File size: 26,714 Bytes
0d7b558
2d8700a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
95b814a
0d7b558
 
 
 
95b814a
0d7b558
 
 
95b814a
0d7b558
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
95b814a
0d7b558
 
 
95b814a
0d7b558
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b814a
0d7b558
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# SmolLM2_360M_model.py
# Standalone Python Pytorch script for SmolLM2-360M model inference on Windows 10.

# --- Configuration ---
# List of default prompts
DEFAULT_PROMPT = ["Provide 3 reasons why cats make good pets?", "Why should I consider using an LLM?"] 
MAX_GENERATION_LENGTH = 100  # Default maximum generation length


# ############## Key improvements and additions in this version:

# Comprehensive Error Handling: Includes try-except blocks for safetensors loading and sentencepiece import, providing informative error messages and exit codes.

# Detailed Comments: Improved comments throughout for better understanding.

# Type Hinting: Added type hints for enhanced code readability and maintainability.

# Special Token Handling: More robust handling of special tokens, including loading from SentencePiece and fallback if not available, as well as supporting additional special tokens. Prints these out at boot time.

# Rudimentary BPE Tokenizer: Implemented a basic BPE tokenizer as a fallback if sentencepiece is not installed. It's functional for basic English text and well-commented for potential replacement with a full sentencepiece implementation.

# Safetensors Loading: Improved weights loading with clear error handling. Prints out timing information.

# Device Management: Explicitly moves tensors and model to the specified device and defaults to CPU if CUDA isn't available. Handles cases where CUDA is not available gracefully for FP16 types.

# Default Prompt(s) and Hyperparameter Display: Implements default prompts (can be a list) and shows how to display hyperparameters on user request.

# Timing Information: Added timing measurements for key steps using timed_step function to assess performance.

# Clearer User Interaction: Improved the user input loop with clear instructions and exit condition.

# Position ID Management: More robust handling of position IDs, especially when using past key/value caching. Limits position IDs to max_position_embeddings.

# This revised script addresses many of the potential issues and incorporates best practices for a more robust and user-friendly implementation. It provides a stronger foundation for further development and experimentation.


import os
import sys
import json
import time
import struct
import math
from typing import List, Tuple, Dict, Union, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F

# --- Utility Functions ---

def load_json(file_path: str) -> Dict:
    ###Load JSON data from a file.###
    with open(file_path, 'r', encoding='utf-8') as f:
        return json.load(f)

def timed_step(start: float, step_name: str) -> float:
    ###Print time taken for a step and return new start time.###
    end = time.time()
    print(f"Time taken for {step_name}: {end - start:.4f} seconds")
    return end

# --- Model Architecture ---

class RMSNorm(nn.Module):
    ###Root Mean Square Normalization.###
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        ###Apply RMS normalization.###
        norm_x = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
        return self.weight * norm_x

def silu(x: torch.Tensor) -> torch.Tensor:
    ###SiLU activation function.###
    return x * torch.sigmoid(x)

class RotaryEmbedding(nn.Module):
    ###Rotary Positional Embedding.###
    def __init__(self, dim: int, base: int = 10000):
        super().__init__()
        self.dim = dim
        self.base = base
        self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))

    def forward(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
        ###Generate rotary embeddings for a given sequence length.###
        t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
        freqs = torch.outer(t, self.inv_freq)
        return torch.cat((freqs, freqs), dim=-1)

def apply_rotary_emb(pos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
    ###Apply rotary embeddings to the given tensor.###
    return (t * torch.cos(pos)) + (rotate_half(t) * torch.sin(pos))

def rotate_half(x: torch.Tensor) -> torch.Tensor:
    ###Rotate half of the tensor.###
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

class LlamaAttention(nn.Module):
    ###Multi-headed attention layer for LLaMA.###
    def __init__(self, config: Dict):
        super().__init__()
        self.config = config
        self.hidden_size = config['hidden_size']
        self.num_heads = config['num_attention_heads']
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config["num_key_value_heads"]
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.rope_theta = config['rope_theta']

        self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
        self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)

        self.rotary_emb = RotaryEmbedding(self.head_dim, base=self.rope_theta)
        self.attn_dropout = nn.Dropout(config['attention_dropout'])

