MayBashendy commited on
Commit
f431297
·
verified ·
1 Parent(s): 8d51a8b

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +341 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k7_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k7_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.6980
19
+ - Qwk: 0.7347
20
+ - Mse: 0.6980
21
+ - Rmse: 0.8355
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0377 | 2 | 6.8948 | 0.0123 | 6.8948 | 2.6258 |
53
+ | No log | 0.0755 | 4 | 5.5221 | 0.0206 | 5.5221 | 2.3499 |
54
+ | No log | 0.1132 | 6 | 3.4784 | 0.125 | 3.4784 | 1.8650 |
55
+ | No log | 0.1509 | 8 | 2.4924 | 0.0395 | 2.4924 | 1.5787 |
56
+ | No log | 0.1887 | 10 | 3.1491 | -0.0131 | 3.1491 | 1.7746 |
57
+ | No log | 0.2264 | 12 | 2.8938 | -0.1168 | 2.8938 | 1.7011 |
58
+ | No log | 0.2642 | 14 | 1.8647 | 0.1165 | 1.8647 | 1.3656 |
59
+ | No log | 0.3019 | 16 | 1.6343 | 0.1905 | 1.6343 | 1.2784 |
60
+ | No log | 0.3396 | 18 | 1.6251 | 0.2075 | 1.6251 | 1.2748 |
61
+ | No log | 0.3774 | 20 | 1.5606 | 0.1698 | 1.5606 | 1.2492 |
62
+ | No log | 0.4151 | 22 | 1.4911 | 0.2075 | 1.4911 | 1.2211 |
63
+ | No log | 0.4528 | 24 | 1.6347 | 0.2586 | 1.6347 | 1.2786 |
64
+ | No log | 0.4906 | 26 | 1.5951 | 0.3103 | 1.5951 | 1.2630 |
65
+ | No log | 0.5283 | 28 | 1.4521 | 0.3478 | 1.4521 | 1.2050 |
66
+ | No log | 0.5660 | 30 | 1.4974 | 0.4812 | 1.4974 | 1.2237 |
67
+ | No log | 0.6038 | 32 | 1.2050 | 0.4603 | 1.2050 | 1.0977 |
68
+ | No log | 0.6415 | 34 | 0.9456 | 0.5649 | 0.9456 | 0.9724 |
69
+ | No log | 0.6792 | 36 | 0.9293 | 0.5714 | 0.9293 | 0.9640 |
70
+ | No log | 0.7170 | 38 | 1.1435 | 0.5753 | 1.1435 | 1.0693 |
71
+ | No log | 0.7547 | 40 | 1.5703 | 0.4852 | 1.5703 | 1.2531 |
72
+ | No log | 0.7925 | 42 | 1.1889 | 0.6467 | 1.1889 | 1.0904 |
73
+ | No log | 0.8302 | 44 | 0.8585 | 0.7179 | 0.8585 | 0.9266 |
74
+ | No log | 0.8679 | 46 | 0.8227 | 0.7051 | 0.8227 | 0.9070 |
75
+ | No log | 0.9057 | 48 | 0.9474 | 0.6905 | 0.9474 | 0.9733 |
76
+ | No log | 0.9434 | 50 | 1.3920 | 0.5810 | 1.3920 | 1.1798 |
77
+ | No log | 0.9811 | 52 | 1.4895 | 0.5810 | 1.4895 | 1.2205 |
78
+ | No log | 1.0189 | 54 | 1.3262 | 0.6339 | 1.3262 | 1.1516 |
79
+ | No log | 1.0566 | 56 | 1.0697 | 0.6587 | 1.0697 | 1.0343 |
80
+ | No log | 1.0943 | 58 | 0.8867 | 0.6879 | 0.8867 | 0.9416 |
81
+ | No log | 1.1321 | 60 | 0.8399 | 0.7241 | 0.8399 | 0.9165 |
82
+ | No log | 1.1698 | 62 | 0.8231 | 0.7117 | 0.8231 | 0.9072 |
83
+ | No log | 1.2075 | 64 | 0.7680 | 0.7051 | 0.7680 | 0.8763 |
