|
from tensorboardX import TorchVis |
|
|
|
import numpy as np |
|
import pytest |
|
import unittest |
|
|
|
true_positive_counts = [75, 64, 21, 5, 0] |
|
false_positive_counts = [150, 105, 18, 0, 0] |
|
true_negative_counts = [0, 45, 132, 150, 150] |
|
false_negative_counts = [0, 11, 54, 70, 75] |
|
precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0] |
|
recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0] |
|
|
|
|
|
class VisdomTest(unittest.TestCase): |
|
def test_TorchVis(self): |
|
w = TorchVis('visdom') |
|
w.add_scalar('scalar_visdom', 1, 0) |
|
w.add_scalar('scalar_visdom', 2, 1) |
|
w.add_histogram('histogram_visdom', np.array([1, 2, 3, 4, 5]), 1) |
|
w.add_image('image_visdom', np.ndarray((3, 20, 20)), 2) |
|
|
|
w.add_audio('audio_visdom', [1, 2, 3, 4, 5]) |
|
w.add_text('text_visdom', 'mystring') |
|
w.add_pr_curve('pr_curve_visdom', np.random.randint(2, size=100), np.random.rand(100), 10) |
|
w.add_pr_curve_raw('prcurve with raw data', |
|
true_positive_counts, |
|
false_positive_counts, |
|
true_negative_counts, |
|
false_negative_counts, |
|
precision, |
|
recall, 20) |
|
del w |
|
|