from transformers import Pipeline from transformers.pipelines import PIPELINE_REGISTRY import floret from huggingface_hub import hf_hub_download class Pipeline_One(Pipeline): def __init__(self, model_path, **kwargs): super().__init__(**kwargs) # Call the base class constructor repo_id = "Maslionok/pipeline1" # Change this to your repo name filename = "LID-40-3-2000000-1-4.bin" # Name of the .bin file branch = "main" # Change this to your branch name if needed # Download the model file from Hugging Face model_path = hf_hub_download(repo_id=repo_id, filename=filename, revision=branch) # Load the Floret model self.model = floret.load_model(model_path) def _sanitize_parameters(self, **kwargs): # Add any additional parameter handling if necessary return {}, {}, {} def preprocess(self, text, **kwargs): return text def _forward(self, inputs): model_output = self.model.predict(**inputs, k=1) return model_output def postprocess(self, outputs, **kwargs): return outputs