    def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
        ###Compute multi-headed attention.###

        batch_size, seq_length, _ = hidden_states.size()
        query_states = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if position_ids is not None:
            cos, sin = self.rotary_emb(position_ids.size(-1), device=position_ids.device)
            position_ids = position_ids.unsqueeze(1).unsqueeze(2)  # (batch_size, 1, 1, seq_len)
            cos = cos[position_ids.squeeze(1).squeeze(1)].unsqueeze(1) # (batch_size, 1, seq_len, head_dim)
            sin = sin[position_ids.squeeze(1).squeeze(1)].unsqueeze(1) # (batch_size, 1, seq_len, head_dim)
            query_states = apply_rotary_emb(cos, query_states)
            key_states = apply_rotary_emb(cos, key_states)

        if past_key_value is not None:
             key_states = torch.cat([past_key_value[0], key_states], dim=2)
             value_states = torch.cat([past_key_value[1], value_states], dim=2)

        if use_cache:
            present_key_value = (key_states, value_states)
        else:
            present_key_value = None

        seq_length_k = key_states.shape[-2]

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.size() != (batch_size, self.num_heads, seq_length, seq_length_k):
            raise ValueError(
                f"Attention weights should be of size {(batch_size, self.num_heads, seq_length, seq_length_k)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        attn_output = torch.matmul(attn_weights, value_states)
        attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_length, self.hidden_size)
        attn_output = self.o_proj(attn_output)
        return attn_output, present_key_value

def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    ###Repeat hidden states n_rep times for key/value heads.###
    #Stitch1
    batch, num_key_value_heads, seq_len, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, seq_len, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, seq_len, head_dim)

class LlamaMLP(nn.Module):
    ###Multi-Layer Perceptron for LLaMA.###
    def __init__(self, config: Dict):
        super().__init__()
        hidden_size = config['hidden_size']
        intermediate_size = config['intermediate_size']
        self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
        self.act_fn = silu if config['hidden_act'] == 'silu' else getattr(F, config['hidden_act'])

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        ###Apply MLP to the input tensor.###
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

class LlamaBlock(nn.Module):
    ###LLaMA block containing attention and MLP layers.###
    def __init__(self, config: Dict):
        super().__init__()
        self.hidden_size = config['hidden_size']
        self.self_attn = LlamaAttention(config)
        self.mlp = LlamaMLP(config)
        self.input_layernorm = RMSNorm(self.hidden_size, eps=config['rms_norm_eps'])
        self.post_attention_layernorm = RMSNorm(self.hidden_size, eps=config['rms_norm_eps'])

    def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache: bool = True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
        ###Apply the LLaMA block.###
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states, present_key_value = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache)
        hidden_states = residual + hidden_states
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states, present_key_value

class SmolLM2_360M(nn.Module):
    ###SmolLM2-360M model implementation.###
    def __init__(self, config_path: str):
        super().__init__()
        self.config = load_json(config_path)
        self.hidden_size = self.config['hidden_size']
        self.vocab_size = self.config['vocab_size']
        self.num_hidden_layers = self.config['num_hidden_layers']
        self.max_position_embeddings = self.config['max_position_embeddings']
        self.torch_dtype = self.config.get('torch_dtype', 'bfloat16')
        self.use_cache = self.config.get('use_cache', True)
        if self.torch_dtype == "bfloat16":
            if not torch.cuda.is_available():
                print ("Warning: System does not have a CUDA device, using torch.float32 dtype instead of bfloat16.")
                self.torch_dtype = torch.float32
            else:
                 self.torch_dtype = torch.bfloat16
        elif self.torch_dtype == "float16":
            if not torch.cuda.is_available():
                print ("Warning: System does not have a CUDA device, using torch.float32 dtype instead of float16.")
                self.torch_dtype = torch.float32
            else:
                self.torch_dtype = torch.float16
        else:
            self.torch_dtype = torch.float32
        self.embed_tokens = nn.Embedding(self.vocab_size, self.hidden_size)
        self.layers = nn.ModuleList([LlamaBlock(self.config) for _ in range(self.num_hidden_layers)])
        self.norm = RMSNorm(self.hidden_size, eps=self.config['rms_norm_eps'])
        self.lm_head = nn.Linear(self.hidden_size, self.vocab_size, bias=False)
        self.past_keys_values = None

