--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: na_voice_clon results: [] --- # na_voice_clon This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.9913 | 1.1905 | 50 | 0.8766 | | 0.9763 | 2.3810 | 100 | 0.8198 | | 0.9234 | 3.5714 | 150 | 0.7816 | | 0.8756 | 4.7619 | 200 | 0.7637 | | 0.8449 | 5.9524 | 250 | 0.7322 | | 0.7719 | 7.1429 | 300 | 0.6737 | | 0.7254 | 8.3333 | 350 | 0.6366 | | 0.6845 | 9.5238 | 400 | 0.6195 | | 0.6737 | 10.7143 | 450 | 0.6131 | | 0.6689 | 11.9048 | 500 | 0.6178 | | 0.6595 | 13.0952 | 550 | 0.6039 | | 0.655 | 14.2857 | 600 | 0.6046 | | 0.6514 | 15.4762 | 650 | 0.5944 | | 0.6478 | 16.6667 | 700 | 0.5940 | | 0.6327 | 17.8571 | 750 | 0.5939 | | 0.6418 | 19.0476 | 800 | 0.5938 | | 0.6329 | 20.2381 | 850 | 0.5887 | | 0.6364 | 21.4286 | 900 | 0.5906 | | 0.6284 | 22.6190 | 950 | 0.5887 | | 0.6238 | 23.8095 | 1000 | 0.5865 | | 0.624 | 25.0 | 1050 | 0.5859 | | 0.6163 | 26.1905 | 1100 | 0.5845 | | 0.6254 | 27.3810 | 1150 | 0.5840 | | 0.6168 | 28.5714 | 1200 | 0.5831 | | 0.6141 | 29.7619 | 1250 | 0.5791 | | 0.614 | 30.9524 | 1300 | 0.5835 | | 0.6121 | 32.1429 | 1350 | 0.5788 | | 0.6227 | 33.3333 | 1400 | 0.5785 | | 0.6198 | 34.5238 | 1450 | 0.5775 | | 0.6142 | 35.7143 | 1500 | 0.5803 | | 0.6183 | 36.9048 | 1550 | 0.5765 | | 0.6161 | 38.0952 | 1600 | 0.5781 | | 0.6061 | 39.2857 | 1650 | 0.5768 | | 0.6167 | 40.4762 | 1700 | 0.5773 | | 0.6063 | 41.6667 | 1750 | 0.5775 | | 0.6107 | 42.8571 | 1800 | 0.5777 | | 0.6084 | 44.0476 | 1850 | 0.5772 | | 0.6074 | 45.2381 | 1900 | 0.5757 | | 0.6023 | 46.4286 | 1950 | 0.5766 | | 0.6077 | 47.6190 | 2000 | 0.5806 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0