File size: 14,856 Bytes
5c88c7d 7b5622f 5c88c7d 7b5622f 85e8225 5c88c7d 7b5622f 5c88c7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
The following PiT_MNIST_V1.0.ipynb is a direct implementationi of the PiT pixel transformer described in the 2024 paper titled
An Image is Worth More Than 16 x 16 Patches: Exploring Transformers on Individual Pixels
at https://arxiv.org/html/2406.09415v1 which describes "directly treating each individual pixel as a token and achieve highly performant results"
This script simply applies this PiT model architecture without any modifications to the standard NMIST numeral-images-classification dataset that is provided in Google Colab sample_data folder.
The script was ran for 25 epochs and obtained 92.30 Accuracy on the Validation set ( Train Loss: 0.2800 | Val Loss: 0.2441 | Val Acc: 92.30%) by epoch 15.
Loss fell and Accuracy increased (almost) monontonically per each epoch until Epoch 18. (one minor dip in accuracy between Epoch 13 and 14, and again at Epoch 18-19, and 23-24 while Train Loss always continued to drop)
Final Test Accuracy: 95.01% (25 Epochs)
Final Test Loss: 0.1662
Ran on A100
PiT_MNIST_V1.0.ipynb
Current session
GPU
0 minutes ago
2.78 GB
6.51 GB
Python 3 Google Compute Engine backend (GPU)
Showing resources from 7:40 PM to 8:01 PM
System RAM
2.8 / 83.5 GB
GPU RAM
6.5 / 40.0 GB
Disk
37.7 / 112.6 GB
# ==============================================================================
# PiT_MNIST_V1.0.py [in colab: PiT_MNIST_V1.0.ipynb]
#
# ML-Engineer LLM Agent Implementation
#
# Description:
# This script implements a Pixel Transformer (PiT) for MNIST classification,
# based on the paper "An Image is Worth More Than 16x16 Patches"
# (arXiv:2406.09415). It treats each pixel as an individual token, forgoing
# the patch-based approach of traditional Vision Transformers.
#
# Designed for Google Colab using the sample_data/mnist_*.csv files.
# ==============================================================================
import torch
import torch.nn as nn
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import math
# --- 1. Configuration & Hyperparameters ---
# These parameters are chosen to be reasonable for the MNIST task and
# inspired by the "Tiny" or "Small" variants in the paper.
CONFIG = {
"train_file": "/content/sample_data/mnist_train_small.csv",
"test_file": "/content/sample_data/mnist_test.csv",
"image_size": 28,
"num_classes": 10,
"embed_dim": 128, # 'd' in the paper. Dimension for each pixel embedding.
"num_layers": 6, # Number of Transformer Encoder layers.
"num_heads": 8, # Number of heads in Multi-Head Self-Attention. Must be a divisor of embed_dim.
"mlp_dim": 512, # Hidden dimension of the MLP block inside the Transformer. (4 * embed_dim is common)
"dropout": 0.1,
"batch_size": 128,
"epochs": 25, # Increased epochs for better convergence on the small dataset.
"learning_rate": 1e-4,
"device": "cuda" if torch.cuda.is_available() else "cpu",
}
CONFIG["sequence_length"] = CONFIG["image_size"] * CONFIG["image_size"] # 784 for MNIST
print("--- Configuration ---")
for key, value in CONFIG.items():
print(f"{key}: {value}")
print("---------------------\n")
# --- 2. Data Loading and Preprocessing ---
class MNIST_CSV_Dataset(Dataset):
"""Custom PyTorch Dataset for loading MNIST data from CSV files."""
def __init__(self, file_path):
df = pd.read_csv(file_path)
self.labels = torch.tensor(df.iloc[:, 0].values, dtype=torch.long)
# Normalize pixel values to [0, 1] and keep as float
self.pixels = torch.tensor(df.iloc[:, 1:].values, dtype=torch.float32) / 255.0
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
# The PiT's projection layer expects input of shape (in_features),
# so for each pixel, we need a tensor of shape (1).
# We reshape the 784 pixels to (784, 1).
return self.pixels[idx].unsqueeze(-1), self.labels[idx]
# --- 3. Pixel Transformer (PiT) Model Architecture ---
class PixelTransformer(nn.Module):
"""
Pixel Transformer (PiT) model.
Treats each pixel as a token and uses a Transformer Encoder for classification.
