--- library_name: transformers license: apache-2.0 base_model: facebook/vit-msn-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-beta-fia-manually-enhanced_test_1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7464788732394366 --- # vit-msn-small-beta-fia-manually-enhanced_test_1 This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7014 - Accuracy: 0.7465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 50 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.5714 | 1 | 0.9554 | 0.3732 | | No log | 1.7143 | 3 | 0.9304 | 0.5211 | | No log | 2.8571 | 5 | 0.8979 | 0.6338 | | No log | 4.0 | 7 | 0.8770 | 0.6479 | | No log | 4.5714 | 8 | 0.8595 | 0.6408 | | 0.877 | 5.7143 | 10 | 0.8456 | 0.5634 | | 0.877 | 6.8571 | 12 | 0.8825 | 0.4859 | | 0.877 | 8.0 | 14 | 0.8294 | 0.5563 | | 0.877 | 8.5714 | 15 | 0.7883 | 0.6197 | | 0.877 | 9.7143 | 17 | 0.7541 | 0.6549 | | 0.877 | 10.8571 | 19 | 0.7689 | 0.6690 | | 0.7053 | 12.0 | 21 | 0.7652 | 0.6620 | | 0.7053 | 12.5714 | 22 | 0.7496 | 0.6690 | | 0.7053 | 13.7143 | 24 | 0.7139 | 0.7183 | | 0.7053 | 14.8571 | 26 | 0.7014 | 0.7465 | | 0.7053 | 16.0 | 28 | 0.7290 | 0.7183 | | 0.7053 | 16.5714 | 29 | 0.7431 | 0.6901 | | 0.6176 | 17.7143 | 31 | 0.7498 | 0.6690 | | 0.6176 | 18.8571 | 33 | 0.7439 | 0.6761 | | 0.6176 | 20.0 | 35 | 0.7347 | 0.6972 | | 0.6176 | 20.5714 | 36 | 0.7377 | 0.6901 | | 0.6176 | 21.7143 | 38 | 0.7227 | 0.6901 | | 0.6053 | 22.8571 | 40 | 0.7228 | 0.7042 | | 0.6053 | 24.0 | 42 | 0.7282 | 0.6901 | | 0.6053 | 24.5714 | 43 | 0.7363 | 0.6761 | | 0.6053 | 25.7143 | 45 | 0.7431 | 0.6831 | | 0.6053 | 26.8571 | 47 | 0.7450 | 0.6831 | | 0.6053 | 28.0 | 49 | 0.7455 | 0.6761 | | 0.5926 | 28.5714 | 50 | 0.7447 | 0.6761 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1