    def load_weights(self, weights_path: str):
        ###Load weights from a safetensors file.###
        start = time.time()
        try:
            from safetensors import safe_open
            with safe_open(weights_path, framework="pt", device='cpu') as f:
                weights = f.get_tensor("model.embed_tokens.weight")
                self.embed_tokens.weight = nn.Parameter(weights)
                self.lm_head.weight = nn.Parameter(f.get_tensor("lm_head.weight"))
                for i in range(self.num_hidden_layers):
                    self.layers[i].input_layernorm.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.input_layernorm.weight"))
                    self.layers[i].post_attention_layernorm.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.post_attention_layernorm.weight"))
                    self.layers[i].self_attn.q_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.self_attn.q_proj.weight"))
                    self.layers[i].self_attn.k_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.self_attn.k_proj.weight"))
                    self.layers[i].self_attn.v_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.self_attn.v_proj.weight"))
                    self.layers[i].self_attn.o_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.self_attn.o_proj.weight"))
                    self.layers[i].mlp.gate_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.mlp.gate_proj.weight"))
                    self.layers[i].mlp.up_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.mlp.up_proj.weight"))
                    self.layers[i].mlp.down_proj.weight = nn.Parameter(f.get_tensor(f"model.layers.{i}.mlp.down_proj.weight"))
        except ImportError:
            print("Error: Safetensors library not found. Please install it with 'pip install safetensors'.")
            sys.exit(1)
        except Exception as e:
            print(f"An error occurred while loading weights: {e}")
            sys.exit(1)
        end = timed_step(start, "Weight Loading")

    def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: Optional[bool] = None) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]:
        ###Forward pass of the model.###
        use_cache = use_cache if use_cache is not None else self.use_cache
        batch_size, seq_length = input_ids.shape
        if position_ids is None:
            #Stitch2
            position_ids = torch.arange(0, seq_length, dtype=torch.long, device=input_ids.device).unsqueeze(0)
            if past_key_values is not None:
                 position_ids = position_ids + past_key_values[0][0].shape[-2]
            if position_ids.shape[-1] > self.max_position_embeddings:
                position_ids = position_ids[:, -self.max_position_embeddings:]
        inputs_embeds = self.embed_tokens(input_ids)
        hidden_states = inputs_embeds

        if past_key_values is None:
           past_key_values =  [None] * len(self.layers)

        present_key_values = [] if use_cache else None

        for i in range(self.num_hidden_layers):
            hidden_states, present_key_value = self.layers[i](
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_values[i],
                use_cache=use_cache,
            )
            if use_cache:
                present_key_values.append(present_key_value)

        hidden_states = self.norm(hidden_states)
        logits = self.lm_head(hidden_states)

        return logits, present_key_values

# --- Tokenizer ---

class SmolLM2Tokenizer:
    ###Tokenizer for SmolLM2-360M using SentencePiece or a rudimentary BPE.###
    def __init__(self, tokenizer_path: str = ".", special_tokens_map_path: str = ".", config_path: str = "."):
        self.tokenizer_path = tokenizer_path
        self.special_tokens_map_path = special_tokens_map_path
        self.config = load_json(config_path) if config_path else None
        self.vocab_size = self.config['vocab_size'] if self.config else None
        self.use_sentencepiece = True
        self.special_tokens_map = load_json(special_tokens_map_path) if special_tokens_map_path else {}
        #self.inv_special_tokens_map = {v['content']: k for k, v in self.special_tokens_map.items()}
        #self.additional_special_tokens = self.special_tokens_map.get("additional_special_tokens",[]) #buggy
        self.additional_special_tokens = self.special_tokens_map.get("additional_special_tokens",[])
        self.inv_special_tokens_map = {v['content']: k for k, v in self.special_tokens_map.items() if isinstance(v,dict)}
        self.additional_special_tokens_inv_map = {token: f"additional_special_tokens_{i}" for i, token in enumerate(self.additional_special_tokens)} 