"""
def __init__(self, seq_len, num_classes, embed_dim, num_layers, num_heads, mlp_dim, dropout):
super().__init__()
# 1. Pixel Projection: Each pixel (a single value) is projected to embed_dim.
# This is the core "pixels-as-tokens" step.
self.pixel_projection = nn.Linear(1, embed_dim)
# 2. CLS Token: A learnable parameter that is prepended to the sequence of
# pixel embeddings. Its output state is used for classification.
self.cls_token = nn.Parameter(torch.randn(1, 1, embed_dim))
# 3. Position Embedding: Learnable embeddings to encode spatial information.
# Size is (seq_len + 1) to account for the CLS token.
# This removes the inductive bias of fixed positional encodings.
self.position_embedding = nn.Parameter(torch.randn(1, seq_len + 1, embed_dim))
self.dropout = nn.Dropout(dropout)
# 4. Transformer Encoder: The main workhorse of the model.
encoder_layer = nn.TransformerEncoderLayer(
d_model=embed_dim,
nhead=num_heads,
dim_feedforward=mlp_dim,
dropout=dropout,
activation="gelu",
batch_first=True # Important for (batch, seq, feature) input format
)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
# 5. Classification Head: A simple MLP head on top of the CLS token's output.
self.mlp_head = nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(embed_dim, num_classes)
)
def forward(self, x):
# Input x shape: (batch_size, seq_len, 1) -> (B, 784, 1)
# Project pixels to embedding dimension
x = self.pixel_projection(x) # (B, 784, 1) -> (B, 784, embed_dim)
# Prepend CLS token
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) # (B, 1, embed_dim)
x = torch.cat((cls_tokens, x), dim=1) # (B, 785, embed_dim)
# Add position embedding
x = x + self.position_embedding # (B, 785, embed_dim)
x = self.dropout(x)
# Pass through Transformer Encoder
x = self.transformer_encoder(x) # (B, 785, embed_dim)
# Extract the CLS token's output (at position 0)
cls_output = x[:, 0] # (B, embed_dim)
# Pass through MLP head to get logits
logits = self.mlp_head(cls_output) # (B, num_classes)
return logits
# --- 4. Training and Evaluation Functions ---
def train_one_epoch(model, dataloader, criterion, optimizer, device):
model.train()
total_loss = 0
progress_bar = tqdm(dataloader, desc="Training", leave=False)
for pixels, labels in progress_bar:
pixels, labels = pixels.to(device), labels.to(device)
# Forward pass
logits = model(pixels)
loss = criterion(logits, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
progress_bar.set_postfix(loss=loss.item())
return total_loss / len(dataloader)
def evaluate(model, dataloader, criterion, device):
model.eval()
total_loss = 0
correct = 0
total = 0
with torch.no_grad():
progress_bar = tqdm(dataloader, desc="Evaluating", leave=False)
for pixels, labels in progress_bar:
pixels, labels = pixels.to(device), labels.to(device)
logits = model(pixels)
loss = criterion(logits, labels)
total_loss += loss.item()
_, predicted = torch.max(logits.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
progress_bar.set_postfix(acc=100. * correct / total)
avg_loss = total_loss / len(dataloader)
accuracy = 100. * correct / total
return avg_loss, accuracy
# --- 5. Main Execution Block ---
if __name__ == "__main__":
device = CONFIG["device"]
# Load full training data and split into train/validation sets
# This helps monitor overfitting, as mnist_train_small is quite small.
full_train_dataset = MNIST_CSV_Dataset(CONFIG["train_file"])
train_indices, val_indices = train_test_split(
range(len(full_train_dataset)),
test_size=0.1, # 10% for validation
random_state=42
)
train_dataset = torch.utils.data.Subset(full_train_dataset, train_indices)
val_dataset = torch.utils.data.Subset(full_train_dataset, val_indices)
test_dataset = MNIST_CSV_Dataset(CONFIG["test_file"])
train_loader = DataLoader(train_dataset, batch_size=CONFIG["batch_size"], shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=CONFIG["batch_size"], shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=CONFIG["batch_size"], shuffle=False)
print(f"\nData loaded.")
print(f" Training samples: {len(train_dataset)}")
print(f" Validation samples: {len(val_dataset)}")
print(f" Test samples: {len(test_dataset)}\n")
# Initialize model, loss function, and optimizer
model = PixelTransformer(
seq_len=CONFIG["sequence_length"],
num_classes=CONFIG["num_classes"],
embed_dim=CONFIG["embed_dim"],
num_layers=CONFIG["num_layers"],
num_heads=CONFIG["num_heads"],
mlp_dim=CONFIG["mlp_dim"],
dropout=CONFIG["dropout"]
).to(device)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Model initialized on {device}.")
print(f"Total trainable parameters: {total_params:,}\n")
criterion = nn.CrossEntropyLoss()
# AdamW is often preferred for Transformers
optimizer = torch.optim.AdamW(model.parameters(), lr=CONFIG["learning_rate"])
# Training loop
best_val_acc = 0
print("--- Starting Training ---")
for epoch in range(CONFIG["epochs"]):
train_loss = train_one_epoch(model, train_loader, criterion, optimizer, device)
val_loss, val_acc = evaluate(model, val_loader, criterion, device)
print(
f"Epoch {epoch+1:02}/{CONFIG['epochs']} | "
f"Train Loss: {train_loss:.4f} | "
f"Val Loss: {val_loss:.4f} | "
f"Val Acc: {val_acc:.2f}%"
)
if val_acc > best_val_acc:
best_val_acc = val_acc
print(f" -> New best validation accuracy! Saving model state.")
