{ "name": "root", "gauges": { "Pyramids.Policy.Entropy.mean": { "value": 0.17025338113307953, "min": 0.14944949746131897, "max": 1.386743187904358, "count": 100 }, "Pyramids.Policy.Entropy.sum": { "value": 5044.9482421875, "min": 4423.705078125, "max": 42068.2421875, "count": 100 }, "Pyramids.Step.mean": { "value": 2999968.0, "min": 29952.0, "max": 2999968.0, "count": 100 }, "Pyramids.Step.sum": { "value": 2999968.0, "min": 29952.0, "max": 2999968.0, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.mean": { "value": 0.8172018527984619, "min": -0.13209950923919678, "max": 0.8467546105384827, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.sum": { "value": 241.89175415039062, "min": -31.835981369018555, "max": 256.9213562011719, "count": 100 }, "Pyramids.Policy.RndValueEstimate.mean": { "value": 0.020818013697862625, "min": -0.022503165528178215, "max": 0.4203815460205078, "count": 100 }, "Pyramids.Policy.RndValueEstimate.sum": { "value": 6.162132263183594, "min": -6.458408355712891, "max": 99.63042449951172, "count": 100 }, "Pyramids.Losses.PolicyLoss.mean": { "value": 0.06577292206283245, "min": 0.0636873666342336, "max": 0.07395852262492379, "count": 100 }, "Pyramids.Losses.PolicyLoss.sum": { "value": 0.9865938309424868, "min": 0.5071982691034704, "max": 1.0963826900115237, "count": 100 }, "Pyramids.Losses.ValueLoss.mean": { "value": 0.01426170475056602, "min": 0.000149989346062057, "max": 0.017842259141616523, "count": 100 }, "Pyramids.Losses.ValueLoss.sum": { "value": 0.21392557125849032, "min": 0.001649882806682627, "max": 0.24979162798263133, "count": 100 }, "Pyramids.Policy.LearningRate.mean": { "value": 1.4759728413755528e-06, "min": 1.4759728413755528e-06, "max": 0.00029838354339596195, "count": 100 }, "Pyramids.Policy.LearningRate.sum": { "value": 2.213959262063329e-05, "min": 2.213959262063329e-05, "max": 0.0038017656327448326, "count": 100 }, "Pyramids.Policy.Epsilon.mean": { "value": 0.1004919577777778, "min": 0.1004919577777778, "max": 0.19946118095238097, "count": 100 }, "Pyramids.Policy.Epsilon.sum": { "value": 1.5073793666666668, "min": 1.3962282666666668, "max": 2.7225542333333337, "count": 100 }, "Pyramids.Policy.Beta.mean": { "value": 5.914658199999991e-05, "min": 5.914658199999991e-05, "max": 0.009946171977142856, "count": 100 }, "Pyramids.Policy.Beta.sum": { "value": 0.0008871987299999987, "min": 0.0008871987299999987, "max": 0.12673879115000003, "count": 100 }, "Pyramids.Losses.RNDLoss.mean": { "value": 0.00632007559761405, "min": 0.006142762023955584, "max": 0.40981340408325195, "count": 100 }, "Pyramids.Losses.RNDLoss.sum": { "value": 0.09480113536119461, "min": 0.08599866926670074, "max": 2.8686938285827637, "count": 100 }, "Pyramids.Environment.EpisodeLength.mean": { "value": 224.390625, "min": 211.42857142857142, "max": 999.0, "count": 100 }, "Pyramids.Environment.EpisodeLength.sum": { "value": 28722.0, "min": 15984.0, "max": 33251.0, "count": 100 }, "Pyramids.Environment.CumulativeReward.mean": { "value": 1.7752968621207401, "min": -1.0000000521540642, "max": 1.789630117889953, "count": 100 }, "Pyramids.Environment.CumulativeReward.sum": { "value": 227.23799835145473, "min": -30.999001622200012, "max": 261.28599721193314, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.mean": { "value": 1.7752968621207401, "min": -1.0000000521540642, "max": 1.789630117889953, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.sum": { "value": 227.23799835145473, "min": -30.999001622200012, "max": 261.28599721193314, "count": 100 }, "Pyramids.Policy.RndReward.mean": { "value": 0.014845759210970755, "min": 0.014325044185095802, "max": 7.842225390486419, "count": 100 }, "Pyramids.Policy.RndReward.sum": { "value": 1.9002571790042566, "min": 1.8713174743461423, "max": 125.47560624778271, "count": 100 }, "Pyramids.IsTraining.mean": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 }, "Pyramids.IsTraining.sum": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 } }, "metadata": { "timer_format_version": "0.1.0", "start_time_seconds": "1679295953", "python_version": "3.9.16 (main, Mar 8 2023, 14:00:05) \n[GCC 11.2.0]", "command_line_arguments": "/opt/conda/envs/ml2/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics", "mlagents_version": "0.31.0.dev0", "mlagents_envs_version": "0.31.0.dev0", "communication_protocol_version": "1.5.0", "pytorch_version": "1.11.0+cu115", "numpy_version": "1.21.2", "end_time_seconds": "1679302586" }, "total": 6632.613298296994, "count": 1, "self": 0.5290249379977467, "children": { "run_training.setup": { "total": 0.015625788997567724, "count": 1, "self": 0.015625788997567724 }, "TrainerController.start_learning": { "total": 6632.068647569999, "count": 1, "self": 5.153155992193206, "children": { "TrainerController._reset_env": { "total": 6.332068398995034, "count": 1, "self": 6.332068398995034 }, "TrainerController.advance": { "total": 6620.427630555794, "count": 194960, "self": 5.296379827304918, "children": { "env_step": { "total": 4270.302283916091, "count": 194960, "self": 3481.912998950298, "children": { "SubprocessEnvManager._take_step": { "total": 785.1104840326007, "count": 194960, "self": 16.8415160821678, "children": { "TorchPolicy.evaluate": { "total": 768.2689679504329, "count": 187543, "self": 768.2689679504329 } } }, "workers": { "total": 3.2788009331925423, "count": 194960, "self": 0.0, "children": { "worker_root": { "total": 6621.544129394875, "count": 194960, "is_parallel": true, "self": 3452.1718441081684, "children": { "run_training.setup": { "total": 0.0, "count": 0, "is_parallel": true, "self": 0.0, "children": { "steps_from_proto": { "total": 0.0012210179993417114, "count": 1, "is_parallel": true, "self": 0.000425993996032048, "children": { "_process_rank_one_or_two_observation": { "total": 0.0007950240033096634, "count": 8, "is_parallel": true, "self": 0.0007950240033096634 } } }, "UnityEnvironment.step": { "total": 0.049499485998239834, "count": 1, "is_parallel": true, "self": 0.0003418380001676269, "children": { "UnityEnvironment._generate_step_input": { "total": 0.0006594250007765368, "count": 1, "is_parallel": true, "self": 0.0006594250007765368 }, "communicator.exchange": { "total": 0.047462796996114776, "count": 1, "is_parallel": true, "self": 0.047462796996114776 }, "steps_from_proto": { "total": 0.0010354260011808947, "count": 1, "is_parallel": true, "self": 0.00035914600448450074, "children": { "_process_rank_one_or_two_observation": { "total": 0.0006762799966963939, "count": 8, "is_parallel": true, "self": 0.0006762799966963939 } } } } } } }, "UnityEnvironment.step": { "total": 3169.3722852867068, "count": 194959, "is_parallel": true, "self": 47.82474687942886, "children": { "UnityEnvironment._generate_step_input": { "total": 33.71205294635729, "count": 194959, "is_parallel": true, "self": 33.71205294635729 }, "communicator.exchange": { "total": 2965.6195591329015, "count": 194959, "is_parallel": true, "self": 2965.6195591329015 }, "steps_from_proto": { "total": 122.21592632801912, "count": 194959, "is_parallel": true, "self": 31.40662391592923, "children": { "_process_rank_one_or_two_observation": { "total": 90.80930241208989, "count": 1559672, "is_parallel": true, "self": 90.80930241208989 } } } } } } } } } } }, "trainer_advance": { "total": 2344.828966812398, "count": 194960, "self": 10.43267517080676, "children": { "process_trajectory": { "total": 436.7336316047804, "count": 194960, "self": 435.89596089776023, "children": { "RLTrainer._checkpoint": { "total": 0.8376707070201519, "count": 6, "self": 0.8376707070201519 } } }, "_update_policy": { "total": 1897.6626600368108, "count": 1392, "self": 937.7853251422348, "children": { "TorchPPOOptimizer.update": { "total": 959.877334894576, "count": 68448, "self": 959.877334894576 } } } } } } }, "trainer_threads": { "total": 4.024012014269829e-06, "count": 1, "self": 4.024012014269829e-06 }, "TrainerController._save_models": { "total": 0.1557885990041541, "count": 1, "self": 0.005362676005461253, "children": { "RLTrainer._checkpoint": { "total": 0.15042592299869284, "count": 1, "self": 0.15042592299869284 } } } } } } }