File size: 26,366 Bytes
4fb42c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:672
- loss:ContrastiveLoss
base_model: sentence-transformers/multi-qa-mpnet-base-dot-v1
widget:
- source_sentence: '
Animals may not be allowed onto beds or other furniture, which serves for
guests. It is not permitted to use baths, showers or washbasins for bathing or
washing animals.'
sentences:
- '
Please advise of any special needs such as high-chairs and sleeping cots.'
- '
Animals may not be allowed onto beds or other furniture, which serves for
guests. It is not permitted to use baths, showers or washbasins for bathing or
washing animals.'
- '
It is strongly advised that you arrange adequate insurance cover such as cancellation
due to illness,
accident or injury, personal accident and personal liability, loss of or damage
to baggage and sport
equipment (Note that is not an exhaustive list). We will not be responsible or
liable if you fail to take
adequate insurance cover or none at all.'
- source_sentence: 'Owners are responsible for ensuring that animals are kept quiet
between the
hours of 10:00 pm and 06:00 am. In the case of failure to abide by this
regulation the guest may be asked to leave the hotel without a refund of the
price of the night''s accommodation.'
sentences:
- '
Visitors are not allowed in the rooms and must be entertained in the lounges and/or
other public areas
provided.'
- 'To ensure the safety and comfort of everyone in the hotel, the Management
reserves the right to terminate the accommodation of guests who fail to comply
with the following rules and regulations.'
- 'Owners are responsible for ensuring that animals are kept quiet between the
hours of 10:00 pm and 06:00 am. In the case of failure to abide by this
regulation the guest may be asked to leave the hotel without a refund of the
price of the night''s accommodation.'
- source_sentence: '
We ask all guests to behave in such a way that they do not disturb other guests
and the neighborhood.
The hotel staff is authorized to refuse services to a person who violates this
rule.'
sentences:
- '
Please take note of the limitation specified for the room you have booked.
If such number is exceeded, whether temporarily or over-night, we reserve the
right to do one or more of
the following: cancel your booking; retain all the monies you''ve paid; request
you to vacate your room(s)
forthwith, charge a higher rate for the room or recover all monies due.'
- '
We ask all guests to behave in such a way that they do not disturb other guests
and the neighborhood.
The hotel staff is authorized to refuse services to a person who violates this
rule.'
- 'We will only deal with your information as indicated in the booking/reservation
and we will only process your
personal information (both terms as defined in the Protection of Personal Information
Act, act 4 of 2013 [''the
POPIA''] and the European Union General Data Protection Regulation – (''GDPR'')
and any Special Personal
Information (as defined in the GDPR & POPIA), which processing includes amongst
others the ''collecting,
storing and dissemination'' of your personal information (as defined in GDPR &
POPIA).'
- source_sentence: '
All articles stored in the luggage storage room are received at the owner’s own
risk.'
sentences:
- "\n Unregistered visitors are not permitted to enter guest rooms or other areas\
\ of\nthe hotel. An additional fee for unregistered guests will be charged to\
\ the\naccount of the guest(s) registered to the room."
- 'Please advise us if you anticipate arriving late as bookings will be cancelled
by 17:00 on the day of arrival,
unless we have been so notified.'
- '
All articles stored in the luggage storage room are received at the owner’s own
risk.'
- source_sentence: ' In the event of a disturbance, one polite request (warning) will
be given to reduce the noise. If our request is not followed, the guest will be
asked to leave
the hotel without refund and may be charged Guest Compensation Disturbance Fee.'
sentences:
- '
Without limiting the generality of the aforementioned, it applies to pay-to-view
TV programmes or videos, as
well as telephone calls or any other expenses of a similar nature that is made
from your room, you will be
deemed to be the contracting party.'
- 'Pets are not allowed in the restaurant during breakfast time
(7:00 – 10:30) for hygienic reasons due to the breakfast’s buffet style. An
exception is the case when the hotel terrace is open, as pets can be taken to
the terrace through the hotel''s main entrance and they can stay there during
breakfast.'
