MartialTerran commited on
Commit
ce96e17
·
verified ·
1 Parent(s): 0c68ca0

Create REPORT4_Modifications_1+2+3 _PiT_Training_Results_in_Colab

Browse files
REPORT4_Modifications_1+2+3 _PiT_Training_Results_in_Colab ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ In PiT V3.0, I modified the vanilla PiT model in a first undisclosed manner plus a second dislosed manner, plus a third dislosed manner essentially doubling the original Vanilla ViT parameter count, and the training results greatly improved, and the two-ways modified model was consistently ahead of the unmodified Vanilla PiT model.
2
+ My threee-ways modified V3.0 PiT model exceeded the vanilla and double-modded PiT Val Accuracy by epoch 8 (exceeding the final/highest 94.75% Val Accuracy of the vanilla PiT model at Epoch ____).
3
+ By Epoch 15, the three-way modified PiT model had the highest Val Accuracy 96.15% (aurpassing the Vanilla PiT models)
4
+ By Epoch 15, the three-ways modified PiT model exceeded 96% Val Accuracy,
5
+ And Val Accuracy increased up to the highest Val Accuracy of 96.70% (exceeding the Vanilla PiT and the Mod1+Mod2 PiT models before the training was hardcoded terminated Epoch 25.
6
+
7
+ --- Configuration V3.0 ---
8
+ train_file: /content/sample_data/mnist_train_small.csv
9
+ test_file: /content/sample_data/mnist_test.csv
10
+ image_size: 28
11
+ num_classes: 10
12
+ embed_dim: XXX
13
+ num_layers: X
14
+ num_heads: X
15
+ mlp_dim: XXXX
16
+ dropout: 0.1
17
+ batch_size: 128
18
+ epochs: 25
19
+ learning_rate: 0.0001
20
+ XXXX
21
+ device: cuda
22
+ image_height: 28
23
+ image_width: 28
24
+ sequence_length: 784
25
+ ------------------------------------------------------
26
+
27
+ Data loaded. Training on cuda.
28
+ Training samples: 17999
29
+ Validation samples: 2000
30
+ Test samples: 9999
31
+
32
+ Model V3.0 initialized with 2,7XX,XXX trainable parameters.
33
+
34
+ --- Starting Training (V3.0 Model) ---
35
+ Epoch 01/25 | Train Loss: 2.1971 | Val Loss: 1.9749 | Val Acc: 24.40%
36
+ -> New best validation accuracy! Saving model state.
37
+ Epoch 02/25 | Train Loss: 1.6013 | Val Loss: 0.9542 | Val Acc: 68.20%
38
+ -> New best validation accuracy! Saving model state.
39
+ Epoch 03/25 | Train Loss: 0.8384 | Val Loss: 0.6123 | Val Acc: 79.80%
40
+ -> New best validation accuracy! Saving model state.
41
+ Epoch 04/25 | Train Loss: 0.5816 | Val Loss: 0.4429 | Val Acc: 86.30%
42
+ -> New best validation accuracy! Saving model state.
43
+ Epoch 05/25 | Train Loss: 0.4547 | Val Loss: 0.3766 | Val Acc: 88.70%
44
+ -> New best validation accuracy! Saving model state.
45
+ Epoch 06/25 | Train Loss: 0.3752 | Val Loss: 0.2995 | Val Acc: 90.90%
46
+ -> New best validation accuracy! Saving model state.
47
+ Epoch 07/25 | Train Loss: 0.3099 | Val Loss: 0.2500 | Val Acc: 92.45%
48
+ -> New best validation accuracy! Saving model state.
49
+ Epoch 08/25 | Train Loss: 0.2781 | Val Loss: 0.2305 | Val Acc: 92.95%
50
+ -> New best validation accuracy! Saving model state.
51
+ Epoch 09/25 | Train Loss: 0.2576 | Val Loss: 0.2144 | Val Acc: 93.25%
52
+ -> New best validation accuracy! Saving model state.
53
+ Epoch 10/25 | Train Loss: 0.2275 | Val Loss: 0.1862 | Val Acc: 94.45%
54
+ -> New best validation accuracy! Saving model state.
55
+ Epoch 11/25 | Train Loss: 0.2092 | Val Loss: 0.1714 | Val Acc: 94.60%
56
+ -> New best validation accuracy! Saving model state.
57
+ Epoch 12/25 | Train Loss: 0.1924 | Val Loss: 0.1534 | Val Acc: 95.10%
58
+ -> New best validation accuracy! Saving model state.
59
+ Epoch 13/25 | Train Loss: 0.1847 | Val Loss: 0.1468 | Val Acc: 95.40%
60
+ -> New best validation accuracy! Saving model state.
61
+ Epoch 14/25 | Train Loss: 0.1649 | Val Loss: 0.1480 | Val Acc: 95.30%
62
+ Epoch 15/25 | Train Loss: 0.1587 | Val Loss: 0.1311 | Val Acc: 96.15%
63
+ -> New best validation accuracy! Saving model state.
64
+ Epoch 16/25 | Train Loss: 0.1503 | Val Loss: 0.1386 | Val Acc: 95.55%
65
+ Epoch 17/25 | Train Loss: 0.1433 | Val Loss: 0.1254 | Val Acc: 95.80%
66
+ Epoch 18/25 | Train Loss: 0.1324 | Val Loss: 0.1160 | Val Acc: 96.05%
67
+ Epoch 19/25 | Train Loss: 0.1285 | Val Loss: 0.1164 | Val Acc: 96.15%
68
+ Epoch 20/25 | Train Loss: 0.1184 | Val Loss: 0.1193 | Val Acc: 96.15%
69
+ Epoch 21/25 | Train Loss: 0.1145 | Val Loss: 0.1123 | Val Acc: 96.45%
70
+ -> New best validation accuracy! Saving model state.
71
+ Epoch 22/25 | Train Loss: 0.1125 | Val Loss: 0.1200 | Val Acc: 96.05%
72
+ Epoch 23/25 | Train Loss: 0.1053 | Val Loss: 0.1358 | Val Acc: 96.35%
73
+ Epoch 24/25 | Train Loss: 0.1021 | Val Loss: 0.1200 | Val Acc: 96.35%
74
+ Epoch 25/25 | Train Loss: 0.0964 | Val Loss: 0.1061 | Val Acc: 96.70%
75
+ -> New best validation accuracy! Saving model state.
76
+ --- Training Finished ---
77
+
78
+ --- Evaluating on Test Set (V3.0 Model) ---
79
+ Final Test Loss: 0.1031
80
+ Final Test Accuracy: 96.99%
81
+ -------------------------------------------