Update README.md
Browse files
README.md
CHANGED
@@ -1,40 +1,185 @@
|
|
1 |
---
|
2 |
license: llama3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
-
"
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: llama3
|
3 |
+
language:
|
4 |
+
- tr
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
7 |
+
|
8 |
+
model-index:
|
9 |
+
- name: LLaMA-3-8B-Instruct-Abliterated-TR
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: multiple-choice
|
13 |
+
dataset:
|
14 |
+
type: multiple-choice
|
15 |
+
name: MMLU_TR_V0.2
|
16 |
+
metrics:
|
17 |
+
- name: 5-shot
|
18 |
+
type: 5-shot
|
19 |
+
value: 0.4908
|
20 |
+
verified: false
|
21 |
+
- task:
|
22 |
+
type: multiple-choice
|
23 |
+
dataset:
|
24 |
+
type: multiple-choice
|
25 |
+
name: Truthful_QA_V0.2
|
26 |
+
metrics:
|
27 |
+
- name: 0-shot
|
28 |
+
type: 0-shot
|
29 |
+
value: 0.4962
|
30 |
+
verified: false
|
31 |
+
- task:
|
32 |
+
type: multiple-choice
|
33 |
+
dataset:
|
34 |
+
type: multiple-choice
|
35 |
+
name: ARC_TR_V0.2
|
36 |
+
metrics:
|
37 |
+
- name: 25-shot
|
38 |
+
type: 25-shot
|
39 |
+
value: 0.4377
|
40 |
+
verified: false
|
41 |
+
- task:
|
42 |
+
type: multiple-choice
|
43 |
+
dataset:
|
44 |
+
type: multiple-choice
|
45 |
+
name: HellaSwag_TR_V0.2
|
46 |
+
metrics:
|
47 |
+
- name: 10-shot
|
48 |
+
type: 10-shot
|
49 |
+
value: 0.4486
|
50 |
+
verified: false
|
51 |
+
- task:
|
52 |
+
type: multiple-choice
|
53 |
+
dataset:
|
54 |
+
type: multiple-choice
|
55 |
+
name: GSM8K_TR_V0.2
|
56 |
+
metrics:
|
57 |
+
- name: 5-shot
|
58 |
+
type: 5-shot
|
59 |
+
value: 0.5323
|
60 |
+
verified: false
|
61 |
+
- task:
|
62 |
+
type: multiple-choice
|
63 |
+
dataset:
|
64 |
+
type: multiple-choice
|
65 |
+
name: Winogrande_TR_V0.2
|
66 |
+
metrics:
|
67 |
+
- name: 5-shot
|
68 |
+
type: 5-shot
|
69 |
+
value: 0.5513
|
70 |
+
verified: false
|
71 |
---
|
72 |
|
73 |
+
<img src=""
|
74 |
+
alt="A Llama with a band-aid on its head." width="420"/>
|
75 |
+
|
76 |
+
# What is abliteration?
|
77 |
+
Arditi et al. demonstrated in their [blog post](https://www.lesswrong.com/posts/jGuXSZgv6qfdhMCuJ/refusal-in-llms-is-mediated-by-a-single-direction) that refusal in LLMs is mediated by a single direction in the residual stream. They found that preventing the model from representing this direction can enable it to answer harmful questions. For a deeper understanding of this concept, you can refer to [Maxime Labonne's article](https://huggingface.co/blog/mlabonne/abliteration) on the topic.
|
78 |
+
|
79 |
+
To force the model to respond in Turkish, parallel instructions were crafted using the [stackexchange subset](https://huggingface.co/datasets/GAIR/lima/viewer/plain_text/train?f[source][value]=%27stackexchange%27) of the LIMA dataset. These instructions were then translated into Turkish, with an additional sentence appended during runtime, prompting the model to answer in Turkish.
|
80 |
+
|
81 |
+
You can find the datasets used in this experiment via the following links:
|
82 |
+
|
83 |
+
1. https://huggingface.co/datasets/Metin/abliteration_en
|
84 |
+
2. https://huggingface.co/datasets/Metin/abliteration_tr
|
85 |
+
|
86 |
+
# LLaMA-3-8B-Instruct-Abliterated-TR
|
87 |
+
|
88 |
+
LLaMA-3-8B-Instruct-Abliterated-TR is the abliterated version of [Meta-LLaMA-3-8B-Instruct](https://huggingface.co/meta-llama/meta-llama-3-8b-instruct)
|
89 |
+
|
90 |
+
## Details:
|
91 |
+
|
92 |
+
- 40 samples were used to find the difference of means between activations.