- ' In the event of a disturbance, one polite request (warning) will
be given to reduce the noise. If our request is not followed, the guest will be
asked to leave
the hotel without refund and may be charged Guest Compensation Disturbance Fee.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- dot_mcc
model-index:
- name: SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: dot_accuracy
value: 0.6745562130177515
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 49.0201301574707
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.4932735426008969
name: Dot F1
- type: dot_f1_threshold
value: 35.02415466308594
name: Dot F1 Threshold
- type: dot_precision
value: 0.32934131736526945
name: Dot Precision
- type: dot_recall
value: 0.9821428571428571
name: Dot Recall
- type: dot_ap
value: 0.3294144882113245
name: Dot Ap
- type: dot_mcc
value: -0.03920743101752848
name: Dot Mcc
---
# SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1) <!-- at revision 4633e80e17ea975bc090c97b049da26062b054d3 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Marco127/Argu_T2")
# Run inference
sentences = [
' In the event of a disturbance, one polite request (warning) will\nbe given to reduce the noise. If our request is not followed, the guest will be asked to leave\nthe hotel without refund and may be charged Guest Compensation Disturbance Fee.',
' In the event of a disturbance, one polite request (warning) will\nbe given to reduce the noise. If our request is not followed, the guest will be asked to leave\nthe hotel without refund and may be charged Guest Compensation Disturbance Fee.',
'\nWithout limiting the generality of the aforementioned, it applies to pay-to-view TV programmes or videos, as\nwell as telephone calls or any other expenses of a similar nature that is made from your room, you will be\ndeemed to be the contracting party.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------|:-----------|
| dot_accuracy | 0.6746 |
| dot_accuracy_threshold | 49.0201 |
| dot_f1 | 0.4933 |
| dot_f1_threshold | 35.0242 |
| dot_precision | 0.3293 |
| dot_recall | 0.9821 |
| **dot_ap** | **0.3294** |
| dot_mcc | -0.0392 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 672 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 672 samples:
| | sentence1 | sentence2 | label |
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 11 tokens</li><li>mean: 48.63 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 48.63 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>0: ~66.67%</li><li>1: ~33.33%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code><br>The pets can not be left without supervision if there is a risk of causing any<br>damage or might disturb other guests.</code> | <code><br>The pets can not be left without supervision if there is a risk of causing any<br>damage or might disturb other guests.</code> | <code>0</code> |
| <code><br>Any guest in violation of these rules may be asked to leave the hotel with no refund. Extra copies of these<br>rules are available at the Front Desk upon request.</code> | <code><br>Any guest in violation of these rules may be asked to leave the hotel with no refund. Extra copies of these<br>rules are available at the Front Desk upon request.</code> | <code>0</code> |
| <code><br>Consuming the products from the minibar involves additional costs. You can find the<br>prices in the kitchen area.</code> | <code><br>Consuming the products from the minibar involves additional costs. You can find the<br>prices in the kitchen area.</code> | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 169 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 169 samples:
| | sentence1 | sentence2 | label |
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 13 tokens</li><li>mean: 46.01 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 46.01 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>0: ~66.86%</li><li>1: ~33.14%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code><br>I understand and accept that the BON Hotels Group collects the personal information ("personal<br>information") of all persons in my party for purposes of loyalty programmes and special offers. I, on behalf of<br>all in my party, expressly consent and grant permission to the BON Hotels Group to: -<br>collect, collate, process, study and use the personal information; and<br>communicate directly with me/us from time to time, unless I have stated to the contrary below.</code> | <code><br>I understand and accept that the BON Hotels Group collects the personal information ("personal<br>information") of all persons in my party for purposes of loyalty programmes and special offers. I, on behalf of<br>all in my party, expressly consent and grant permission to the BON Hotels Group to: -<br>collect, collate, process, study and use the personal information; and<br>communicate directly with me/us from time to time, unless I have stated to the contrary below.</code> | <code>0</code> |
| <code>However, in lieu of the above, any such goods will only be kept by us for 6 (six) months. At the end of which<br>period, we reserve the right in our sole discretion to dispose thereof and you will have no right of recourse<br>against us.</code> | <code>However, in lieu of the above, any such goods will only be kept by us for 6 (six) months. At the end of which<br>period, we reserve the right in our sole discretion to dispose thereof and you will have no right of recourse<br>against us.</code> | <code>0</code> |
| <code> In cases where the hotel<br>suffers damage (either physical, or moral) due to the guests’ violation of the above rules, it<br>may charge a compensation fee in proportion to the damage. Moral damage may be for<br>example disturbing other guests, thus ruining the reputation of the hotel.</code> | <code> In cases where the hotel<br>suffers damage (either physical, or moral) due to the guests’ violation of the above rules, it<br>may charge a compensation fee in proportion to the damage. Moral damage may be for<br>example disturbing other guests, thus ruining the reputation of the hotel.</code> | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | dot_ap |
|:------:|:----:|:-------------:|:---------------:|:------:|
| -1 | -1 | - | - | 0.3294 |
| 2.3333 | 100 | 0.0298 | 0.0865 | - |
| 4.6905 | 200 | 0.0241 | 0.0865 | - |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### ContrastiveLoss
```bibtex
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |