.md +102 -0
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
@@ -33,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ Kinyarwanda_nemo_stt_conformer_model.nemo filter=lfs diff=lfs merge=lfs -text
Kinyarwanda_model.nemo ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b96caae115055a37013539d5cc109f40b8994b8e323368b1116e543c9d7c0708
3
+ size 488570880
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - rw
4
+ license: cc-by-4.0
5
+ library_name: nemo
6
+ datasets:
7
+ - mozilla-foundation/common_voice_11_0
8
+ thumbnail: null
9
+ tags:
10
+ - automatic-speech-recognition
11
+ - speech
12
+ - audio
13
+ - CTC
14
+ - Conformer
15
+ - Transformer
16
+ - NeMo
17
+ - pytorch
18
+ model-index:
19
+ - name: Kinyarwanda_nemo_stt_conformer_model
20
+ results: []
21
+
22
+ ---
23
+ ## Model Source
24
+
25
+ Forked from https://huggingface.co/mbazaNLP/Kinyarwanda_nemo_stt_conformer_model
26
+
27
+ ## Model Overview
28
+
29
+ <DESCRIBE IN ONE LINE THE MODEL AND ITS USE>
30
+
31
+ ## NVIDIA NeMo: Training
32
+
33
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
34
+ ```
35
+ pip install nemo_toolkit['all']
36
+ ```
37
+
38
+ ## How to Use this Model
39
+
40
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
41
+
42
+ ### Automatically instantiate the model
43
+
44
+ ```python
45
+ import nemo.collections.asr as nemo_asr
46
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("mbazaNLP/Kinyarwanda_nemo_stt_conformer_model")
47
+ ```
48
+
49
+ ### Transcribing using Python
50
+ First, let's get a sample
51
+ ```
52
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
53
+ ```
54
+ Then simply do:
55
+ ```
56
+ asr_model.transcribe(['2086-149220-0033.wav'])
57
+ ```
58
+
59
+ ### Transcribing many audio files
60
+
61
+ ```shell
62
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="mbazaNLP/Kinyarwanda_nemo_stt_conformer_model" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
63
+ ```
64
+
65
+ ### Input
66
+
67
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
68
+
69
+ ### Output
70
+
71
+ This model provides transcribed speech as a string for a given audio sample.
72
+
73
+ ## Model Architecture
74
+
75
+ <ADD SOME INFORMATION ABOUT THE ARCHITECTURE>
76
+
77
+ ## Training
78
+
79
+ <ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC>
80
+
81
+ ### Datasets
82
+
83
+ <LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)>
84
+
85
+ ## Performance
86
+
87
+ <LIST THE SCORES OF THE MODEL -
88
+ OR
89
+ USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS>
90
+
91
+ ## Limitations
92
+
93
+ <DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>
94
+
95
+ Eg:
96
+ Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
97
+
98
+
99
+ ## References
100
+
101
+ <ADD ANY REFERENCES HERE AS NEEDED>
102
+
103
+ [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
104
+
readme_template.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - rw
4
+ license: cc-by-4.0
5
+ library_name: nemo
6
+ datasets:
7
+ - mozilla-foundation/common_voice_11_0
8
+ thumbnail: null
9
+ tags:
10
+ - automatic-speech-recognition
11
+ - speech
12
+ - audio
13
+ - CTC
14
+ - Conformer
15
+ - Transformer
16
+ - NeMo
17
+ - pytorch
18
+ model-index:
19
+ - name: Kinyarwanda_nemo_stt_conformer_model
20
+ results: []
21
+
22
+ ---
23
+
24
+
25
+ ## Model Overview
26
+
27
+ <DESCRIBE IN ONE LINE THE MODEL AND ITS USE>
28
+
29
+ ## NVIDIA NeMo: Training
30
+
31
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
32
+ ```
33
+ pip install nemo_toolkit['all']
34
+ ```
35
+
36
+ ## How to Use this Model
37
+
38
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
39
+
40
+ ### Automatically instantiate the model
41
+
42
+ ```python
43
+ import nemo.collections.asr as nemo_asr
44
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("mbazaNLP/Kinyarwanda_nemo_stt_conformer_model")
45
+ ```
46
+
47
+ ### Transcribing using Python
48
+ First, let's get a sample
49
+ ```
50
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
51
+ ```
52
+ Then simply do:
53
+ ```
54
+ asr_model.transcribe(['2086-149220-0033.wav'])
55
+ ```
56
+
57
+ ### Transcribing many audio files
58
+
59
+ ```shell
60
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="mbazaNLP/Kinyarwanda_nemo_stt_conformer_model" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
61
+ ```
62
+
63
+ ### Input
64
+
65
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
66
+
67
+ ### Output
68
+
69
+ This model provides transcribed speech as a string for a given audio sample.
70
+
71
+ ## Model Architecture
72
+
73
+ <ADD SOME INFORMATION ABOUT THE ARCHITECTURE>
74
+
75
+ ## Training
76
+
77
+ <ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC>
78
+
79
+ ### Datasets
80
+
81
+ <LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)>
82
+
83
+ ## Performance
84
+
85
+ <LIST THE SCORES OF THE MODEL -
86
+ OR
87
+ USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS>
88
+
89
+ ## Limitations
90
+
91
+ <DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>
92
+
93
+ Eg:
94
+ Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
95
+
96
+
97
+ ## References
98
+
99
+ <ADD ANY REFERENCES HERE AS NEEDED>
100
+
101
+ [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
102
+