torch.save(model.state_dict(), "PiT_MNIST_best.pth")
print("--- Training Finished ---\n")
# Final evaluation on the test set using the best model
print("--- Evaluating on Test Set ---")
model.load_state_dict(torch.load("PiT_MNIST_best.pth"))
test_loss, test_acc = evaluate(model, test_loader, criterion, device)
print(f"Final Test Loss: {test_loss:.4f}")
print(f"Final Test Accuracy: {test_acc:.2f}%")
print("----------------------------\n")
[The PiT_MNIST_V1.0.ipynb script ran out of memory in CPUR, but was able to run and train fast in A100 GPU mode]
--- Configuration ---
train_file: /content/sample_data/mnist_train_small.csv
test_file: /content/sample_data/mnist_test.csv
image_size: 28
num_classes: 10
embed_dim: 128
num_layers: 6
num_heads: 8
mlp_dim: 512
dropout: 0.1
batch_size: 128
epochs: 25
learning_rate: 0.0001
device: cuda
sequence_length: 784
---------------------
Data loaded.
Training samples: 17999
Validation samples: 2000
Test samples: 9999
Model initialized on cuda.
Total trainable parameters: 1,292,042
--- Starting Training ---
Epoch 01/25 | Train Loss: 2.2063 | Val Loss: 2.0610 | Val Acc: 22.75%
-> New best validation accuracy! Saving model state.
Epoch 02/25 | Train Loss: 1.9907 | Val Loss: 1.7945 | Val Acc: 32.00%
-> New best validation accuracy! Saving model state.
Epoch 03/25 | Train Loss: 1.5767 | Val Loss: 1.1938 | Val Acc: 58.35%
-> New best validation accuracy! Saving model state.
Epoch 04/25 | Train Loss: 1.0441 | Val Loss: 0.7131 | Val Acc: 77.10%
-> New best validation accuracy! Saving model state.
Epoch 05/25 | Train Loss: 0.7299 | Val Loss: 0.5490 | Val Acc: 82.95%
-> New best validation accuracy! Saving model state.
Epoch 06/25 | Train Loss: 0.5935 | Val Loss: 0.4821 | Val Acc: 84.60%
-> New best validation accuracy! Saving model state.
Epoch 07/25 | Train Loss: 0.5311 | Val Loss: 0.4021 | Val Acc: 86.95%
-> New best validation accuracy! Saving model state.
Epoch 08/25 | Train Loss: 0.4682 | Val Loss: 0.3680 | Val Acc: 88.05%
-> New best validation accuracy! Saving model state.
Epoch 09/25 | Train Loss: 0.4264 | Val Loss: 0.3446 | Val Acc: 89.20%
-> New best validation accuracy! Saving model state.
Epoch 10/25 | Train Loss: 0.4038 | Val Loss: 0.3163 | Val Acc: 89.95%
-> New best validation accuracy! Saving model state.
Epoch 11/25 | Train Loss: 0.3641 | Val Loss: 0.2941 | Val Acc: 90.80%
-> New best validation accuracy! Saving model state.
Epoch 12/25 | Train Loss: 0.3447 | Val Loss: 0.2759 | Val Acc: 91.45%
-> New best validation accuracy! Saving model state.
Epoch 13/25 | Train Loss: 0.3181 | Val Loss: 0.2603 | Val Acc: 92.05%
-> New best validation accuracy! Saving model state.
Epoch 14/25 | Train Loss: 0.3023 | Val Loss: 0.2695 | Val Acc: 91.90%
Epoch 15/25 | Train Loss: 0.2800 | Val Loss: 0.2441 | Val Acc: 92.30%
-> New best validation accuracy! Saving model state.
Epoch 16/25 | Train Loss: 0.2677 | Val Loss: 0.2377 | Val Acc: 92.65%
-> New best validation accuracy! Saving model state.
Epoch 17/25 | Train Loss: 0.2535 | Val Loss: 0.2143 | Val Acc: 93.80%
-> New best validation accuracy! Saving model state.
Epoch 18/25 | Train Loss: 0.2395 | Val Loss: 0.2059 | Val Acc: 94.05%
-> New best validation accuracy! Saving model state.
Epoch 19/25 | Train Loss: 0.2276 | Val Loss: 0.2126 | Val Acc: 93.75%
Epoch 20/25 | Train Loss: 0.2189 | Val Loss: 0.1907 | Val Acc: 94.40%
-> New best validation accuracy! Saving model state.
Epoch 21/25 | Train Loss: 0.2113 | Val Loss: 0.1892 | Val Acc: 94.35%
Epoch 22/25 | Train Loss: 0.2004 | Val Loss: 0.1775 | Val Acc: 94.50%
-> New best validation accuracy! Saving model state.
Epoch 23/25 | Train Loss: 0.1927 | Val Loss: 0.1912 | Val Acc: 94.15%
Epoch 24/25 | Train Loss: 0.1836 | Val Loss: 0.1746 | Val Acc: 94.75%
-> New best validation accuracy! Saving model state.
Epoch 25/25 | Train Loss: 0.1804 | Val Loss: 0.1642 | Val Acc: 94.75%
--- Training Finished ---
--- Evaluating on Test Set ---
Final Test Loss: 0.1662
Final Test Accuracy: 95.01%
----------------------------
---
license: apache-2.0
---
|