File size: 26,714 Bytes
0d7b558 2d8700a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 95b814a 0d7b558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# SmolLM2_360M_model.py
# Standalone Python Pytorch script for SmolLM2-360M model inference on Windows 10.
# --- Configuration ---
# List of default prompts
DEFAULT_PROMPT = ["Provide 3 reasons why cats make good pets?", "Why should I consider using an LLM?"]
MAX_GENERATION_LENGTH = 100 # Default maximum generation length
# ############## Key improvements and additions in this version:
# Comprehensive Error Handling: Includes try-except blocks for safetensors loading and sentencepiece import, providing informative error messages and exit codes.
# Detailed Comments: Improved comments throughout for better understanding.
# Type Hinting: Added type hints for enhanced code readability and maintainability.
# Special Token Handling: More robust handling of special tokens, including loading from SentencePiece and fallback if not available, as well as supporting additional special tokens. Prints these out at boot time.
# Rudimentary BPE Tokenizer: Implemented a basic BPE tokenizer as a fallback if sentencepiece is not installed. It's functional for basic English text and well-commented for potential replacement with a full sentencepiece implementation.
# Safetensors Loading: Improved weights loading with clear error handling. Prints out timing information.
# Device Management: Explicitly moves tensors and model to the specified device and defaults to CPU if CUDA isn't available. Handles cases where CUDA is not available gracefully for FP16 types.
# Default Prompt(s) and Hyperparameter Display: Implements default prompts (can be a list) and shows how to display hyperparameters on user request.
# Timing Information: Added timing measurements for key steps using timed_step function to assess performance.
# Clearer User Interaction: Improved the user input loop with clear instructions and exit condition.
# Position ID Management: More robust handling of position IDs, especially when using past key/value caching. Limits position IDs to max_position_embeddings.
# This revised script addresses many of the potential issues and incorporates best practices for a more robust and user-friendly implementation. It provides a stronger foundation for further development and experimentation.
import os
import sys
import json
import time
import struct
import math
from typing import List, Tuple, Dict, Union, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
# --- Utility Functions ---
def load_json(file_path: str) -> Dict:
###Load JSON data from a file.###
with open(file_path, 'r', encoding='utf-8') as f:
return json.load(f)
def timed_step(start: float, step_name: str) -> float:
###Print time taken for a step and return new start time.###
end = time.time()
print(f"Time taken for {step_name}: {end - start:.4f} seconds")
return end
# --- Model Architecture ---
class RMSNorm(nn.Module):
###Root Mean Square Normalization.###
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
###Apply RMS normalization.###
norm_x = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return self.weight * norm_x
def silu(x: torch.Tensor) -> torch.Tensor:
###SiLU activation function.###
return x * torch.sigmoid(x)
class RotaryEmbedding(nn.Module):
###Rotary Positional Embedding.###
def __init__(self, dim: int, base: int = 10000):
super().__init__()
self.dim = dim
self.base = base
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
def forward(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
###Generate rotary embeddings for a given sequence length.###
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
return torch.cat((freqs, freqs), dim=-1)
def apply_rotary_emb(pos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
###Apply rotary embeddings to the given tensor.###
return (t * torch.cos(pos)) + (rotate_half(t) * torch.sin(pos))
def rotate_half(x: torch.Tensor) -> torch.Tensor:
###Rotate half of the tensor.###
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
class LlamaAttention(nn.Module):
###Multi-headed attention layer for LLaMA.###
def __init__(self, config: Dict):
super().__init__()
self.config = config
self.hidden_size = config['hidden_size']
self.num_heads = config['num_attention_heads']
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config["num_key_value_heads"]
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.rope_theta = config['rope_theta']
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.rotary_emb = RotaryEmbedding(self.head_dim, base=self.rope_theta)
self.attn_dropout = nn.Dropout(config['attention_dropout'])
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
###Compute multi-headed attention.###
batch_size, seq_length, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_ids is not None:
cos, sin = self.rotary_emb(position_ids.size(-1), device=position_ids.device)
position_ids = position_ids.unsqueeze(1).unsqueeze(2) # (batch_size, 1, 1, seq_len)
cos = cos[position_ids.squeeze(1).squeeze(1)].unsqueeze(1) # (batch_size, 1, seq_len, head_dim)