84
+ | No log | 1.2453 | 66 | 0.7509 | 0.7059 | 0.7509 | 0.8665 |
85
+ | No log | 1.2830 | 68 | 0.8074 | 0.6887 | 0.8074 | 0.8985 |
86
+ | No log | 1.3208 | 70 | 0.7266 | 0.7324 | 0.7266 | 0.8524 |
87
+ | No log | 1.3585 | 72 | 0.8938 | 0.6483 | 0.8938 | 0.9454 |
88
+ | No log | 1.3962 | 74 | 0.8888 | 0.6712 | 0.8888 | 0.9428 |
89
+ | No log | 1.4340 | 76 | 0.7867 | 0.7114 | 0.7867 | 0.8870 |
90
+ | No log | 1.4717 | 78 | 0.8217 | 0.7215 | 0.8217 | 0.9065 |
91
+ | No log | 1.5094 | 80 | 0.9295 | 0.6957 | 0.9295 | 0.9641 |
92
+ | No log | 1.5472 | 82 | 0.8642 | 0.7317 | 0.8642 | 0.9296 |
93
+ | No log | 1.5849 | 84 | 0.7454 | 0.7711 | 0.7454 | 0.8634 |
94
+ | No log | 1.6226 | 86 | 0.7616 | 0.7730 | 0.7616 | 0.8727 |
95
+ | No log | 1.6604 | 88 | 0.8398 | 0.6667 | 0.8398 | 0.9164 |
96
+ | No log | 1.6981 | 90 | 0.9822 | 0.6747 | 0.9822 | 0.9911 |
97
+ | No log | 1.7358 | 92 | 1.3084 | 0.6102 | 1.3084 | 1.1438 |
98
+ | No log | 1.7736 | 94 | 1.2776 | 0.5714 | 1.2776 | 1.1303 |
99
+ | No log | 1.8113 | 96 | 0.9031 | 0.6579 | 0.9031 | 0.9503 |
100
+ | No log | 1.8491 | 98 | 0.8822 | 0.6892 | 0.8822 | 0.9393 |
101
+ | No log | 1.8868 | 100 | 0.9152 | 0.6486 | 0.9152 | 0.9566 |
102
+ | No log | 1.9245 | 102 | 0.7319 | 0.7211 | 0.7319 | 0.8555 |
103
+ | No log | 1.9623 | 104 | 0.7239 | 0.7248 | 0.7239 | 0.8508 |
104
+ | No log | 2.0 | 106 | 0.6635 | 0.7949 | 0.6635 | 0.8146 |
105
+ | No log | 2.0377 | 108 | 0.6350 | 0.7799 | 0.6350 | 0.7968 |
106
+ | No log | 2.0755 | 110 | 0.6494 | 0.8 | 0.6494 | 0.8059 |
107
+ | No log | 2.1132 | 112 | 0.6515 | 0.8046 | 0.6515 | 0.8072 |
108
+ | No log | 2.1509 | 114 | 0.6976 | 0.7978 | 0.6976 | 0.8352 |
109
+ | No log | 2.1887 | 116 | 0.7598 | 0.7619 | 0.7598 | 0.8717 |
110
+ | No log | 2.2264 | 118 | 0.8785 | 0.7126 | 0.8785 | 0.9373 |
111
+ | No log | 2.2642 | 120 | 0.8128 | 0.7333 | 0.8128 | 0.9015 |
112
+ | No log | 2.3019 | 122 | 0.6920 | 0.7950 | 0.6920 | 0.8319 |
113
+ | No log | 2.3396 | 124 | 0.7638 | 0.7320 | 0.7638 | 0.8739 |
114
+ | No log | 2.3774 | 126 | 0.7494 | 0.7273 | 0.7494 | 0.8657 |
115
+ | No log | 2.4151 | 128 | 0.7496 | 0.6423 | 0.7496 | 0.8658 |
116
+ | No log | 2.4528 | 130 | 0.8356 | 0.6939 | 0.8356 | 0.9141 |
117
+ | No log | 2.4906 | 132 | 0.8023 | 0.6809 | 0.8023 | 0.8957 |
118
+ | No log | 2.5283 | 134 | 0.7520 | 0.7034 | 0.7520 | 0.8672 |
119
+ | No log | 2.5660 | 136 | 0.6981 | 0.7550 | 0.6981 | 0.8355 |
120
+ | No log | 2.6038 | 138 | 0.7546 | 0.7528 | 0.7546 | 0.8687 |
