--- library_name: transformers license: apache-2.0 base_model: facebook/vit-msn-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-wbc-blur-detector results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.92511454202441 --- # vit-msn-small-wbc-blur-detector This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2045 - Accuracy: 0.9251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3471 | 1.0 | 208 | 0.2960 | 0.8940 | | 0.3113 | 2.0 | 416 | 0.2551 | 0.9088 | | 0.3104 | 3.0 | 624 | 0.2106 | 0.9212 | | 0.2855 | 4.0 | 832 | 0.2101 | 0.9221 | | 0.2497 | 5.0 | 1040 | 0.2045 | 0.9251 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1