File size: 9,244 Bytes
fce4e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from typing import Dict, List, Union
import numpy as np
import torch
from transformers import Pipeline
from astropy.io import fits

class FlareDetectionPipeline(Pipeline):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.call_count = 0
        
    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}
        postprocess_kwargs = {}
        
        # Add parameters that need to be passed to specific steps
        return preprocess_kwargs, {}, postprocess_kwargs

    def preprocess(self, light_curve: Union[np.ndarray, str, List[str]], **kwargs) -> Dict[str, torch.Tensor]:
        """Preprocess the input light curve from FITS files.
        
        Args:
            light_curve: Single FITS file path, list of FITS file paths, or numpy array
        """
        # Convert single path to list
        if isinstance(light_curve, str):
            light_curve = [light_curve]
        
        # Handle list of FITS file paths
        if isinstance(light_curve, list) and isinstance(light_curve[0], str):
            # Read data from all FITS files
            flux_data = []
            times_data = []
            lengths = []  # Store lengths of each light curve
            
            # First pass: get max length and collect data
            max_length = 0
            for fits_path in light_curve:
                with fits.open(fits_path) as hdul:
                    time = hdul[1].data['TIME'].astype(np.float32)
                    flux = hdul[1].data['PDCSAP_FLUX'].astype(np.float32)
                    # Normalize flux
                    flux = flux / np.nanmedian(flux)
                    
                    max_length = max(max_length, len(flux))
                    lengths.append(len(flux))
                    flux_data.append(flux)
                    times_data.append(time)
            
            # Second pass: pad sequences
            padded_flux = []
            padded_times = []
            sequence_mask = []
            
            for flux, time, length in zip(flux_data, times_data, lengths):
                # Create padding
                pad_length = max_length - length
                
                # Pad flux and time arrays
                padded_f = np.pad(flux, (0, pad_length), mode='constant', constant_values=np.nan)
                padded_t = np.pad(time, (0, pad_length), mode='constant', constant_values=np.nan)
                
                # Create mask (1 for real values, 0 for padding)
                mask = np.ones(length)
                mask = np.pad(mask, (0, pad_length), mode='constant', constant_values=0)
                
                padded_flux.append(padded_f)
                padded_times.append(padded_t)
                sequence_mask.append(mask)
            
            # Store time data as attribute for use in postprocessing
            self.time_series = np.array(padded_times)
            # Convert to arrays
            flux_array = np.array(padded_flux)
            sequence_mask = np.array(sequence_mask)
            
            # Add channel dimension
            flux_array = flux_array.reshape(flux_array.shape[0], flux_array.shape[1], 1)
            
            # Convert to torch tensors
            inputs = torch.tensor(flux_array, dtype=torch.float32)
            mask = torch.tensor(sequence_mask, dtype=torch.float32)
            
        return {
            "input_features": inputs,
            "sequence_mask": mask
        }

    def _forward(self, model_inputs, **forward_params):
        """Forward pass through the model.
        
        Args:
            model_inputs: Dictionary containing input tensors
            forward_params: Additional parameters for the forward pass
        """
        if model_inputs is None:
            raise ValueError("model_inputs cannot be None. Check if preprocess method is returning correct dictionary.")
        
        if "input_features" not in model_inputs:
            raise KeyError("model_inputs must contain 'input_features' key.")
        
        # Save input_features for use in postprocessing
        self.input_features = model_inputs["input_features"]
        
        # Ensure input_features is properly passed to the model
        return self.model(
            input_features=model_inputs["input_features"],
            sequence_mask=model_inputs.get("sequence_mask", None),
            return_dict=True
        )

    def postprocess(self, model_outputs, **kwargs):
        """
        Postprocess the model outputs to detect flare events.
        Returns a list of dictionaries containing flare events information.
        """
        logits = model_outputs.logits
        predictions = torch.sigmoid(logits).squeeze(-1)
        binary_predictions = (predictions > 0.5).long()
        
        # Convert to numpy for processing
        predictions_np = binary_predictions.cpu().numpy()
        flux_data = self.input_features.cpu().numpy()
        
        flare_events = []
        
        def is_valid_flare(flux, start_idx, end_idx, peak_idx):
            """Helper function to validate flare events
            
            Args:
                flux: Array of flux values
                start_idx: Start index of potential flare
                end_idx: End index of potential flare
                peak_idx: Peak index of potential flare
                
            Returns:
                bool: True if the event is a valid flare, False otherwise
            """
            # Duration of a flare should be longer than 3 cadences
            if end_idx - start_idx < 2:
                return False
            
            try:
                # If start time is the peak time, flux[start] must be greater than flux[start-1]
                if peak_idx == start_idx and flux[peak_idx] <= flux[peak_idx - 1]:
                    return False
                    
                # Time for flux to decrease should be longer than that to increase
                if end_idx - peak_idx <= peak_idx - start_idx:
                    return False
                    
                # Check flux level consistency before and after flare
                alter = (flux[peak_idx] - flux[start_idx - 2]) / (flux[peak_idx] - flux[end_idx + 2] + 1e-8)
                # Flux level should be similar before and after flare
                if alter < 0.5 or alter > 2 or np.isnan(alter):
                    return False
                    
                # Check if the slope before peak is too steep
                # if np.abs(flux[peak_idx] - flux[peak_idx-1]) < 1.2 * np.abs(flux[peak_idx-1] - flux[peak_idx-2]):
                #     return False
                    
            except (IndexError, ValueError):
                return False
            
            return True
        
        for i in range(predictions_np.shape[0]):
            pred = predictions_np[i]
            flux = flux_data[i, :, 0]  # Get flux data
            flare_idx = np.where(pred == 1)[0]
            
            if len(flare_idx) == 0:
                continue
            
            # Find continuous segments
            splits = np.where(np.diff(flare_idx) > 1)[0] + 1
            segments = np.split(flare_idx, splits)
            
            for segment in segments:
                # Skip short segments early
                if len(segment) < 3:
                    continue
                
                start_idx = segment[0]
                end_idx = segment[-1]
                
                # Find peak within segment
                segment_flux = flux[start_idx:end_idx+1]
                peak_idx = np.argmax(segment_flux) + start_idx
                
                # Validate flare characteristics
                if not is_valid_flare(flux, start_idx, end_idx, peak_idx):
                    continue
                
                # Valid flare event found
                start_time = float(self.time_series[i][start_idx])
                end_time = float(self.time_series[i][end_idx])
                duration = end_time - start_time
                event = {
                    "start_idx": int(start_idx),
                    "peak_idx": int(peak_idx),
                    "end_idx": int(end_idx),
                    "start_time": start_time,
                    "peak_time": float(self.time_series[i][peak_idx]),
                    "end_time": end_time,
                    "duration": duration,
                    "confidence": float(predictions[i, segment].mean()),
                }
                flare_events.append(event)
        
        return flare_events

def load_flare_detection_pipeline(
    model_name: str = "Maxwell-Jia/fcn4flare",
    device: int = -1,
    **kwargs
) -> FlareDetectionPipeline:
    """
    Load a flare detection pipeline.
    
    Args:
        model_name (str): The model name or path to load
        device (int): Device to use (-1 for CPU, GPU number otherwise)
        **kwargs: Additional arguments to pass to the pipeline
        
    Returns:
        FlareDetectionPipeline: A pipeline for flare detection
    """
    return FlareDetectionPipeline(
        model=model_name,
        device=device,
        **kwargs
    )