121
+ | No log | 2.6415 | 140 | 1.1315 | 0.6802 | 1.1315 | 1.0637 |
122
+ | No log | 2.6792 | 142 | 1.2444 | 0.6531 | 1.2444 | 1.1155 |
123
+ | No log | 2.7170 | 144 | 0.9580 | 0.7159 | 0.9580 | 0.9788 |
124
+ | No log | 2.7547 | 146 | 0.7315 | 0.7317 | 0.7315 | 0.8553 |
125
+ | No log | 2.7925 | 148 | 0.7639 | 0.7515 | 0.7639 | 0.8740 |
126
+ | No log | 2.8302 | 150 | 0.7731 | 0.7170 | 0.7731 | 0.8792 |
127
+ | No log | 2.8679 | 152 | 0.8225 | 0.7152 | 0.8225 | 0.9069 |
128
+ | No log | 2.9057 | 154 | 0.8406 | 0.6713 | 0.8406 | 0.9168 |
129
+ | No log | 2.9434 | 156 | 0.8280 | 0.6761 | 0.8280 | 0.9099 |
130
+ | No log | 2.9811 | 158 | 0.8264 | 0.6849 | 0.8264 | 0.9091 |
131
+ | No log | 3.0189 | 160 | 0.8164 | 0.6806 | 0.8164 | 0.9036 |
132
+ | No log | 3.0566 | 162 | 0.7953 | 0.6853 | 0.7953 | 0.8918 |
133
+ | No log | 3.0943 | 164 | 0.7549 | 0.7285 | 0.7549 | 0.8688 |
134
+ | No log | 3.1321 | 166 | 0.7266 | 0.7389 | 0.7266 | 0.8524 |
135
+ | No log | 3.1698 | 168 | 0.7055 | 0.7389 | 0.7055 | 0.8399 |
136
+ | No log | 3.2075 | 170 | 0.7690 | 0.7425 | 0.7690 | 0.8769 |
137
+ | No log | 3.2453 | 172 | 0.7684 | 0.7261 | 0.7684 | 0.8766 |
138
+ | No log | 3.2830 | 174 | 0.6929 | 0.7875 | 0.6929 | 0.8324 |
139
+ | No log | 3.3208 | 176 | 0.7012 | 0.8 | 0.7012 | 0.8374 |
140
+ | No log | 3.3585 | 178 | 0.6607 | 0.7927 | 0.6607 | 0.8129 |
141
+ | No log | 3.3962 | 180 | 0.8075 | 0.7556 | 0.8075 | 0.8986 |
142
+ | No log | 3.4340 | 182 | 0.7998 | 0.7514 | 0.7998 | 0.8943 |
143
+ | No log | 3.4717 | 184 | 0.6960 | 0.75 | 0.6960 | 0.8343 |
144
+ | No log | 3.5094 | 186 | 0.6128 | 0.7950 | 0.6128 | 0.7828 |
145
+ | No log | 3.5472 | 188 | 0.7293 | 0.75 | 0.7293 | 0.8540 |
146
+ | No log | 3.5849 | 190 | 0.6781 | 0.7625 | 0.6781 | 0.8235 |
147
+ | No log | 3.6226 | 192 | 0.6072 | 0.8 | 0.6072 | 0.7792 |
148
+ | No log | 3.6604 | 194 | 0.7884 | 0.7284 | 0.7884 | 0.8879 |
149
+ | No log | 3.6981 | 196 | 0.9906 | 0.6587 | 0.9906 | 0.9953 |
150
+ | No log | 3.7358 | 198 | 0.9417 | 0.6800 | 0.9417 | 0.9704 |
151
+ | No log | 3.7736 | 200 | 0.7802 | 0.7361 | 0.7802 | 0.8833 |
152
+ | No log | 3.8113 | 202 | 0.7271 | 0.7273 | 0.7271 | 0.8527 |
153
+ | No log | 3.8491 | 204 | 0.8152 | 0.75 | 0.8152 | 0.9029 |
154
+ | No log | 3.8868 | 206 | 0.7929 | 0.7436 | 0.7929 | 0.8904 |
155
+ | No log | 3.9245 | 208 | 0.7288 | 0.7448 | 0.7288 | 0.8537 |
156
+ | No log | 3.9623 | 210 | 0.8475 | 0.6711 | 0.8475 | 0.9206 |
157
