Model save
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -54,80 +54,25 @@ More information needed
|
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
- learning_rate: 5e-05
|
57 |
-
- train_batch_size:
|
58 |
-
- eval_batch_size:
|
59 |
- seed: 42
|
60 |
- gradient_accumulation_steps: 4
|
61 |
-
- total_train_batch_size:
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
65 |
-
- num_epochs:
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.494 | 6.0 | 18 | 0.1527 | 0.9457 |
|
77 |
-
| 0.2024 | 7.0 | 21 | 0.3323 | 0.9022 |
|
78 |
-
| 0.2024 | 8.0 | 24 | 0.1520 | 0.9457 |
|
79 |
-
| 0.2024 | 9.0 | 27 | 0.1572 | 0.9457 |
|
80 |
-
| 0.1419 | 10.0 | 30 | 0.1814 | 0.9348 |
|
81 |
-
| 0.1419 | 11.0 | 33 | 0.1778 | 0.9348 |
|
82 |
-
| 0.1419 | 12.0 | 36 | 0.1505 | 0.9348 |
|
83 |
-
| 0.1419 | 13.0 | 39 | 0.1891 | 0.9457 |
|
84 |
-
| 0.1053 | 14.0 | 42 | 0.7274 | 0.7935 |
|
85 |
-
| 0.1053 | 15.0 | 45 | 0.2669 | 0.9348 |
|
86 |
-
| 0.1053 | 16.0 | 48 | 0.2240 | 0.9348 |
|
87 |
-
| 0.3044 | 17.0 | 51 | 0.3497 | 0.8913 |
|
88 |
-
| 0.3044 | 18.0 | 54 | 0.2208 | 0.9348 |
|
89 |
-
| 0.3044 | 19.0 | 57 | 0.1733 | 0.9565 |
|
90 |
-
| 0.151 | 20.0 | 60 | 0.2038 | 0.9239 |
|
91 |
-
| 0.151 | 21.0 | 63 | 0.1282 | 0.9565 |
|
92 |
-
| 0.151 | 22.0 | 66 | 0.3231 | 0.9239 |
|
93 |
-
| 0.151 | 23.0 | 69 | 0.1565 | 0.9565 |
|
94 |
-
| 0.0875 | 24.0 | 72 | 0.1981 | 0.9457 |
|
95 |
-
| 0.0875 | 25.0 | 75 | 0.1974 | 0.9457 |
|
96 |
-
| 0.0875 | 26.0 | 78 | 0.2045 | 0.9457 |
|
97 |
-
| 0.0851 | 27.0 | 81 | 0.1841 | 0.9457 |
|
98 |
-
| 0.0851 | 28.0 | 84 | 0.2061 | 0.9565 |
|
99 |
-
| 0.0851 | 29.0 | 87 | 0.2077 | 0.9457 |
|
100 |
-
| 0.046 | 30.0 | 90 | 0.2199 | 0.9565 |
|
101 |
-
| 0.046 | 31.0 | 93 | 0.2038 | 0.9565 |
|
102 |
-
| 0.046 | 32.0 | 96 | 0.2077 | 0.9457 |
|
103 |
-
| 0.046 | 33.0 | 99 | 0.1877 | 0.9565 |
|
104 |
-
| 0.0533 | 34.0 | 102 | 0.2383 | 0.9348 |
|
105 |
-
| 0.0533 | 35.0 | 105 | 0.2571 | 0.9239 |
|
106 |
-
| 0.0533 | 36.0 | 108 | 0.2330 | 0.9565 |
|
107 |
-
| 0.0451 | 37.0 | 111 | 0.2420 | 0.9457 |
|
108 |
-
| 0.0451 | 38.0 | 114 | 0.2882 | 0.9239 |
|
109 |
-
| 0.0451 | 39.0 | 117 | 0.2386 | 0.9457 |
|
110 |
-
| 0.0401 | 40.0 | 120 | 0.2513 | 0.9348 |
|
111 |
-
| 0.0401 | 41.0 | 123 | 0.2672 | 0.9348 |
|
112 |
-
| 0.0401 | 42.0 | 126 | 0.2950 | 0.9457 |
|
113 |
-
| 0.0401 | 43.0 | 129 | 0.3232 | 0.9457 |
|
114 |
-
| 0.0329 | 44.0 | 132 | 0.3712 | 0.9239 |
|
115 |
-
| 0.0329 | 45.0 | 135 | 0.3529 | 0.9348 |
|
116 |
-
| 0.0329 | 46.0 | 138 | 0.2905 | 0.9457 |
|
117 |
-
| 0.0519 | 47.0 | 141 | 0.2670 | 0.9457 |
|
118 |
-
| 0.0519 | 48.0 | 144 | 0.2629 | 0.9457 |
|
119 |
-
| 0.0519 | 49.0 | 147 | 0.2761 | 0.9457 |
|
120 |
-
| 0.0281 | 50.0 | 150 | 0.3040 | 0.9457 |
|
121 |
-
| 0.0281 | 51.0 | 153 | 0.3191 | 0.9457 |
|
122 |
-
| 0.0281 | 52.0 | 156 | 0.3214 | 0.9457 |
|
123 |
-
| 0.0281 | 53.0 | 159 | 0.3132 | 0.9457 |
|
124 |
-
| 0.028 | 54.0 | 162 | 0.3115 | 0.9457 |
|
125 |
-
| 0.028 | 55.0 | 165 | 0.3116 | 0.9565 |
|
126 |
-
| 0.028 | 56.0 | 168 | 0.3225 | 0.9457 |
|
127 |
-
| 0.0361 | 57.0 | 171 | 0.3235 | 0.9457 |
|
128 |
-
| 0.0361 | 58.0 | 174 | 0.3200 | 0.9457 |
|
129 |
-
| 0.0361 | 59.0 | 177 | 0.3183 | 0.9457 |
|
130 |
-
| 0.0312 | 60.0 | 180 | 0.3181 | 0.9457 |
|
131 |
|
132 |
|
133 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.92511454202441
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.2045
|
37 |
+
- Accuracy: 0.9251
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 64
|
58 |
+
- eval_batch_size: 64
|
59 |
- seed: 42
|
60 |
- gradient_accumulation_steps: 4
|
61 |
+
- total_train_batch_size: 256
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
65 |
+
- num_epochs: 5
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.3471 | 1.0 | 208 | 0.2960 | 0.8940 |
|
72 |
+
| 0.3113 | 2.0 | 416 | 0.2551 | 0.9088 |
|
73 |
+
| 0.3104 | 3.0 | 624 | 0.2106 | 0.9212 |
|
74 |
+
| 0.2855 | 4.0 | 832 | 0.2101 | 0.9221 |
|
75 |
+
| 0.2497 | 5.0 | 1040 | 0.2045 | 0.9251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
### Framework versions
|