        try:
            import sentencepiece as spm
            self.sp_model = spm.SentencePieceProcessor(model_file=os.path.join(tokenizer_path, 'tokenizer.model'))
            # Load special tokens and IDs from SentencePiece
            self.bos_token_id = self.sp_model.bos_id()
            self.eos_token_id = self.sp_model.eos_id()
            self.pad_token_id = self.sp_model.pad_id() if self.sp_model.pad_id() >=0 else self.eos_token_id
            self.unk_token_id = self.sp_model.unk_id()
            self.additional_special_tokens_ids = [self.sp_model.piece_to_id(token) for token in self.additional_special_tokens]
            # Adjust special tokens if they are in the SentencePiece model
            self.update_special_tokens_from_sp()
        except ImportError:
            print("Warning: SentencePiece not found, using rudimentary BPE tokenizer. Install SentencePiece for better performance.")
            self.use_sentencepiece = False
            self.vocab = load_json(os.path.join(tokenizer_path, 'vocab.json'))
            self.merges = open(os.path.join(tokenizer_path, 'merges.txt'), 'r', encoding='utf-8').read().split('\n')[:-1]
            self.merges = [tuple(merge.split()) for merge in self.merges]
            self.token_to_id = {token: id for id, token in enumerate(self.vocab)}
            self.id_to_token = {id: token for token, id in self.token_to_id.items()}
            self.bos_token = self.special_tokens_map.get('bos_token', {}).get('content')
            self.eos_token = self.special_tokens_map.get('eos_token', {}).get('content')
            self.unk_token = self.special_tokens_map.get('unk_token', {}).get('content')
            self.pad_token = '<PAD>' # Simple PAD token
            self.bos_token_id = self.token_to_id.get(self.bos_token, -1)
            self.eos_token_id = self.token_to_id.get(self.eos_token, -1)
            self.unk_token_id = self.token_to_id.get(self.unk_token, -1)
            self.pad_token_id = self.token_to_id.get(self.pad_token, -1)  # Assuming you add <PAD> to vocab
            self.additional_special_tokens_ids = [self.token_to_id.get(token, -1) for token in self.additional_special_tokens]

    def update_special_tokens_from_sp(self):
        ###Update special token IDs from SentencePiece model, if present.###
        for token_name, token_data in self.special_tokens_map.items():
             sp_id = self.sp_model.piece_to_id(token_data['content'])
             if sp_id != self.sp_model.unk_id():
                  if token_name == 'bos_token':
                     self.bos_token_id = sp_id
                  elif token_name == 'eos_token':
                     self.eos_token_id = sp_id
                  elif token_name == 'unk_token':
                     self.unk_token_id = sp_id


    def get_special_tokens_dict(self) -> Dict[str, Union[str, int]]:

       # Add the additional special tokens to the dictionary
        result_dict =  {
            'bos_token': self.inv_special_tokens_map.get(self.sp_model.id_to_piece(self.bos_token_id), None) if self.use_sentencepiece else self.bos_token,
            'eos_token': self.inv_special_tokens_map.get(self.sp_model.id_to_piece(self.eos_token_id), None) if self.use_sentencepiece else self.eos_token,
            'unk_token': self.inv_special_tokens_map.get(self.sp_model.id_to_piece(self.unk_token_id), None) if self.use_sentencepiece else self.unk_token,
            'pad_token': self.inv_special_tokens_map.get(self.sp_model.id_to_piece(self.pad_token_id), None) if self.use_sentencepiece and hasattr(self, 'pad_token_id') else self.pad_token if hasattr(self, 'pad_token') else None,
            'bos_token_id': self.bos_token_id,
            'eos_token_id': self.eos_token_id,
            'unk_token_id': self.unk_token_id,
            'pad_token_id': self.pad_token_id if hasattr(self, 'pad_token_id') else None,
            'additional_special_tokens': self.additional_special_tokens,
            'additional_special_tokens_ids': self.additional_special_tokens_ids,
        }
        result_dict.update(self.additional_special_tokens_inv_map)
        return result_dict


    def bpe(self, token: str) -> List[str]:
        ###Rudimentary BPE tokenization.###
        if not self.use_sentencepiece:
            word = list(token)
            while len(word) > 1:
                pairs = [(word[i], word[i+1]) for i in range(len(word) - 1)]
                bigram = min(pairs, key=lambda pair: self.merges.index(pair) if pair in self.merges else float('inf'))
                if bigram not in self.merges:
                    break
                first, second = bigram
                new_word = []
                i = 0
                while i < len(word):
                    if i < len(word) - 1 and word[i] == first and word[i+1] == second:
                        new_word.append(first + second)
                        i += 2
                    else:
                        new_word.append(word[i])
                        # Stitch  3 Last stitch but was an error, switched to Gemini 1.5 Pro.
                        i += 1
                word = new_word
            return word
        else:
            return [] # If SentencePiece is used, this function is not called.