+ | No log | 4.0 | 212 | 1.3642 | 0.6129 | 1.3642 | 1.1680 |
158
+ | No log | 4.0377 | 214 | 1.6694 | 0.5660 | 1.6694 | 1.2920 |
159
+ | No log | 4.0755 | 216 | 1.4876 | 0.6377 | 1.4876 | 1.2197 |
160
+ | No log | 4.1132 | 218 | 0.9296 | 0.7222 | 0.9296 | 0.9642 |
161
+ | No log | 4.1509 | 220 | 0.5873 | 0.7578 | 0.5873 | 0.7663 |
162
+ | No log | 4.1887 | 222 | 0.7329 | 0.7665 | 0.7329 | 0.8561 |
163
+ | No log | 4.2264 | 224 | 0.8863 | 0.7066 | 0.8863 | 0.9415 |
164
+ | No log | 4.2642 | 226 | 0.7640 | 0.7421 | 0.7640 | 0.8741 |
165
+ | No log | 4.3019 | 228 | 0.6998 | 0.7413 | 0.6998 | 0.8366 |
166
+ | No log | 4.3396 | 230 | 0.7290 | 0.7222 | 0.7290 | 0.8538 |
167
+ | No log | 4.3774 | 232 | 0.6517 | 0.7662 | 0.6517 | 0.8073 |
168
+ | No log | 4.4151 | 234 | 0.5868 | 0.8171 | 0.5868 | 0.7660 |
169
+ | No log | 4.4528 | 236 | 0.5725 | 0.8242 | 0.5725 | 0.7566 |
170
+ | No log | 4.4906 | 238 | 0.5786 | 0.7758 | 0.5786 | 0.7606 |
171
+ | No log | 4.5283 | 240 | 0.6541 | 0.7640 | 0.6541 | 0.8087 |
172
+ | No log | 4.5660 | 242 | 0.7502 | 0.7337 | 0.7502 | 0.8661 |
173
+ | No log | 4.6038 | 244 | 0.7739 | 0.6842 | 0.7739 | 0.8797 |
174
+ | No log | 4.6415 | 246 | 0.7417 | 0.7222 | 0.7417 | 0.8612 |
175
+ | No log | 4.6792 | 248 | 0.7168 | 0.7755 | 0.7168 | 0.8466 |
176
+ | No log | 4.7170 | 250 | 0.7071 | 0.7483 | 0.7071 | 0.8409 |
177
+ | No log | 4.7547 | 252 | 0.7445 | 0.7211 | 0.7445 | 0.8628 |
178
+ | No log | 4.7925 | 254 | 0.8080 | 0.7101 | 0.8080 | 0.8989 |
179
+ | No log | 4.8302 | 256 | 0.7206 | 0.7821 | 0.7206 | 0.8489 |
180
+ | No log | 4.8679 | 258 | 0.6478 | 0.7914 | 0.6478 | 0.8048 |
181
+ | No log | 4.9057 | 260 | 0.6102 | 0.8222 | 0.6102 | 0.7811 |
182
+ | No log | 4.9434 | 262 | 0.5804 | 0.7925 | 0.5804 | 0.7618 |
183
+ | No log | 4.9811 | 264 | 0.5706 | 0.7975 | 0.5706 | 0.7554 |
184
+ | No log | 5.0189 | 266 | 0.5885 | 0.7755 | 0.5885 | 0.7672 |
185
+ | No log | 5.0566 | 268 | 0.6216 | 0.7639 | 0.6216 | 0.7884 |
186
+ | No log | 5.0943 | 270 | 0.6819 | 0.7324 | 0.6819 | 0.8258 |
187
+ | No log | 5.1321 | 272 | 0.6588 | 0.7639 | 0.6588 | 0.8117 |
188
+ | No log | 5.1698 | 274 | 0.6427 | 0.7755 | 0.6427 | 0.8017 |
189
+ | No log | 5.2075 | 276 | 0.6463 | 0.7871 | 0.6463 | 0.8039 |
190
+ | No log | 5.2453 | 278 | 0.7267 | 0.7432 | 0.7267 | 0.8525 |
191
+ | No log | 5.2830 | 280 | 0.7304 | 0.7432 | 0.7304 | 0.8546 |
192
+ | No log | 5.3208 | 282 | 0.7282 | 0.7345 | 0.7282 | 0.8534 |
193
+ | No log | 5.3585 | 284 | 0.7253 | 0.6968 | 0.7253 | 0.8517 |