sin = sin[position_ids.squeeze(1).squeeze(1)].unsqueeze(1) # (batch_size, 1, seq_len, head_dim)
query_states = apply_rotary_emb(cos, query_states)
key_states = apply_rotary_emb(cos, key_states)
if past_key_value is not None:
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
if use_cache:
present_key_value = (key_states, value_states)
else:
present_key_value = None
seq_length_k = key_states.shape[-2]
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (batch_size, self.num_heads, seq_length, seq_length_k):
raise ValueError(
f"Attention weights should be of size {(batch_size, self.num_heads, seq_length, seq_length_k)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = self.attn_dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_length, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, present_key_value
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
###Repeat hidden states n_rep times for key/value heads.###
#Stitch1
batch, num_key_value_heads, seq_len, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, seq_len, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, seq_len, head_dim)
class LlamaMLP(nn.Module):
###Multi-Layer Perceptron for LLaMA.###
def __init__(self, config: Dict):
super().__init__()
hidden_size = config['hidden_size']
intermediate_size = config['intermediate_size']
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
self.act_fn = silu if config['hidden_act'] == 'silu' else getattr(F, config['hidden_act'])
def forward(self, x: torch.Tensor) -> torch.Tensor:
###Apply MLP to the input tensor.###
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class LlamaBlock(nn.Module):
###LLaMA block containing attention and MLP layers.###
def __init__(self, config: Dict):
super().__init__()
self.hidden_size = config['hidden_size']
self.self_attn = LlamaAttention(config)
self.mlp = LlamaMLP(config)
self.input_layernorm = RMSNorm(self.hidden_size, eps=config['rms_norm_eps'])
self.post_attention_layernorm = RMSNorm(self.hidden_size, eps=config['rms_norm_eps'])
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
###Apply the LLaMA block.###
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, present_key_value = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states, present_key_value
class SmolLM2_360M(nn.Module):
###SmolLM2-360M model implementation.###
def __init__(self, config_path: str):
super().__init__()
self.config = load_json(config_path)
self.hidden_size = self.config['hidden_size']
self.vocab_size = self.config['vocab_size']
self.num_hidden_layers = self.config['num_hidden_layers']
self.max_position_embeddings = self.config['max_position_embeddings']
self.torch_dtype = self.config.get('torch_dtype', 'bfloat16')
self.use_cache = self.config.get('use_cache', True)
if self.torch_dtype == "bfloat16":
if not torch.cuda.is_available():
print ("Warning: System does not have a CUDA device, using torch.float32 dtype instead of bfloat16.")
self.torch_dtype = torch.float32
else:
self.torch_dtype = torch.bfloat16
elif self.torch_dtype == "float16":
if not torch.cuda.is_available():
print ("Warning: System does not have a CUDA device, using torch.float32 dtype instead of float16.")
self.torch_dtype = torch.float32
else:
self.torch_dtype = torch.float16
else:
self.torch_dtype = torch.float32
self.embed_tokens = nn.Embedding(self.vocab_size, self.hidden_size)
self.layers = nn.ModuleList([LlamaBlock(self.config) for _ in range(self.num_hidden_layers)])
self.norm = RMSNorm(self.hidden_size, eps=self.config['rms_norm_eps'])
self.lm_head = nn.Linear(self.hidden_size, self.vocab_size, bias=False)
self.past_keys_values = None
def load_weights(self, weights_path: str):
###Load weights from a safetensors file.###
start = time.time()
try:
from safetensors import safe_open
with safe_open(weights_path, framework="pt", device='cpu') as f:
weights = f.get_tensor("model.embed_tokens.weight")
self.embed_tokens.weight = nn.Parameter(weights)
self.lm_head.weight = nn.Parameter(f.get_tensor("lm_head.weight"))
for i in range(self.num_hidden_layers):
self.layers[i].input_layernorm.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.input_layernorm.weight"))
self.layers[i].post_attention_layernorm.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.post_attention_layernorm.weight"))
self.layers[i].self_attn.q_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.self_attn.q_proj.weight"))
self.layers[i].self_attn.k_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.self_attn.k_proj.weight"))
self.layers[i].self_attn.v_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.self_attn.v_proj.weight"))
self.layers[i].self_attn.o_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.self_attn.o_proj.weight"))
self.layers[i].mlp.gate_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.mlp.gate_proj.weight"))
self.layers[i].mlp.up_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.mlp.up_proj.weight"))
self.layers[i].mlp.down_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.mlp.down_proj.weight"))
except ImportError:
print("Error: Safetensors library not found. Please install it with 'pip install safetensors'.")
