jianqing666 commited on
Commit
070ec4e
·
verified ·
1 Parent(s): 88ec061

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -37
README.md CHANGED
@@ -6,54 +6,36 @@ language:
6
  - en
7
  ---
8
 
9
- # <b>MgGPT</b>
10
 
11
- MgGPT is a fully fine-tuned generative text model collection, particularly focused on the Arabic language domain.
12
- This is the repository for the version 2 of the 8B pre-trained model, developed based on [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)..
13
 
14
  ---
15
  ## Model Details
16
- We have released the MgGPT family of large language models, which is a collection of fully fine-tuned generative text models, ranging from 8B to 70B parameters. Our models include two main categories: MgGPT and MgGPT-chat. MgGPT-chat is an optimized version specifically designed for dialogue applications. It is worth mentioning that our models have demonstrated superior performance compared to all currently available open-source Arabic dialogue models in multiple benchmark tests. Furthermore, in our human evaluations, our models have shown comparable satisfaction levels to some closed-source models, such as ChatGPT, in the Arabic language.
 
 
17
  ## Variations
18
- MgGPT families come in a range of parameter sizes —— 8B, 13B, 32B and 70B, each size of model has a base category and a -chat category.
 
 
19
  ## Input
20
  Models input text only.
21
  ## Output
22
  Models output text only.
23
  ## Model Evaluation Results
24
 
25
- <!-- Arabic Benchmark evaluations on [Arabic MMLU](https://github.com/FreedomIntelligence/AceGPT) are conducted using accuracy scores as metrics, following the evaluation framework available at https://github.com/FreedomIntelligence/AceGPT/tree/main. -->
26
-
27
- | | Arabic-trans MMLU | ArabicMMLU (koto et al.) | Arabic EXAMS | Arabic ACVA clean | Arabic ACVA all | Arabic AraTrust | Arabic ARC-C | Arabic Avg. |
28
- | ----------------- | :-----------------: | :------------------------: | :------------: | :-----------------: | :---------------: | :---------------: | :------------: | :------------: |
29
- | Qwen1.5-7B | 42.14 | 46.41 | 38.34 | 75.17 | 75.88 | 54.21 | 45.56 | 53.96 |
30
- | Jais-30B-v3 | 43.42 | 44.47 | 45.78 | 83.39 | 79.51 | 62.64 | 45.56 | 57.82 |
31
- | Llama3-8B | 47.22 | 45.78 | 46.34 | 77.49 | 76.68 | 67.82 | 47.53 | 58.41 |
32
- | **MgGPT-8B** | 48.41 | 50.17 | 46.15 | 80.14 | 78.84 | 65.90 | 49.91 | 59.93 |
33
- | ChatGPT 3.5 Turbo | 49.07 | 57.70 | 45.93 | 74.45 | 76.88 | 65.13 | 60.24 | 61.34 |
34
- | Qwen1.5-32B | 55.90 | 55.94 | 52.84 | 78.91 | 80.07 | 69.34 | 67.66 | 65.81 |
35
- | Qwen1.5-72B | 60.24 | 61.23 | 54.41 | 82.98 | <u>81.20</u> | 75.93 | 76.79 | 70.40 |
36
- | **MgGPT-32B** | 58.71 | 65.67 | 52.74 | 82.66 | 81.04 | 80.46 | 71.69 | 70.42 |
37
- | Llama3-70B | <u>65.16</u> | 65.67 | 54.78 | 83.48 | **82.92** | 74.84 | 77.30 | 72.02 |
38
- | **MgGPT-70B** | **65.19** | <u>67.71</u> | <u>56.19</u> | **84.79** | 80.93 | <u>80.93</u> | <u>80.93</u> | <u>73.81</u> |
39
- | GPT-4 | 65.06 | **72.50** | **57.76** | <u>84.06</u> | 79.43 | **90.04** | **85.67** | **76.36** |
40
-
41
- Benchmarks for English and Chinese are conducted using the [OpenCompass](https://github.com/open-compass/OpenCompass/) framework.
42
-
43
- | | MMLU | RACE | English Avg. | CMMLU | CEval | Chinese Avg. | Avg. |
44
- | ----------------- | :------------: | :------------: | :------------: | :-------------: | :-------------: | :------------: | :------------: |
45
- | Jais-30B-v3 | 42.53 | 30.96 | 36.75 | 25.26 | 22.17 | 23.72 |30.23|
46
- | **MgGPT-8B** | 65.48 | 60.49 | 62.99 | 53.44 | 50.37 | 51.91 |57.45|
47
- | Llama3-8B | 66.57 | 65.92 | 66.25 | 50.70 | 49.78 | 50.24 |58.24|
48
- | ChatGPT 3.5 Turbo | 69.03 | 83.00 | 76.02 | 53.90 | 52.50 | 53.20 |64.60|
49
- | Qwen1.5-7B | 62.15 | 82.19 | 72.17 | 71.79 | 73.61 | 72.70 |72.44|
50
- | **MgGPT-70B** | 76.71 | 80.48 | 78.60 | 68.97 | 66.87 | 67.92 |73.26|
51
- | GPT-4 | **83.00** | **91.00** | **87.00** | 71.00 | 69.90 | 70.45 |78.73|
52
- | Llama3-70B | <u>79.34</u> | 84.76 | <u>82.05</u> | 68.29 | 67.21 | 67.75 |74.90|
53
- | Qwen1.5-32B | 75.10 | 83.29 | 79.20 | **83.12** | <u>82.68</u> | <u>82.90</u> |81.05|
54
- | **MgGPT-32B** | 74.52 | <u>88.68</u> | 81.60 | 81.36 | 82.41 | 81.89 |<u>81.74</u>|
55
- | Qwen1.5-72B | 75.78 | 88.23 | 82.01 | <u>83.11</u> | **83.04** | **83.08** |**82.54**|
56
-
57
 