194
+ | No log | 5.3962 | 286 | 0.7097 | 0.75 | 0.7097 | 0.8425 |
195
+ | No log | 5.4340 | 288 | 0.6748 | 0.7517 | 0.6748 | 0.8215 |
196
+ | No log | 5.4717 | 290 | 0.6970 | 0.7517 | 0.6970 | 0.8349 |
197
+ | No log | 5.5094 | 292 | 0.7426 | 0.7260 | 0.7426 | 0.8618 |
198
+ | No log | 5.5472 | 294 | 0.7465 | 0.7260 | 0.7465 | 0.8640 |
199
+ | No log | 5.5849 | 296 | 0.6979 | 0.7483 | 0.6979 | 0.8354 |
200
+ | No log | 5.6226 | 298 | 0.6630 | 0.7550 | 0.6630 | 0.8142 |
201
+ | No log | 5.6604 | 300 | 0.6556 | 0.7662 | 0.6556 | 0.8097 |
202
+ | No log | 5.6981 | 302 | 0.6629 | 0.7712 | 0.6629 | 0.8142 |
203
+ | No log | 5.7358 | 304 | 0.6912 | 0.7643 | 0.6912 | 0.8314 |
204
+ | No log | 5.7736 | 306 | 0.6894 | 0.7582 | 0.6894 | 0.8303 |
205
+ | No log | 5.8113 | 308 | 0.7227 | 0.7532 | 0.7227 | 0.8501 |
206
+ | No log | 5.8491 | 310 | 0.7741 | 0.7347 | 0.7741 | 0.8799 |
207
+ | No log | 5.8868 | 312 | 0.7961 | 0.7310 | 0.7961 | 0.8922 |
208
+ | No log | 5.9245 | 314 | 0.7698 | 0.7273 | 0.7698 | 0.8774 |
209
+ | No log | 5.9623 | 316 | 0.7150 | 0.7222 | 0.7150 | 0.8456 |
210
+ | No log | 6.0 | 318 | 0.7045 | 0.7222 | 0.7045 | 0.8393 |
211
+ | No log | 6.0377 | 320 | 0.8299 | 0.6842 | 0.8299 | 0.9110 |
212
+ | No log | 6.0755 | 322 | 0.9029 | 0.6452 | 0.9029 | 0.9502 |
213
+ | No log | 6.1132 | 324 | 0.8175 | 0.7105 | 0.8175 | 0.9042 |
214
+ | No log | 6.1509 | 326 | 0.6951 | 0.7347 | 0.6951 | 0.8337 |
215
+ | No log | 6.1887 | 328 | 0.6568 | 0.7838 | 0.6568 | 0.8104 |
216
+ | No log | 6.2264 | 330 | 0.6999 | 0.7432 | 0.6999 | 0.8366 |
217
+ | No log | 6.2642 | 332 | 0.6827 | 0.7432 | 0.6827 | 0.8263 |
218
+ | No log | 6.3019 | 334 | 0.6623 | 0.7733 | 0.6623 | 0.8138 |
219
+ | No log | 6.3396 | 336 | 0.7626 | 0.7320 | 0.7626 | 0.8733 |
220
+ | No log | 6.3774 | 338 | 0.8386 | 0.6962 | 0.8386 | 0.9157 |
221
+ | No log | 6.4151 | 340 | 0.7964 | 0.7170 | 0.7964 | 0.8924 |
222
+ | No log | 6.4528 | 342 | 0.6791 | 0.7792 | 0.6791 | 0.8241 |
223
+ | No log | 6.4906 | 344 | 0.6577 | 0.7682 | 0.6577 | 0.8110 |
224
+ | No log | 6.5283 | 346 | 0.6877 | 0.7843 | 0.6877 | 0.8293 |
225
+ | No log | 6.5660 | 348 | 0.6989 | 0.7222 | 0.6989 | 0.8360 |
226
+ | No log | 6.6038 | 350 | 0.7933 | 0.7114 | 0.7933 | 0.8907 |
227
+ | No log | 6.6415 | 352 | 0.8910 | 0.6486 | 0.8910 | 0.9439 |
228
+ | No log | 6.6792 | 354 | 0.8795 | 0.6711 | 0.8795 | 0.9378 |
229
+ | No log | 6.7170 | 356 | 0.7808 | 0.72 | 0.7808 | 0.8836 |
230