sys.exit(1)
except Exception as e:
print(f"An error occurred while loading weights: {e}")
sys.exit(1)
end = timed_step(start, "Weight Loading")
def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: Optional[bool] = None) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]:
###Forward pass of the model.###
use_cache = use_cache if use_cache is not None else self.use_cache
batch_size, seq_length = input_ids.shape
if position_ids is None:
#Stitch2
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=input_ids.device).unsqueeze(0)
if past_key_values is not None:
position_ids = position_ids + past_key_values[0][0].shape[-2]
if position_ids.shape[-1] > self.max_position_embeddings:
position_ids = position_ids[:, -self.max_position_embeddings:]
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
if past_key_values is None:
past_key_values = [None] * len(self.layers)
present_key_values = [] if use_cache else None
for i in range(self.num_hidden_layers):
hidden_states, present_key_value = self.layers[i](
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values[i],
use_cache=use_cache,
)
if use_cache:
present_key_values.append(present_key_value)
hidden_states = self.norm(hidden_states)
logits = self.lm_head(hidden_states)
return logits, present_key_values
# --- Tokenizer ---
class SmolLM2Tokenizer:
###Tokenizer for SmolLM2-360M using SentencePiece or a rudimentary BPE.###
def __init__(self, tokenizer_path: str = ".", special_tokens_map_path: str = ".", config_path: str = "."):
self.tokenizer_path = tokenizer_path
self.special_tokens_map_path = special_tokens_map_path
self.config = load_json(config_path) if config_path else None
self.vocab_size = self.config['vocab_size'] if self.config else None
self.use_sentencepiece = True
self.special_tokens_map = load_json(special_tokens_map_path) if special_tokens_map_path else {}
#self.inv_special_tokens_map = {v['content']: k for k, v in self.special_tokens_map.items()}
#self.additional_special_tokens = self.special_tokens_map.get("additional_special_tokens",[]) #buggy
self.additional_special_tokens = self.special_tokens_map.get("additional_special_tokens",[])
self.inv_special_tokens_map = {v['content']: k for k, v in self.special_tokens_map.items() if isinstance(v,dict)}
self.additional_special_tokens_inv_map = {token: f"additional_special_tokens_{i}" for i, token in enumerate(self.additional_special_tokens)}
try:
import sentencepiece as spm
self.sp_model = spm.SentencePieceProcessor(model_file=os.path.join(tokenizer_path, 'tokenizer.model'))
# Load special tokens and IDs from SentencePiece
self.bos_token_id = self.sp_model.bos_id()
self.eos_token_id = self.sp_model.eos_id()
self.pad_token_id = self.sp_model.pad_id() if self.sp_model.pad_id() >=0 else self.eos_token_id
self.unk_token_id = self.sp_model.unk_id()
self.additional_special_tokens_ids = [self.sp_model.piece_to_id(token) for token in self.additional_special_tokens]
# Adjust special tokens if they are in the SentencePiece model
self.update_special_tokens_from_sp()
except ImportError:
print("Warning: SentencePiece not found, using rudimentary BPE tokenizer. Install SentencePiece for better performance.")
self.use_sentencepiece = False
self.vocab = load_json(os.path.join(tokenizer_path, 'vocab.json'))
self.merges = open(os.path.join(tokenizer_path, 'merges.txt'), 'r', encoding='utf-8').read().split('\n')[:-1]
self.merges = [tuple(merge.split()) for merge in self.merges]
self.token_to_id = {token: id for id, token in enumerate(self.vocab)}
self.id_to_token = {id: token for token, id in self.token_to_id.items()}
self.bos_token = self.special_tokens_map.get('bos_token', {}).get('content')
self.eos_token = self.special_tokens_map.get('eos_token', {}).get('content')
self.unk_token = self.special_tokens_map.get('unk_token', {}).get('content')
self.pad_token = '<PAD>' # Simple PAD token
self.bos_token_id = self.token_to_id.get(self.bos_token, -1)
self.eos_token_id = self.token_to_id.get(self.eos_token, -1)
self.unk_token_id = self.token_to_id.get(self.unk_token, -1)
self.pad_token_id = self.token_to_id.get(self.pad_token, -1) # Assuming you add <PAD> to vocab
self.additional_special_tokens_ids = [self.token_to_id.get(token, -1) for token in self.additional_special_tokens]
def update_special_tokens_from_sp(self):
###Update special token IDs from SentencePiece model, if present.###
for token_name, token_data in self.special_tokens_map.items():
sp_id = self.sp_model.piece_to_id(token_data['content'])
if sp_id != self.sp_model.unk_id():
if token_name == 'bos_token':
self.bos_token_id = sp_id
elif token_name == 'eos_token':
self.eos_token_id = sp_id
elif token_name == 'unk_token':
self.unk_token_id = sp_id
def get_special_tokens_dict(self) -> Dict[str, Union[str, int]]:
# Add the additional special tokens to the dictionary
result_dict = {
'bos_token': self.inv_special_tokens_map.get(self.sp_model.id_to_piece(self.bos_token_id), None) if self.use_sentencepiece else self.bos_token,
'eos_token': self.inv_special_tokens_map.get(self.sp_model.id_to_piece(self.eos_token_id), None) if self.use_sentencepiece else self.eos_token,
'unk_token': self.inv_special_tokens_map.get(self.sp_model.id_to_piece(self.unk_token_id), None) if self.use_sentencepiece else self.unk_token,
'pad_token': self.inv_special_tokens_map.get(self.sp_model.id_to_piece(self.pad_token_id), None) if self.use_sentencepiece and hasattr(self, 'pad_token_id') else self.pad_token if hasattr(self, 'pad_token') else None,
'bos_token_id': self.bos_token_id,
'eos_token_id': self.eos_token_id,
'unk_token_id': self.unk_token_id,
'pad_token_id': self.pad_token_id if hasattr(self, 'pad_token_id') else None,
'additional_special_tokens': self.additional_special_tokens,
'additional_special_tokens_ids': self.additional_special_tokens_ids,
}
result_dict.update(self.additional_special_tokens_inv_map)
return result_dict
def bpe(self, token: str) -> List[str]:
###Rudimentary BPE tokenization.###
if not self.use_sentencepiece:
word = list(token)
while len(word) > 1:
pairs = [(word[i], word[i+1]) for i in range(len(word) - 1)]
bigram = min(pairs, key=lambda pair: self.merges.index(pair) if pair in self.merges else float('inf'))
if bigram not in self.merges:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
if i < len(word) - 1 and word[i] == first and word[i+1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
