|
|
|
|
|
import argparse |
|
import os |
|
import sys |
|
import tempfile |
|
import time |
|
|
|
import torch |
|
import torchaudio |
|
|
|
from tortoise.api import MODELS_DIR, TextToSpeech |
|
from tortoise.utils.audio import get_voices, load_voices, load_audio |
|
from tortoise.utils.text import split_and_recombine_text |
|
|
|
parser = argparse.ArgumentParser( |
|
description='TorToiSe is a text-to-speech program that is capable of synthesizing speech ' |
|
'in multiple voices with realistic prosody and intonation.') |
|
|
|
parser.add_argument( |
|
'text', type=str, nargs='*', |
|
help='Text to speak. If omitted, text is read from stdin.') |
|
parser.add_argument( |
|
'-v, --voice', type=str, default='random', metavar='VOICE', dest='voice', |
|
help='Selects the voice to use for generation. Use the & character to join two voices together. ' |
|
'Use a comma to perform inference on multiple voices. Set to "all" to use all available voices. ' |
|
'Note that multiple voices require the --output-dir option to be set.') |
|
parser.add_argument( |
|
'-V, --voices-dir', metavar='VOICES_DIR', type=str, dest='voices_dir', |
|
help='Path to directory containing extra voices to be loaded. Use a comma to specify multiple directories.') |
|
parser.add_argument( |
|
'-p, --preset', type=str, default='fast', choices=['ultra_fast', 'fast', 'standard', 'high_quality'], dest='preset', |
|
help='Which voice quality preset to use.') |
|
parser.add_argument( |
|
'-q, --quiet', default=False, action='store_true', dest='quiet', |
|
help='Suppress all output.') |
|
|
|
output_group = parser.add_mutually_exclusive_group(required=True) |
|
output_group.add_argument( |
|
'-l, --list-voices', default=False, action='store_true', dest='list_voices', |
|
help='List available voices and exit.') |
|
output_group.add_argument( |
|
'-P, --play', action='store_true', dest='play', |
|
help='Play the audio (requires pydub).') |
|
output_group.add_argument( |
|
'-o, --output', type=str, metavar='OUTPUT', dest='output', |
|
help='Save the audio to a file.') |
|
output_group.add_argument( |
|
'-O, --output-dir', type=str, metavar='OUTPUT_DIR', dest='output_dir', |
|
help='Save the audio to a directory as individual segments.') |
|
|
|
multi_output_group = parser.add_argument_group('multi-output options (requires --output-dir)') |
|
multi_output_group.add_argument( |
|
'--candidates', type=int, default=1, |
|
help='How many output candidates to produce per-voice. Note that only the first candidate is used in the combined output.') |
|
multi_output_group.add_argument( |
|
'--regenerate', type=str, default=None, |
|
help='Comma-separated list of clip numbers to re-generate.') |
|
multi_output_group.add_argument( |
|
'--skip-existing', action='store_true', |
|
help='Set to skip re-generating existing clips.') |
|
|
|
advanced_group = parser.add_argument_group('advanced options') |
|
advanced_group.add_argument( |
|
'--produce-debug-state', default=False, action='store_true', |
|
help='Whether or not to produce debug_states in current directory, which can aid in reproducing problems.') |
|
advanced_group.add_argument( |
|
'--seed', type=int, default=None, |
|
help='Random seed which can be used to reproduce results.') |
|
advanced_group.add_argument( |
|
'--models-dir', type=str, default=MODELS_DIR, |
|
help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to ' |
|
'~/.cache/tortoise/.models, so this should only be specified if you have custom checkpoints.') |
|
advanced_group.add_argument( |
|
'--text-split', type=str, default=None, |
|
help='How big chunks to split the text into, in the format <desired_length>,<max_length>.') |
|
advanced_group.add_argument( |
|
'--disable-redaction', default=False, action='store_true', |
|
help='Normally text enclosed in brackets are automatically redacted from the spoken output ' |
|
'(but are still rendered by the model), this can be used for prompt engineering. ' |
|
'Set this to disable this behavior.') |
|
advanced_group.add_argument( |
|
'--device', type=str, default=None, |
