--- library_name: transformers license: apache-2.0 base_model: facebook/vit-msn-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-corect_deepcleaned_dataset_lateral_flow_ivalidation results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9194139194139194 --- # vit-msn-small-corect_deepcleaned_dataset_lateral_flow_ivalidation This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2229 - Accuracy: 0.9194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9231 | 3 | 0.6175 | 0.7216 | | No log | 1.8462 | 6 | 0.4141 | 0.8352 | | No log | 2.7692 | 9 | 0.7408 | 0.5788 | | 0.5817 | 4.0 | 13 | 0.2757 | 0.9158 | | 0.5817 | 4.9231 | 16 | 0.2847 | 0.8791 | | 0.5817 | 5.8462 | 19 | 0.2456 | 0.9011 | | 0.3724 | 6.7692 | 22 | 0.2547 | 0.9121 | | 0.3724 | 8.0 | 26 | 0.3007 | 0.8828 | | 0.3724 | 8.9231 | 29 | 0.3043 | 0.9011 | | 0.3155 | 9.8462 | 32 | 0.2603 | 0.9048 | | 0.3155 | 10.7692 | 35 | 0.2481 | 0.9158 | | 0.3155 | 12.0 | 39 | 0.2229 | 0.9194 | | 0.2844 | 12.9231 | 42 | 0.3036 | 0.8791 | | 0.2844 | 13.8462 | 45 | 0.2579 | 0.9084 | | 0.2844 | 14.7692 | 48 | 0.2434 | 0.9158 | | 0.2517 | 16.0 | 52 | 0.2718 | 0.9048 | | 0.2517 | 16.9231 | 55 | 0.2513 | 0.9121 | | 0.2517 | 17.8462 | 58 | 0.2503 | 0.9121 | | 0.2468 | 18.4615 | 60 | 0.2491 | 0.9121 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1