MartialTerran's picture
Create Tokenizer2.py
ec24fd5 verified
"""
This script defines a custom tokenizer, `SupplyChainTokenizer`, specifically designed
for a collaborative predictive supply chain model using Transformer-based
architecture. It leverages a custom, industry-specific vocabulary (loaded from
`vocab.json`) to prioritize domain-relevant tokens (SKUs, store IDs, plant IDs,
promotion types, etc.) while employing Byte-Pair Encoding (BPE) to handle
out-of-vocabulary words and variations.
The script also includes a comprehensive example usage section demonstrating
how to create, train, use, save, and load the tokenizer. This tokenizer is a
critical component for bridging the gap between raw supply chain data and
a Transformer-based forecasting model.
"""
import json
import os
from typing import List, Dict, Union, Tuple
from tokenizers import (
Tokenizer,
models,
normalizers,
pre_tokenizers,
decoders,
trainers,
processors,
)
from tokenizers.pre_tokenizers import WhitespaceSplit, Digits
from tokenizers import Regex
import pandas as pd
class SupplyChainTokenizer:
"""
A custom tokenizer designed for the Enhanced Business Model for Collaborative
Predictive Supply Chain. It prioritizes industry-specific tokens from a
`vocab.json` file and uses Byte-Pair Encoding (BPE) for out-of-vocabulary
(OOV) words. It handles various data types expected in supply chain data.
Args:
vocab_path (str): Path to the `vocab.json` file.
max_length (int, optional): Maximum sequence length. Defaults to 512.
"""
def __init__(self, vocab_path: str, max_length: int = 512):
if not os.path.exists(vocab_path):
raise FileNotFoundError(f"Vocabulary file not found: {vocab_path}")
self.vocab_path = vocab_path
self.max_length = max_length
# Load the custom vocabulary
with open(self.vocab_path, "r", encoding="utf-8") as f:
self.vocab = json.load(f)
# 1. Create the BPE model
self.bpe_model = models.BPE(
vocab=self.vocab, # Initialize with the custom vocabulary
merges=[], # We'll populate merges during training
unk_token="[UNK]", # Unknown token
)
# 2. Create a Tokenizer instance
self.tokenizer = Tokenizer(self.bpe_model)
# 3. Normalization (Lowercase and Unicode normalization)
self.tokenizer.normalizer = normalizers.Sequence(
[normalizers.NFD(), normalizers.Lowercase(), normalizers.StripAccents()]
)
# 4. Pre-tokenization (Splitting into words)
self.tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
[WhitespaceSplit(), Digits(individual_digits=True)]
)
# 5. Decoder (Convert token IDs back to strings)
self.tokenizer.decoder = decoders.BPEDecoder()
# 6. Post-processing (Special tokens)
self.tokenizer.post_processor = processors.TemplateProcessing(
single="[CLS] $A [SEP]",
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
special_tokens=[("[CLS]", self.vocab["[CLS]"]), ("[SEP]", self.vocab["[SEP]"])],
)
# Adding this, although not used in encode or encode_as_ids
self.pad_token_id = self.vocab["[PAD]"]
def train_bpe(self, files: Union[str, List[str]], vocab_size: int = 30000):
"""
Trains the BPE model on text files. This updates the `merges` of the
BPE model. This is *crucial* for handling words not in the initial
`vocab.json`.
Args:
files (Union[str, List[str]]): Path(s) to text file(s) for training.
vocab_size (int): The desired vocabulary size (including special tokens
and initial vocabulary).
"""
if isinstance(files, str):
files = [files]
# Create a trainer
trainer = trainers.BpeTrainer(
vocab_size=vocab_size,
special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"],
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(), # All single bytes
show_progress=True,
)
# Train the tokenizer
self.tokenizer.train(files, trainer=trainer)
def encode(self, text: str, text_pair: str = None) -> List[str]:
"""
Encodes text into a list of tokens.
Args:
text (str): The input text.
text_pair (str, optional): An optional second input string.