+ | No log | 6.7547 | 358 | 0.7281 | 0.7105 | 0.7281 | 0.8533 |
231
+ | No log | 6.7925 | 360 | 0.6628 | 0.75 | 0.6628 | 0.8141 |
232
+ | No log | 6.8302 | 362 | 0.6510 | 0.7550 | 0.6510 | 0.8069 |
233
+ | No log | 6.8679 | 364 | 0.6508 | 0.7763 | 0.6508 | 0.8067 |
234
+ | No log | 6.9057 | 366 | 0.6750 | 0.7383 | 0.6750 | 0.8216 |
235
+ | No log | 6.9434 | 368 | 0.7199 | 0.7483 | 0.7199 | 0.8484 |
236
+ | No log | 6.9811 | 370 | 0.7990 | 0.7421 | 0.7990 | 0.8939 |
237
+ | No log | 7.0189 | 372 | 0.7940 | 0.7470 | 0.7940 | 0.8910 |
238
+ | No log | 7.0566 | 374 | 0.7230 | 0.7375 | 0.7230 | 0.8503 |
239
+ | No log | 7.0943 | 376 | 0.6708 | 0.7375 | 0.6708 | 0.8190 |
240
+ | No log | 7.1321 | 378 | 0.6290 | 0.7792 | 0.6290 | 0.7931 |
241
+ | No log | 7.1698 | 380 | 0.6327 | 0.7838 | 0.6327 | 0.7954 |
242
+ | No log | 7.2075 | 382 | 0.6699 | 0.7619 | 0.6699 | 0.8185 |
243
+ | No log | 7.2453 | 384 | 0.7288 | 0.7534 | 0.7288 | 0.8537 |
244
+ | No log | 7.2830 | 386 | 0.8134 | 0.7273 | 0.8134 | 0.9019 |
245
+ | No log | 7.3208 | 388 | 0.8115 | 0.7105 | 0.8115 | 0.9008 |
246
+ | No log | 7.3585 | 390 | 0.7405 | 0.7237 | 0.7405 | 0.8605 |
247
+ | No log | 7.3962 | 392 | 0.6770 | 0.7733 | 0.6770 | 0.8228 |
248
+ | No log | 7.4340 | 394 | 0.6731 | 0.7975 | 0.6731 | 0.8204 |
249
+ | No log | 7.4717 | 396 | 0.6547 | 0.7879 | 0.6547 | 0.8092 |
250
+ | No log | 7.5094 | 398 | 0.6831 | 0.7784 | 0.6831 | 0.8265 |
251
+ | No log | 7.5472 | 400 | 0.8234 | 0.7303 | 0.8234 | 0.9074 |
252
+ | No log | 7.5849 | 402 | 0.9146 | 0.7045 | 0.9146 | 0.9563 |
253
+ | No log | 7.6226 | 404 | 0.8920 | 0.6456 | 0.8920 | 0.9445 |
254
+ | No log | 7.6604 | 406 | 0.7758 | 0.7013 | 0.7758 | 0.8808 |
255
+ | No log | 7.6981 | 408 | 0.6991 | 0.7651 | 0.6991 | 0.8361 |
256
+ | No log | 7.7358 | 410 | 0.6961 | 0.7821 | 0.6961 | 0.8343 |
257
+ | No log | 7.7736 | 412 | 0.6882 | 0.7904 | 0.6882 | 0.8296 |
258
+ | No log | 7.8113 | 414 | 0.6742 | 0.7904 | 0.6742 | 0.8211 |
259
+ | No log | 7.8491 | 416 | 0.6285 | 0.7977 | 0.6285 | 0.7928 |
260
+ | No log | 7.8868 | 418 | 0.6345 | 0.8075 | 0.6345 | 0.7965 |
261
+ | No log | 7.9245 | 420 | 0.6802 | 0.8158 | 0.6802 | 0.8247 |
262
+ | No log | 7.9623 | 422 | 0.7567 | 0.7724 | 0.7567 | 0.8699 |
263
+ | No log | 8.0 | 424 | 0.8334 | 0.6667 | 0.8334 | 0.9129 |
264
+ | No log | 8.0377 | 426 | 0.8324 | 0.6667 | 0.8324 | 0.9124 |
265
+ | No log | 8.0755 | 428 | 0.7994 | 0.6713 | 0.7994 | 0.8941 |
266
+ | No log | 8.1132 | 430 | 0.7743 | 0.6993 | 0.7743 | 0.8800 |
