|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
from __future__ import unicode_literals |
|
|
|
from tensorboardX import x2num, SummaryWriter |
|
try: |
|
import chainer |
|
chainer_installed = True |
|
except ImportError: |
|
print('Chainer is not installed, skipping test') |
|
chainer_installed = False |
|
import numpy as np |
|
import unittest |
|
|
|
|
|
if chainer_installed: |
|
chainer.Variable |
|
tensors = [chainer.Variable(np.random.rand(3, 10, 10)), |
|
chainer.Variable(np.random.rand(1)), |
|
chainer.Variable(np.random.rand(1, 2, 3, 4, 5))] |
|
|
|
class ChainerTest(unittest.TestCase): |
|
def test_chainer_np(self): |
|
for tensor in tensors: |
|
|
|
assert isinstance(x2num.make_np(tensor), np.ndarray) |
|
|
|
|
|
assert(isinstance(x2num.make_np(0), np.ndarray)) |
|
assert(isinstance(x2num.make_np(0.1), np.ndarray)) |
|
|
|
def test_chainer_img(self): |
|
shapes = [(77, 3, 13, 7), (77, 1, 13, 7), (3, 13, 7), (1, 13, 7), (13, 7)] |
|
for s in shapes: |
|
x = chainer.Variable(np.random.random_sample(s)) |
|
|
|
|
|
def test_chainer_write(self): |
|
with SummaryWriter() as w: |
|
w.add_scalar('scalar', chainer.Variable(np.random.rand(1)), 0) |
|
|