|
93 |
+
- Layer 7 is selected as the layer with the highest potential Turkish speaking direction.
|
94 |
+
|
95 |
+
## How to use
|
96 |
+
|
97 |
+
You can use the below code snippet to use the model:
|
98 |
+
|
99 |
+
```python
|
100 |
+
from transformers import BitsAndBytesConfig
|
101 |
+
import transformers
|
102 |
+
import torch
|
103 |
+
|
104 |
+
bnb_config = BitsAndBytesConfig(
|
105 |
+
load_in_4bit=True,
|
106 |
+
bnb_4bit_use_double_quant=True,
|
107 |
+
bnb_4bit_quant_type="nf4",
|
108 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
109 |
+
)
|
110 |
+
|
111 |
+
model_id = "Metin/LLaMA-3-8B-Instruct-Abliterated-TR"
|
112 |
+
|
113 |
+
pipeline = transformers.pipeline(
|
114 |
+
"text-generation",
|
115 |
+
model=model_id,
|
116 |
+
model_kwargs={"torch_dtype": torch.bfloat16 ,'quantization_config': bnb_config},
|
117 |
+
device_map="auto",
|
118 |
+
)
|
119 |
+
|
120 |
+
messages = [
|
121 |
+
{"role": "system", "content": "You are a helpful assistant."}, # Ideally we should not have to tell the model to answer in Turkish after abliteration.
|
122 |
+
{"role": "user", "content": "Python'da bir öğenin bir listede geçip geçmediğini nasıl kontrol edebilirim?"},
|
123 |
+
]
|
124 |
+
|
125 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
126 |
+
messages,
|
127 |
+
tokenize=False,
|
128 |
+
add_generation_prompt=True
|
129 |
+
)
|
130 |
+
|
131 |
+
terminators = [
|
132 |
+
pipeline.tokenizer.eos_token_id,
|
133 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
134 |
+
]
|
135 |
+
|
136 |
+
outputs = pipeline(
|
137 |
+
prompt,
|
138 |
+
max_new_tokens=512,
|
139 |
+
eos_token_id=terminators,
|
140 |
+
do_sample=True,
|
141 |
+
temperature=0.2,
|
142 |
+
top_p=0.9,
|
143 |
+
)
|
144 |
+
|
145 |
+
print(outputs[0]["generated_text"][len(prompt):])
|
146 |
+
```
|
147 |
+
|
148 |
+
## OpenLLMTurkishLeaderboard_v0.2 benchmark results
|
149 |
+
|
150 |
+
- **MMLU_TR_V0.2**: 49.08%
|
151 |
+
- **Truthful_QA_TR_V0.2**: 49.62%
|
152 |
+
- **ARC_TR_V0.2**: 43.77%
|
153 |
+
- **HellaSwag_TR_V0.2**: 44.86%
|
154 |
+
- **GSM8K_TR_V0.2**: 53.23%
|
155 |
+
- **Winogrande_TR_V0.2**: 55.13%
|
156 |
+
- **Average**: 49.28%
|
157 |
+
|
158 |
+
These scores may differ from what you will get when you run the same benchmarks, as I did not use any inference engine (vLLM, TensorRT-LLM, etc.)
|
159 |
+
|
160 |
+
## Output Example (Abliterated Model vs Base Model)
|
161 |
+
|
162 |
+
Testing the model with a single example is not an accurate method. However, an example is provided here to showcase the model's capabilities.
|
163 |
+
|
164 |
+
### Model: LLaMA-3-8B-Instruct-Abliterated-TR
|
165 |
+
|
166 |
+
#### Input
|
167 |
+
|
168 |
+
```plaintext
|
169 |
+
TODO
|
170 |
+
```
|
171 |
+
|
172 |
+
#### Output
|
173 |
+
|
174 |
+
```plaintext
|
175 |
+
TODO
|
176 |
+
```
|
177 |
+
|
178 |
+
### Model: LLaMA-3-8B-Instruct
|
179 |
+
|
180 |
+
#### Input
|
181 |
+
|
182 |
+
```plaintext
|
183 |
+
TODO
|
184 |
+
```
|
185 |
+
|