Returns:
List[str]: A list of tokens.
"""
encoded = self.tokenizer.encode(text, text_pair)
return encoded.tokens
def encode_as_ids(self, text: str, text_pair: str = None) -> List[int]:
"""
Encodes text into a list of token IDs.
Args:
text (str): The input text.
text_pair (str, optional): An optional second input string.
Returns:
List[int]: A list of token IDs.
"""
encoded = self.tokenizer.encode(text, text_pair)
return encoded.ids
def decode(self, ids: List[int], skip_special_tokens: bool = True) -> str:
"""
Decodes a list of token IDs back into a string.
Args:
ids (List[int]): The list of token IDs.
skip_special_tokens (bool): Whether to skip special tokens in decoding.
Returns:
str: The decoded string.
"""
return self.tokenizer.decode(ids, skip_special_tokens=skip_special_tokens)
def token_to_id(self, token: str) -> int:
"""
Converts a token to its corresponding ID.
Args:
token (str): The token.
Returns:
int: The token ID. Returns None if the token is not in the vocabulary.
"""
return self.vocab.get(token, self.vocab.get("[UNK]"))
def id_to_token(self, id_: int) -> str:
"""
Converts a token ID to its corresponding token.
Args:
id_ (int): The token ID.
Returns:
str: The token. Returns "[UNK]" if the ID is not in the vocabulary.
"""
# Reverse lookup (efficient if needed frequently)
reverse_vocab = {v: k for k, v in self.vocab.items()}
return reverse_vocab.get(id_, "[UNK]")
def get_vocab_size(self) -> int:
"""Gets the vocabulary size."""
return len(self.vocab)
def save(self, directory: str, prefix: str = None):
"""
Saves the tokenizer configuration and vocabulary to a directory.
Args:
directory (str): The directory to save to.
prefix (str, optional): An optional prefix for the filenames.
"""
if not os.path.exists(directory):
os.makedirs(directory)
# Save the tokenizer configuration
self.tokenizer.save(os.path.join(directory, (prefix + "-" if prefix else "") + "tokenizer.json"))
# Save a copy of the vocabulary (for easy access)
with open(os.path.join(directory, (prefix + "-" if prefix else "") + "vocab.json"), "w", encoding="utf-8") as f:
json.dump(self.vocab, f, ensure_ascii=False, indent=4)
@staticmethod
def from_pretrained(directory: str, prefix: str = None):
"""
Loads a pre-trained tokenizer from a directory.
Args:
directory (str): The directory to load from.
prefix (str, optional): The optional prefix used when saving.
Returns:
SupplyChainTokenizer: The loaded tokenizer.
"""
vocab_path = os.path.join(directory, (prefix + "-" if prefix else "") + "vocab.json")
# You could load the tokenizer.json, but since we have a custom class
# with training logic, it's better to reconstruct the object this way.
tokenizer = SupplyChainTokenizer(vocab_path)
tokenizer.tokenizer = Tokenizer.from_file(os.path.join(directory, (prefix + "-" if prefix else "") + "tokenizer.json"))
return tokenizer
def prepare_for_model(self, data: pd.DataFrame) -> Tuple[List[List[int]], List[List[int]]]:
"""
Prepares a Pandas DataFrame for the Transformer model. This is the
key method that integrates the tokenizer with the data.
Args:
data (pd.DataFrame): The input DataFrame, expected to have columns
like 'timestamp', 'sku', 'store_id', 'quantity', 'price',
'discount', 'promotion_id', etc. The exact columns depend on
the features you're using.
Returns:
Tuple[List[List[int]], List[List[int]]]: A tuple.
1. input_ids: List of token ID sequences for the model.
2. attention_mask: List of attention masks (1 for real tokens, 0 for padding).