|
help='Device to use for inference.') |
|
advanced_group.add_argument( |
|
'--batch-size', type=int, default=None, |
|
help='Batch size to use for inference. If omitted, the batch size is set based on available GPU memory.') |
|
|
|
tuning_group = parser.add_argument_group('tuning options (overrides preset settings)') |
|
tuning_group.add_argument( |
|
'--num-autoregressive-samples', type=int, default=None, |
|
help='Number of samples taken from the autoregressive model, all of which are filtered using CLVP. ' |
|
'As TorToiSe is a probabilistic model, more samples means a higher probability of creating something "great".') |
|
tuning_group.add_argument( |
|
'--temperature', type=float, default=None, |
|
help='The softmax temperature of the autoregressive model.') |
|
tuning_group.add_argument( |
|
'--length-penalty', type=float, default=None, |
|
help='A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.') |
|
tuning_group.add_argument( |
|
'--repetition-penalty', type=float, default=None, |
|
help='A penalty that prevents the autoregressive decoder from repeating itself during decoding. ' |
|
'Can be used to reduce the incidence of long silences or "uhhhhhhs", etc.') |
|
tuning_group.add_argument( |
|
'--top-p', type=float, default=None, |
|
help='P value used in nucleus sampling. 0 to 1. Lower values mean the decoder produces more "likely" (aka boring) outputs.') |
|
tuning_group.add_argument( |
|
'--max-mel-tokens', type=int, default=None, |
|
help='Restricts the output length. 1 to 600. Each unit is 1/20 of a second.') |
|
tuning_group.add_argument( |
|
'--cvvp-amount', type=float, default=None, |
|
help='How much the CVVP model should influence the output.' |
|
'Increasing this can in some cases reduce the likelihood of multiple speakers.') |
|
tuning_group.add_argument( |
|
'--diffusion-iterations', type=int, default=None, |
|
help='Number of diffusion steps to perform. More steps means the network has more chances to iteratively' |
|
'refine the output, which should theoretically mean a higher quality output. ' |
|
'Generally a value above 250 is not noticeably better, however.') |
|
tuning_group.add_argument( |
|
'--cond-free', type=bool, default=None, |
|
help='Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for ' |
|
'each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output ' |
|
'of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and ' |
|
'dramatically improves realism.') |
|
tuning_group.add_argument( |
|
'--cond-free-k', type=float, default=None, |
|
help='Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. ' |
|
'As cond_free_k increases, the output becomes dominated by the conditioning-free signal. ' |
|
'Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k') |
|
tuning_group.add_argument( |
|
'--diffusion-temperature', type=float, default=None, |
|
help='Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 ' |
|
'are the "mean" prediction of the diffusion network and will sound bland and smeared. ') |
|
|
|
usage_examples = f''' |
|
Examples: |
|
|
|
Read text using random voice and place it in a file: |
|
|
|
{parser.prog} -o hello.wav "Hello, how are you?" |
|
|
|
Read text from stdin and play it using the tom voice: |
|
|
|
echo "Say it like you mean it!" | {parser.prog} -P -v tom |
|
|
|
Read a text file using multiple voices and save the audio clips to a directory: |
|
|
|
{parser.prog} -O /tmp/tts-results -v tom,emma <textfile.txt |
|
''' |
|
|
|
try: |
|
args = parser.parse_args() |
|
except SystemExit as e: |
|
if e.code == 0: |
|
print(usage_examples) |
|
sys.exit(e.code) |
|
|
|
extra_voice_dirs = args.voices_dir.split(',') if args.voices_dir else [] |
|
all_voices = sorted(get_voices(extra_voice_dirs)) |
|
|
|
if args.list_voices: |
|
for v in all_voices: |
|
print(v) |
|
sys.exit(0) |
|
|
|
selected_voices = all_voices if args.voice == 'all' else args.voice.split(',') |
|
selected_voices = [v.split('&') if '&' in v else [v] for v in selected_voices] |
|
for voices in selected_voices: |
|
for v in voices: |
|
