MasonCrinr's picture
Upload 331 files
8026e91
import unittest
import functools as ft
import itertools as it
from apex import amp
from apex.amp import _amp_state
import torch
from torch import nn
import torch.nn.functional as F
from utils import common_init, HALF, FLOAT,\
ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT
def get_reference_grad(i, w, ops):
# Creating new tensors ensures, among other things, that the new tensors are not in the cache.
# In fact, they are guaranteed not to use the cache because they are not torch.nn.Parameters.
fp32_i = i.detach().clone().float()
fp32_w = w.detach().clone().float().requires_grad_()
loss = ops(fp32_i, fp32_w)
loss.backward()
return fp32_w.grad
class WhitelistModule(torch.nn.Module):
def __init__(self, dtype):
super(WhitelistModule, self).__init__()
self.weight = torch.nn.Parameter(torch.arange(8*8, device='cuda', dtype=dtype).view(8,8))
@staticmethod
def ops(input, weight):
return (input.mm(weight)).mm(weight).sum()
def forward(self, input):
return self.ops(input, self.weight)
class BlacklistModule(torch.nn.Module):
def __init__(self, dtype):
super(BlacklistModule, self).__init__()
self.weight = torch.nn.Parameter(torch.arange(2*8, device='cuda', dtype=dtype).view(2,8))
@staticmethod
def ops(input, weight):
return (input + torch.pow(weight, 2) + torch.pow(weight, 2)).sum()
def forward(self, input):
return self.ops(input, self.weight)
class PromoteModule(torch.nn.Module):
def __init__(self, dtype):
super(PromoteModule, self).__init__()
self.weight = torch.nn.Parameter(torch.arange(2*8, device='cuda', dtype=dtype).view(2,8))
@staticmethod
def ops(input, weight):
return ((input*weight)*weight).sum()
def forward(self, input):
return self.ops(input, self.weight)
class TestCache(unittest.TestCase):
def setUp(self):
self.x = torch.ones((2, 8), device='cuda', dtype=torch.float32)
common_init(self)
def tearDown(self):
pass
def train_eval_train_test(self, module, t):
model = module(t).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
_amp_state.allow_incoming_model_not_fp32 = True
model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0)
_amp_state.allow_incoming_model_not_fp32 = False
def training_step():
for param in model.parameters():
param.grad = None
loss = model(self.x).sum()
_amp_state.loss_scalers[0]._loss_scale = 4.0
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
self.assertEqual(len([p.grad for p in model.parameters() if p.grad is not None]), 1)
self.assertEqual(model.weight.grad.type(), model.weight.type())
reference_grad = get_reference_grad(self.x, model.weight, model.ops)
# Currently there's no difference in the allclose calls, so no need for branching,
# but I'm keeping this in case we want different tolerances for fp16 and fp32 checks.
if model.weight.grad.type() == "torch.cuda.HalfTensor":
self.assertTrue(torch.allclose(model.weight.grad.float(), reference_grad))
elif model.weight.grad.type() == "torch.cuda.FloatTensor":
self.assertTrue(torch.allclose(model.weight.grad.float(), reference_grad))
else:
raise RuntimeError("model.weight.grad.type = {}".format(model.weight.grad.type()))
model.weight.data -= 1.
# Simulates first epoch
training_step()
# Simulates eval
with torch.no_grad():
loss = model(self.x).sum()
# Simulates resuming training after eval
training_step()
_amp_state.handle._deactivate()
# I could easily have these as a set of for loops in a single test,
# instead of going for granularity.
def test_whitelist_module_fp16_weight(self):
self.train_eval_train_test(WhitelistModule, torch.float16)
def test_whitelist_module_fp32_weight(self):
self.train_eval_train_test(WhitelistModule, torch.float32)
def test_blacklist_module_fp16_weight(self):
self.train_eval_train_test(BlacklistModule, torch.float16)
def test_blacklist_module_fp32_weight(self):
self.train_eval_train_test(BlacklistModule, torch.float32)
def test_promote_module_fp16_weight(self):
self.train_eval_train_test(PromoteModule, torch.float16)
def test_promote_module_fp32_weight(self):
self.train_eval_train_test(PromoteModule, torch.float32)
if __name__ == '__main__':
unittest.main()