|
import unittest |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from apex.fp16_utils import FP16Model |
|
|
|
|
|
class DummyBlock(nn.Module): |
|
def __init__(self): |
|
super(DummyBlock, self).__init__() |
|
|
|
self.conv = nn.Conv2d(10, 10, 2) |
|
self.bn = nn.BatchNorm2d(10, affine=True) |
|
|
|
def forward(self, x): |
|
return self.conv(self.bn(x)) |
|
|
|
|
|
class DummyNet(nn.Module): |
|
def __init__(self): |
|
super(DummyNet, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(3, 10, 2) |
|
self.bn1 = nn.BatchNorm2d(10, affine=False) |
|
self.db1 = DummyBlock() |
|
self.db2 = DummyBlock() |
|
|
|
def forward(self, x): |
|
out = x |
|
out = self.conv1(out) |
|
out = self.bn1(out) |
|
out = self.db1(out) |
|
out = self.db2(out) |
|
return out |
|
|
|
|
|
class DummyNetWrapper(nn.Module): |
|
def __init__(self): |
|
super(DummyNetWrapper, self).__init__() |
|
|
|
self.bn = nn.BatchNorm2d(3, affine=True) |
|
self.dn = DummyNet() |
|
|
|
def forward(self, x): |
|
return self.dn(self.bn(x)) |
|
|
|
|
|
class TestFP16Model(unittest.TestCase): |
|
def setUp(self): |
|
self.N = 64 |
|
self.C_in = 3 |
|
self.H_in = 16 |
|
self.W_in = 32 |
|
self.in_tensor = torch.randn((self.N, self.C_in, self.H_in, self.W_in)).cuda() |
|
self.orig_model = DummyNetWrapper().cuda() |
|
self.fp16_model = FP16Model(self.orig_model) |
|
|
|
def test_params_and_buffers(self): |
|
exempted_modules = [ |
|
self.fp16_model.network.bn, |
|
self.fp16_model.network.dn.db1.bn, |
|
self.fp16_model.network.dn.db2.bn, |
|
] |
|
for m in self.fp16_model.modules(): |
|
expected_dtype = torch.float if (m in exempted_modules) else torch.half |
|
for p in m.parameters(recurse=False): |
|
assert p.dtype == expected_dtype |
|
for b in m.buffers(recurse=False): |
|
assert b.dtype in (expected_dtype, torch.int64) |
|
|
|
def test_output_is_half(self): |
|
out_tensor = self.fp16_model(self.in_tensor) |
|
assert out_tensor.dtype == torch.half |
|
|
|
|