if v != 'random' and v not in all_voices: |
|
parser.error(f'voice {v} not available, use --list-voices to see available voices.') |
|
|
|
if len(args.text) == 0: |
|
text = '' |
|
for line in sys.stdin: |
|
text += line |
|
else: |
|
text = ' '.join(args.text) |
|
text = text.strip() |
|
if args.text_split: |
|
desired_length, max_length = [int(x) for x in args.text_split.split(',')] |
|
if desired_length > max_length: |
|
parser.error(f'--text-split: desired_length ({desired_length}) must be <= max_length ({max_length})') |
|
texts = split_and_recombine_text(text, desired_length, max_length) |
|
else: |
|
texts = split_and_recombine_text(text) |
|
if len(texts) == 0: |
|
parser.error('no text provided') |
|
|
|
if args.output_dir: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
else: |
|
if len(selected_voices) > 1: |
|
parser.error('cannot have multiple voices without --output-dir"') |
|
if args.candidates > 1: |
|
parser.error('cannot have multiple candidates without --output-dir"') |
|
|
|
|
|
if args.play: |
|
try: |
|
import pydub |
|
import pydub.playback |
|
except ImportError: |
|
parser.error('--play requires pydub to be installed, which can be done with "pip install pydub"') |
|
|
|
seed = int(time.time()) if args.seed is None else args.seed |
|
if not args.quiet: |
|
print('Loading tts...') |
|
tts = TextToSpeech(models_dir=args.models_dir, enable_redaction=not args.disable_redaction, |
|
device=args.device, autoregressive_batch_size=args.batch_size) |
|
gen_settings = { |
|
'use_deterministic_seed': seed, |
|
'verbose': not args.quiet, |
|
'k': args.candidates, |
|
'preset': args.preset, |
|
} |
|
tuning_options = [ |
|
'num_autoregressive_samples', 'temperature', 'length_penalty', 'repetition_penalty', 'top_p', |
|
'max_mel_tokens', 'cvvp_amount', 'diffusion_iterations', 'cond_free', 'cond_free_k', 'diffusion_temperature'] |
|
for option in tuning_options: |
|
if getattr(args, option) is not None: |
|
gen_settings[option] = getattr(args, option) |
|
total_clips = len(texts) * len(selected_voices) |
|
regenerate_clips = [int(x) for x in args.regenerate.split(',')] if args.regenerate else None |
|
for voice_idx, voice in enumerate(selected_voices): |
|
audio_parts = [] |
|
voice_samples, conditioning_latents = load_voices(voice, extra_voice_dirs) |
|
for text_idx, text in enumerate(texts): |
|
clip_name = f'{"-".join(voice)}_{text_idx:02d}' |
|
if args.output_dir: |
|
first_clip = os.path.join(args.output_dir, f'{clip_name}_00.wav') |
|
if (args.skip_existing or (regenerate_clips and text_idx not in regenerate_clips)) and os.path.exists(first_clip): |
|
audio_parts.append(load_audio(first_clip, 24000)) |
|
if not args.quiet: |
|
print(f'Skipping {clip_name}') |
|
continue |
|
if not args.quiet: |
|
print(f'Rendering {clip_name} ({(voice_idx * len(texts) + text_idx + 1)} of {total_clips})...') |
|
print(' ' + text) |
|
gen = tts.tts_with_preset( |
|
text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **gen_settings) |
|
gen = gen if args.candidates > 1 else [gen] |
|
for candidate_idx, audio in enumerate(gen): |
|
audio = audio.squeeze(0).cpu() |
|
if candidate_idx == 0: |
|
audio_parts.append(audio) |
|
if args.output_dir: |
|
filename = f'{clip_name}_{candidate_idx:02d}.wav' |
|
torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000) |
|
|
|
audio = torch.cat(audio_parts, dim=-1) |
|
if args.output_dir: |
|
filename = f'{"-".join(voice)}_combined.wav' |
|
torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000) |
|
elif args.output: |
|
filename = args.output if args.output else os.tmp |
|
torchaudio.save(args.output, audio, 24000) |
|
elif args.play: |
|
f = tempfile.NamedTemporaryFile(suffix='.wav', delete=True) |
|
torchaudio.save(f.name, audio, 24000) |
|
pydub.playback.play(pydub.AudioSegment.from_wav(f.name)) |
|
|
|
if args.produce_debug_state: |
|
os.makedirs('debug_states', exist_ok=True) |
|
dbg_state = (seed, texts, voice_samples, conditioning_latents, args) |
|
torch.save(dbg_state, os.path.join('debug_states', f'debug_{"-".join(voice)}.pth')) |
|
|