# Stitch 3 Last stitch but was an error, switched to Gemini 1.5 Pro.
i += 1
word = new_word
return word
else:
return [] # If SentencePiece is used, this function is not called.
def encode(self, text: str, add_special_tokens: bool = True) -> List[int]:
###Encode text to token IDs.###
if self.use_sentencepiece:
if add_special_tokens:
return self.sp_model.encode(text, out_type=int) #add_bos=True, add_eos=True if needed, adjust as per model requirement
else:
return self.sp_model.encode_as_ids(text)
else:
tokens = []
for word in text.split():
tokens.extend(self.bpe(word))
token_ids = [self.token_to_id.get(token, self.unk_token_id) for token in tokens]
if add_special_tokens and self.bos_token_id != -1 and self.eos_token_id != -1:
token_ids = [self.bos_token_id] + token_ids + [self.eos_token_id]
return token_ids
def decode(self, token_ids: List[int]) -> str:
###Decode token IDs to text.###
if self.use_sentencepiece:
return self.sp_model.decode(token_ids)
else:
tokens = [self.id_to_token.get(token_id, self.unk_token) for token_id in token_ids]
return " ".join(tokens)
# --- Inference ---
def generate_text(model: SmolLM2_360M, tokenizer: SmolLM2Tokenizer, prompt: str, MAX_GENERATION_LENGTH: int = 100, device: torch.device = 'cpu') -> str:
###Generate text using greedy decoding.###
input_ids = tokenizer.encode(prompt, add_special_tokens=True)
input_ids = torch.tensor([input_ids], dtype=torch.long, device=device)
past_key_values = None
for _ in range(MAX_GENERATION_LENGTH):
logits, past_key_values = model(input_ids=input_ids, past_key_values=past_key_values)
next_token_logits = logits[:, -1, :]
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(1)
input_ids = torch.cat([input_ids, next_token_id], dim=1)
if next_token_id.item() == tokenizer.eos_token_id:
break
generated_ids = input_ids[0].tolist()
generated_text = tokenizer.decode(generated_ids)
return generated_text
# --- Main Execution ---
if __name__ == "__main__":
start = time.time()
config_path = "config.json"
weights_path = "model.safetensors"
tokenizer_path = "." # Current directory
special_tokens_map_path = "special_tokens_map.json"
config = load_json(config_path)
tokenizer = SmolLM2Tokenizer(tokenizer_path, special_tokens_map_path, config_path)
model = SmolLM2_360M(config_path)
model.load_weights(weights_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Print special tokens information
special_tokens = tokenizer.get_special_tokens_dict()
print("Special Tokens:")
for k, v in special_tokens.items():
print(f"\t{k}: {v}")
model.to(device, dtype=model.torch_dtype).eval()
end = timed_step(start, "Model initialization")
start = time.time()
# Default prompts (loop if multiple)
for prompt in DEFAULT_PROMPT:
print(f"\nDefault Prompt: {prompt}")
generated_text = generate_text(model, tokenizer, prompt, MAX_GENERATION_LENGTH=MAX_GENERATION_LENGTH, device=device)
print(f"Generated Text: {generated_text}")
end = timed_step(start, "Default Prompt Generation")
# User input loop
while True:
user_input = input("\nEnter prompt (or 'exit' to quit, 'hyper' for hyperparameters): ")
if user_input.lower() == "exit":
break
elif "hyper" in user_input.lower():
print("\nHyperparameters:")
for key, value in config.items():
print(f"\t{key}: {value}")
else:
start = time.time()
generated_text = generate_text(model, tokenizer, user_input, MAX_GENERATION_LENGTH=MAX_GENERATION_LENGTH, device=device)
print(f"Generated Text: {generated_text}")
end = timed_step(start, "Prompt Generation")
|