58
 
59
  ## Samples
 
6
  - en
7
  ---
8
 
9
+ # <b>MgGPT-8B</b>
10
 
11
+ MgGPT-8B is a fully fine-tuned generative text model collection based on LlaMA3, particularly in the
12
+ Arabic language domain. This is the repository for the version of 8B pre-trained model.
13
 
14
  ---
15
  ## Model Details
16
+ We have released the MgGPT family of large language models, which is a collection of fully fine-tuned generative text models based on LlaMA2(MgGPT-7B, MgGPT-13B), LlaMA3(MgGPT-8B, MgGPT-70B), Qwen2(MgGPT-32B). Our models include two main categories: MgGPT and MgGPT-chat. MgGPT-chat is an optimized version specifically designed for dialogue applications. It is worth mentioning that our models have demonstrated superior performance compared to all currently available open-source Arabic dialogue models in multiple benchmark tests. Furthermore, in our human evaluations, our models have shown comparable satisfaction levels to some closed-source models, such as ChatGPT, in the Arabic language.
17
+ <!-- ## Model Developers
18
+ We are from the King Abdullah University of Science and Technology (KAUST), the Chinese University of Hong Kong, Shenzhen (CUHKSZ), the Shenzhen Research Institute of Big Data (SRIBD), and King AbdulAziz University (KAU). -->
19
  ## Variations
20
+ MgGPT families come in a range of parameter sizes —— 7B, 8B, 13B, 32B and 70B, each size of model has a base category and a -chat category.
21
+ <!-- ## Paper -->
22
+ <!-- The paper can be accessed at [link](https://huggingface.co/FreedomIntelligence/AceGPT-v1.5-13B-Chat/blob/main/Second_Language_(Arabic)_Acquisition_of_LLMs_via_Progressive_Vocabulary_Expansion.pdf). -->
23
  ## Input
24
  Models input text only.
25
  ## Output
26
  Models output text only.
27
  ## Model Evaluation Results
28
 
29
+ | Model | Avg. | [ArabicMMLU]((https://github.com/mbzuai-nlp/ArabicMMLU)) | [ArabicMMLU]((https://github.com/mbzuai-nlp/ArabicMMLU)) | ARC | EXAMs | ACVA (clean) | ACVA (all) |
30
+ |---------------|--------|----------------|-----------------------|-------|-------|--------------|------------|
31
+ | MgGPT-7B | 45.19 | 34.03 | 37.00 | 17.49 | 37.28 | 72.69 | 72.67 |
32
+ | **MgGPT-8B** | 58.94 | 48.41 | 50.17 | 49.91 | 46.15 | 80.14 | 78.84 |
33
+ | MgGPT-13B | 52.11 | 40.95 | 47.60 | 31.57 | 35.10 | 79.45 | 78.01 |
34
+ | MgGPT-32B | 68.75 | 58.71 | 65.67 | 71.69 | 52.74 | 82.66 | 81.04 |
35
+ | MgGPT-70B | 72.62 | 65.19 | 67.71 | 80.93 | 56.19 | 84.79 | 80.93 |
36
+ | Jais-30B-v3 | 57.02 | 43.42 | 44.47 | 45.56 | 45.70 | 83.39 | 79.51 |
37
+ | GPT-3.5 | 60.71 | 49.07 | 57.70 | 60.24 | 45.93 | 74.45 | 76.88 |
38
+ | GPT-4 | 74.08 | 65.06 | 72.50 | 85.67 | 57.76 | 84.06 | 79.43 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
 
41
  ## Samples