267
+ | No log | 8.1509 | 432 | 0.7579 | 0.7034 | 0.7579 | 0.8706 |
268
+ | No log | 8.1887 | 434 | 0.6677 | 0.7651 | 0.6677 | 0.8171 |
269
+ | No log | 8.2264 | 436 | 0.6245 | 0.8027 | 0.6245 | 0.7903 |
270
+ | No log | 8.2642 | 438 | 0.6339 | 0.7785 | 0.6339 | 0.7962 |
271
+ | No log | 8.3019 | 440 | 0.6336 | 0.7785 | 0.6336 | 0.7960 |
272
+ | No log | 8.3396 | 442 | 0.6146 | 0.8054 | 0.6146 | 0.7840 |
273
+ | No log | 8.3774 | 444 | 0.6156 | 0.8289 | 0.6156 | 0.7846 |
274
+ | No log | 8.4151 | 446 | 0.6050 | 0.8 | 0.6050 | 0.7778 |
275
+ | No log | 8.4528 | 448 | 0.5797 | 0.8228 | 0.5797 | 0.7614 |
276
+ | No log | 8.4906 | 450 | 0.5638 | 0.8228 | 0.5638 | 0.7509 |
277
+ | No log | 8.5283 | 452 | 0.5691 | 0.7975 | 0.5691 | 0.7544 |
278
+ | No log | 8.5660 | 454 | 0.5729 | 0.8176 | 0.5729 | 0.7569 |
279
+ | No log | 8.6038 | 456 | 0.5769 | 0.8148 | 0.5769 | 0.7595 |
280
+ | No log | 8.6415 | 458 | 0.5853 | 0.8101 | 0.5853 | 0.7651 |
281
+ | No log | 8.6792 | 460 | 0.6273 | 0.7831 | 0.6273 | 0.7920 |
282
+ | No log | 8.7170 | 462 | 0.7407 | 0.7453 | 0.7407 | 0.8606 |
283
+ | No log | 8.7547 | 464 | 0.7972 | 0.6993 | 0.7972 | 0.8929 |
284
+ | No log | 8.7925 | 466 | 0.7686 | 0.7222 | 0.7686 | 0.8767 |
285
+ | No log | 8.8302 | 468 | 0.7075 | 0.7465 | 0.7075 | 0.8412 |
286
+ | No log | 8.8679 | 470 | 0.6568 | 0.7376 | 0.6568 | 0.8104 |
287
+ | No log | 8.9057 | 472 | 0.6246 | 0.7808 | 0.6246 | 0.7903 |
288
+ | No log | 8.9434 | 474 | 0.6232 | 0.8026 | 0.6232 | 0.7894 |
289
+ | No log | 8.9811 | 476 | 0.6641 | 0.7595 | 0.6641 | 0.8149 |
290
+ | No log | 9.0189 | 478 | 0.6669 | 0.7595 | 0.6669 | 0.8166 |
291
+ | No log | 9.0566 | 480 | 0.6764 | 0.75 | 0.6764 | 0.8224 |
292
+ | No log | 9.0943 | 482 | 0.7147 | 0.75 | 0.7147 | 0.8454 |
293
+ | No log | 9.1321 | 484 | 0.7475 | 0.75 | 0.7475 | 0.8646 |
294
+ | No log | 9.1698 | 486 | 0.7466 | 0.7815 | 0.7466 | 0.8641 |
295
+ | No log | 9.2075 | 488 | 0.7550 | 0.7733 | 0.7550 | 0.8689 |
296
+ | No log | 9.2453 | 490 | 0.7434 | 0.7297 | 0.7434 | 0.8622 |
297
+ | No log | 9.2830 | 492 | 0.7216 | 0.7347 | 0.7216 | 0.8495 |
298
+ | No log | 9.3208 | 494 | 0.6847 | 0.7682 | 0.6847 | 0.8274 |
299
+ | No log | 9.3585 | 496 | 0.6786 | 0.7974 | 0.6786 | 0.8238 |
300
+ | No log | 9.3962 | 498 | 0.7413 | 0.7439 | 0.7413 | 0.8610 |
301
+ | 0.3952 | 9.4340 | 500 | 0.7876 | 0.7556 | 0.7876 | 0.8875 |
302
+ | 0.3952 | 9.4717 | 502 | 0.7329 | 0.7630 | 0.7329 | 0.8561 |
303