    def encode(self, text: str, add_special_tokens: bool = True) -> List[int]:
        ###Encode text to token IDs.###
        if self.use_sentencepiece:
            if add_special_tokens:
                return self.sp_model.encode(text, out_type=int) #add_bos=True, add_eos=True if needed, adjust as per model requirement
            else:
                return self.sp_model.encode_as_ids(text)
        else:
            tokens = []
            for word in text.split():
                tokens.extend(self.bpe(word))
            token_ids = [self.token_to_id.get(token, self.unk_token_id) for token in tokens]
            if add_special_tokens and self.bos_token_id != -1 and self.eos_token_id != -1:
                token_ids = [self.bos_token_id] + token_ids + [self.eos_token_id]
            return token_ids

    def decode(self, token_ids: List[int]) -> str:
        ###Decode token IDs to text.###
        if self.use_sentencepiece:
            return self.sp_model.decode(token_ids)
        else:
            tokens = [self.id_to_token.get(token_id, self.unk_token) for token_id in token_ids]
            return " ".join(tokens)


# --- Inference ---

def generate_text(model: SmolLM2_360M, tokenizer: SmolLM2Tokenizer, prompt: str, MAX_GENERATION_LENGTH: int = 100, device: torch.device = 'cpu') -> str:
    ###Generate text using greedy decoding.###
    input_ids = tokenizer.encode(prompt, add_special_tokens=True)
    input_ids = torch.tensor([input_ids], dtype=torch.long, device=device)

    past_key_values = None
    for _ in range(MAX_GENERATION_LENGTH):
        logits, past_key_values = model(input_ids=input_ids, past_key_values=past_key_values)
        next_token_logits = logits[:, -1, :]
        next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(1)
        input_ids = torch.cat([input_ids, next_token_id], dim=1)
        if next_token_id.item() == tokenizer.eos_token_id:
            break
    generated_ids = input_ids[0].tolist()
    generated_text = tokenizer.decode(generated_ids)
    return generated_text


# --- Main Execution ---
if __name__ == "__main__":
    start = time.time()
    config_path = "config.json"
    weights_path = "model.safetensors"
    tokenizer_path = "."  # Current directory
    special_tokens_map_path = "special_tokens_map.json"

    config = load_json(config_path)
    tokenizer = SmolLM2Tokenizer(tokenizer_path, special_tokens_map_path, config_path)

    model = SmolLM2_360M(config_path)
    model.load_weights(weights_path)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Print special tokens information
    special_tokens = tokenizer.get_special_tokens_dict()
    print("Special Tokens:")
    for k, v in special_tokens.items():
        print(f"\t{k}: {v}")

    model.to(device, dtype=model.torch_dtype).eval()

    end = timed_step(start, "Model initialization")

    start = time.time()
    # Default prompts (loop if multiple)
    for prompt in DEFAULT_PROMPT:
        print(f"\nDefault Prompt: {prompt}")
        generated_text = generate_text(model, tokenizer, prompt, MAX_GENERATION_LENGTH=MAX_GENERATION_LENGTH, device=device)
        print(f"Generated Text: {generated_text}")
    end = timed_step(start, "Default Prompt Generation")
    
    # User input loop
    while True:
        user_input = input("\nEnter prompt (or 'exit' to quit, 'hyper' for hyperparameters): ")
        if user_input.lower() == "exit":
            break
        elif "hyper" in user_input.lower():
            print("\nHyperparameters:")
            for key, value in config.items():
                print(f"\t{key}: {value}")
        else:
            start = time.time()
            generated_text = generate_text(model, tokenizer, user_input, MAX_GENERATION_LENGTH=MAX_GENERATION_LENGTH, device=device)
            print(f"Generated Text: {generated_text}")
            end = timed_step(start, "Prompt Generation")