"""
input_ids = []
attention_masks = []
for _, row in data.iterrows():
# Build the input string. This is where you define *how* your
# features are combined into a single sequence.
input_string = (
f"[CLS] timestamp: {row['timestamp']} "
f"sku: {row['sku']} store_id: {row['store_id']} "
f"quantity: {row['quantity']} price: {row['price']} "
f"discount: {row['discount']} "
)
# Add promotion information if available
if 'promotion_id' in row and not pd.isna(row['promotion_id']):
input_string += f"promotion_id: {row['promotion_id']} "
# Add any other relevant features here
if 'product_category' in row:
input_string += f"product_category: {row['product_category']} "
# Add other external features
input_string += "[SEP]"
# Tokenize
encoded = self.tokenizer.encode(input_string)
token_ids = encoded.ids
attention_mask = encoded.attention_mask
# Padding (up to max_length)
padding_length = self.max_length - len(token_ids)
if padding_length > 0:
token_ids += [self.pad_token_id] * padding_length
attention_mask += [0] * padding_length
elif padding_length < 0: # Truncation
token_ids = token_ids[:self.max_length]
attention_mask = attention_mask[:self.max_length]
input_ids.append(token_ids)
attention_masks.append(attention_mask)
return input_ids, attention_masks
# Example Usage (Illustrative)
if __name__ == "__main__":
# --- Create a dummy vocab.json ---
vocab = {
"[UNK]": 0,
"[CLS]": 1,
"[SEP]": 2,
"[PAD]": 3,
"[MASK]": 4,
"timestamp:": 5,
"sku:": 6,
"store_id:": 7,
"quantity:": 8,
"price:": 9,
"discount:": 10,
"promotion_id:": 11,
"product_category:": 12,
"SKU123": 13, # Example SKU
"SKU123-RED": 14, # Example SKU variant
"SKU123-BLUE": 15,
"STORE456": 16, # Example store ID
"PLANT789": 17, # Example plant ID
"WHOLESALER001": 18, # Example Wholesaler
"RETAILER002": 19, # Example Retailer
"BOGO": 20,
"DISCOUNT":21,
}
with open("vocab.json", "w") as f:
json.dump(vocab, f, indent=4)
# --- Create the tokenizer ---
tokenizer = SupplyChainTokenizer(vocab_path="vocab.json")
# --- Example training (on a dummy text file) ---
with open("training_data.txt", "w", encoding="utf-8") as f:
f.write("This is some example text for training the BPE model.\n")
f.write("SKU123 is a product. STORE456 is another. plant789 is, too.\n")
f.write("This file contains words not in the initial vocabulary.\n")
tokenizer.train_bpe("training_data.txt", vocab_size=50) # Small vocab for the example
# --- Example encoding ---
text = "timestamp: 2024-07-03 sku: SKU123 store_id: STORE456 quantity: 2 price: 10.99 discount: 0.0"
encoded_tokens = tokenizer.encode(text)
encoded_ids = tokenizer.encode_as_ids(text)
print(f"Encoded tokens: {encoded_tokens}")
print(f"Encoded IDs: {encoded_ids}")
decoded_text = tokenizer.decode(encoded_ids)
print(f"Decoded text: {decoded_text}")
# -- Example with DataFrame ---
data = {
'timestamp': ['2024-07-03 10:00:00', '2024-07-03 11:00:00'],
'sku': ['SKU123', 'SKU123-RED'],
'store_id': ['STORE456', 'STORE456'],
'quantity': [2, 1],
'price': [10.99, 12.99],
'discount': [0.0, 1.0],
'promotion_id': ['BOGO', None],
'product_category': ['Electronics', 'Electronics']
}
df = pd.DataFrame(data)
input_ids, attention_masks = tokenizer.prepare_for_model(df)
print(f"Input IDs (for model): {input_ids}")
print(f"Attention Masks: {attention_masks}")
# --- Save and load ---
tokenizer.save("my_tokenizer")
loaded_tokenizer = SupplyChainTokenizer.from_pretrained("my_tokenizer")
print(f"Loaded tokenizer vocab size: {loaded_tokenizer.get_vocab_size()}")
# Clean up example files
os.remove("vocab.json")
os.remove("training_data.txt")