+ | 0.3952 | 9.5094 | 504 | 0.6563 | 0.7901 | 0.6563 | 0.8101 |
304
+ | 0.3952 | 9.5472 | 506 | 0.6354 | 0.7792 | 0.6354 | 0.7971 |
305
+ | 0.3952 | 9.5849 | 508 | 0.6418 | 0.7867 | 0.6418 | 0.8011 |
306
+ | 0.3952 | 9.6226 | 510 | 0.6223 | 0.7922 | 0.6223 | 0.7888 |
307
+ | 0.3952 | 9.6604 | 512 | 0.6161 | 0.7898 | 0.6161 | 0.7849 |
308
+ | 0.3952 | 9.6981 | 514 | 0.6342 | 0.8176 | 0.6342 | 0.7963 |
309
+ | 0.3952 | 9.7358 | 516 | 0.6816 | 0.7722 | 0.6816 | 0.8256 |
310
+ | 0.3952 | 9.7736 | 518 | 0.6889 | 0.7632 | 0.6889 | 0.8300 |
311
+ | 0.3952 | 9.8113 | 520 | 0.6719 | 0.7606 | 0.6719 | 0.8197 |
312
+ | 0.3952 | 9.8491 | 522 | 0.6677 | 0.7671 | 0.6677 | 0.8172 |
313
+ | 0.3952 | 9.8868 | 524 | 0.6861 | 0.7763 | 0.6861 | 0.8283 |
314
+ | 0.3952 | 9.9245 | 526 | 0.6550 | 0.7843 | 0.6550 | 0.8093 |
315
+ | 0.3952 | 9.9623 | 528 | 0.6105 | 0.7871 | 0.6105 | 0.7814 |
316
+ | 0.3952 | 10.0 | 530 | 0.6440 | 0.8045 | 0.6440 | 0.8025 |
317
+ | 0.3952 | 10.0377 | 532 | 0.7285 | 0.7684 | 0.7285 | 0.8535 |
318
+ | 0.3952 | 10.0755 | 534 | 0.7347 | 0.7602 | 0.7347 | 0.8571 |
319
+ | 0.3952 | 10.1132 | 536 | 0.7104 | 0.7215 | 0.7104 | 0.8428 |
320
+ | 0.3952 | 10.1509 | 538 | 0.6766 | 0.7662 | 0.6766 | 0.8225 |
321
+ | 0.3952 | 10.1887 | 540 | 0.6533 | 0.7613 | 0.6533 | 0.8083 |
322
+ | 0.3952 | 10.2264 | 542 | 0.6244 | 0.7861 | 0.6244 | 0.7902 |
323
+ | 0.3952 | 10.2642 | 544 | 0.6233 | 0.7956 | 0.6233 | 0.7895 |
324
+ | 0.3952 | 10.3019 | 546 | 0.6383 | 0.8111 | 0.6383 | 0.7989 |
325
+ | 0.3952 | 10.3396 | 548 | 0.6521 | 0.7738 | 0.6521 | 0.8076 |
326
+ | 0.3952 | 10.3774 | 550 | 0.6515 | 0.7792 | 0.6515 | 0.8072 |
327
+ | 0.3952 | 10.4151 | 552 | 0.6654 | 0.7534 | 0.6654 | 0.8157 |
328
+ | 0.3952 | 10.4528 | 554 | 0.6822 | 0.7808 | 0.6822 | 0.8259 |
329
+ | 0.3952 | 10.4906 | 556 | 0.7100 | 0.7467 | 0.7100 | 0.8426 |
330
+ | 0.3952 | 10.5283 | 558 | 0.7938 | 0.6887 | 0.7938 | 0.8910 |
331
+ | 0.3952 | 10.5660 | 560 | 0.7905 | 0.6842 | 0.7905 | 0.8891 |
332
+ | 0.3952 | 10.6038 | 562 | 0.7406 | 0.7347 | 0.7406 | 0.8606 |
333
+ | 0.3952 | 10.6415 | 564 | 0.6980 | 0.7347 | 0.6980 | 0.8355 |
334
+
335
+
336
+ ### Framework versions
337
+
338
+ - Transformers 4.44.2
339
+ - Pytorch 2.4.0+cu118
340
+ - Datasets 2.21.0
341
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62cbbf5eccf66c0d483fd4c7ab8cb7751cdc7f7e16ae94abeeb48965e3c4f0e4
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1607a994dc7f54848a8b796cc3a385e939bc40fcef0e9a26dfa5c153a53d4dd
3
+ size 5304