MasonCrinr's picture
Upload 331 files
8026e91
import unittest
import torch
import torch.nn as nn
from apex.fp16_utils import FP16Model
class DummyBlock(nn.Module):
def __init__(self):
super(DummyBlock, self).__init__()
self.conv = nn.Conv2d(10, 10, 2)
self.bn = nn.BatchNorm2d(10, affine=True)
def forward(self, x):
return self.conv(self.bn(x))
class DummyNet(nn.Module):
def __init__(self):
super(DummyNet, self).__init__()
self.conv1 = nn.Conv2d(3, 10, 2)
self.bn1 = nn.BatchNorm2d(10, affine=False)
self.db1 = DummyBlock()
self.db2 = DummyBlock()
def forward(self, x):
out = x
out = self.conv1(out)
out = self.bn1(out)
out = self.db1(out)
out = self.db2(out)
return out
class DummyNetWrapper(nn.Module):
def __init__(self):
super(DummyNetWrapper, self).__init__()
self.bn = nn.BatchNorm2d(3, affine=True)
self.dn = DummyNet()
def forward(self, x):
return self.dn(self.bn(x))
class TestFP16Model(unittest.TestCase):
def setUp(self):
self.N = 64
self.C_in = 3
self.H_in = 16
self.W_in = 32
self.in_tensor = torch.randn((self.N, self.C_in, self.H_in, self.W_in)).cuda()
self.orig_model = DummyNetWrapper().cuda()
self.fp16_model = FP16Model(self.orig_model)
def test_params_and_buffers(self):
exempted_modules = [
self.fp16_model.network.bn,
self.fp16_model.network.dn.db1.bn,
self.fp16_model.network.dn.db2.bn,
]
for m in self.fp16_model.modules():
expected_dtype = torch.float if (m in exempted_modules) else torch.half
for p in m.parameters(recurse=False):
assert p.dtype == expected_dtype
for b in m.buffers(recurse=False):
assert b.dtype in (expected_dtype, torch.int64)
def test_output_is_half(self):
out_tensor = self.fp16_model(self.in_tensor)
assert out_tensor.dtype == torch.half