File size: 26,366 Bytes
4fb42c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:672
- loss:ContrastiveLoss
base_model: sentence-transformers/multi-qa-mpnet-base-dot-v1
widget:
- source_sentence: '

    Animals may not be allowed onto beds or other furniture, which serves for

    guests. It is not permitted to use baths, showers or washbasins for bathing or

    washing animals.'
  sentences:
  - '

    Please advise of any special needs such as high-chairs and sleeping cots.'
  - '

    Animals may not be allowed onto beds or other furniture, which serves for

    guests. It is not permitted to use baths, showers or washbasins for bathing or

    washing animals.'
  - '

    It is strongly advised that you arrange adequate insurance cover such as cancellation
    due to illness,

    accident or injury, personal accident and personal liability, loss of or damage
    to baggage and sport

    equipment (Note that is not an exhaustive list). We will not be responsible or
    liable if you fail to take

    adequate insurance cover or none at all.'
- source_sentence: 'Owners are responsible for ensuring that animals are kept quiet
    between the

    hours of 10:00 pm and 06:00 am. In the case of failure to abide by this

    regulation the guest may be asked to leave the hotel without a refund of the

    price of the night''s accommodation.'
  sentences:
  - '

    Visitors are not allowed in the rooms and must be entertained in the lounges and/or
    other public areas

    provided.'
  - 'To ensure the safety and comfort of everyone in the hotel, the Management

    reserves the right to terminate the accommodation of guests who fail to comply

    with the following rules and regulations.'
  - 'Owners are responsible for ensuring that animals are kept quiet between the

    hours of 10:00 pm and 06:00 am. In the case of failure to abide by this

    regulation the guest may be asked to leave the hotel without a refund of the

    price of the night''s accommodation.'
- source_sentence: '

    We ask all guests to behave in such a way that they do not disturb other guests
    and the neighborhood.

    The hotel staff is authorized to refuse services to a person who violates this
    rule.'
  sentences:
  - '

    Please take note of the limitation specified for the room you have booked.

    If such number is exceeded, whether temporarily or over-night, we reserve the
    right to do one or more of

    the following: cancel your booking; retain all the monies you''ve paid; request
    you to vacate your room(s)

    forthwith, charge a higher rate for the room or recover all monies due.'
  - '

    We ask all guests to behave in such a way that they do not disturb other guests
    and the neighborhood.

    The hotel staff is authorized to refuse services to a person who violates this
    rule.'
  - 'We will only deal with your information as indicated in the booking/reservation
    and we will only process your

    personal information (both terms as defined in the Protection of Personal Information
    Act, act 4 of 2013 [''the

    POPIA''] and the European Union General Data Protection Regulation – (''GDPR'')
    and any Special Personal

    Information (as defined in the GDPR & POPIA), which processing includes amongst
    others the ''collecting,

    storing and dissemination'' of your personal information (as defined in GDPR &
    POPIA).'
- source_sentence: '

    All articles stored in the luggage storage room are received at the owner’s own
    risk.'
  sentences:
  - "\n Unregistered visitors are not permitted to enter guest rooms or other areas\
    \ of\nthe hotel. An additional fee for unregistered guests will be charged to\
    \ the\naccount of the guest(s) registered to the room."
  - 'Please advise us if you anticipate arriving late as bookings will be cancelled
    by 17:00 on the day of arrival,

    unless we have been so notified.'
  - '

    All articles stored in the luggage storage room are received at the owner’s own
    risk.'
- source_sentence: ' In the event of a disturbance, one polite request (warning) will

    be given to reduce the noise. If our request is not followed, the guest will be
    asked to leave

    the hotel without refund and may be charged Guest Compensation Disturbance Fee.'
  sentences:
  - '

    Without limiting the generality of the aforementioned, it applies to pay-to-view
    TV programmes or videos, as

    well as telephone calls or any other expenses of a similar nature that is made
    from your room, you will be

    deemed to be the contracting party.'
  - 'Pets are not allowed in the restaurant during breakfast time

    (7:00 – 10:30) for hygienic reasons due to the breakfast’s buffet style. An

    exception is the case when the hotel terrace is open, as pets can be taken to

    the terrace through the hotel''s main entrance and they can stay there during

    breakfast.'
  - ' In the event of a disturbance, one polite request (warning) will

    be given to reduce the noise. If our request is not followed, the guest will be
    asked to leave

    the hotel without refund and may be charged Guest Compensation Disturbance Fee.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- dot_mcc
model-index:
- name: SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: dot_accuracy
      value: 0.6745562130177515
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 49.0201301574707
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.4932735426008969
      name: Dot F1
    - type: dot_f1_threshold
      value: 35.02415466308594
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.32934131736526945
      name: Dot Precision
    - type: dot_recall
      value: 0.9821428571428571
      name: Dot Recall
    - type: dot_ap
      value: 0.3294144882113245
      name: Dot Ap
    - type: dot_mcc
      value: -0.03920743101752848
      name: Dot Mcc
---

# SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1) <!-- at revision 4633e80e17ea975bc090c97b049da26062b054d3 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Marco127/Argu_T2")
# Run inference
sentences = [
    ' In the event of a disturbance, one polite request (warning) will\nbe given to reduce the noise. If our request is not followed, the guest will be asked to leave\nthe hotel without refund and may be charged Guest Compensation Disturbance Fee.',
    ' In the event of a disturbance, one polite request (warning) will\nbe given to reduce the noise. If our request is not followed, the guest will be asked to leave\nthe hotel without refund and may be charged Guest Compensation Disturbance Fee.',
    '\nWithout limiting the generality of the aforementioned, it applies to pay-to-view TV programmes or videos, as\nwell as telephone calls or any other expenses of a similar nature that is made from your room, you will be\ndeemed to be the contracting party.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification

* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                 | Value      |
|:-----------------------|:-----------|
| dot_accuracy           | 0.6746     |
| dot_accuracy_threshold | 49.0201    |
| dot_f1                 | 0.4933     |
| dot_f1_threshold       | 35.0242    |
| dot_precision          | 0.3293     |
| dot_recall             | 0.9821     |
| **dot_ap**             | **0.3294** |
| dot_mcc                | -0.0392    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 672 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 672 samples:
  |         | sentence1                                                                           | sentence2                                                                           | label                                           |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                              | string                                                                              | int                                             |
  | details | <ul><li>min: 11 tokens</li><li>mean: 48.63 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 48.63 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>0: ~66.67%</li><li>1: ~33.33%</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                           | sentence2                                                                                                                                                                           | label          |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code><br>The pets can not be left without supervision if there is a risk of causing any<br>damage or might disturb other guests.</code>                                            | <code><br>The pets can not be left without supervision if there is a risk of causing any<br>damage or might disturb other guests.</code>                                            | <code>0</code> |
  | <code><br>Any guest in violation of these rules may be asked to leave the hotel with no refund. Extra copies of these<br>rules are available at the Front Desk upon request.</code> | <code><br>Any guest in violation of these rules may be asked to leave the hotel with no refund. Extra copies of these<br>rules are available at the Front Desk upon request.</code> | <code>0</code> |
  | <code><br>Consuming the products from the minibar involves additional costs. You can find the<br>prices in the kitchen area.</code>                                                 | <code><br>Consuming the products from the minibar involves additional costs. You can find the<br>prices in the kitchen area.</code>                                                 | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
  ```json
  {
      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
      "margin": 0.5,
      "size_average": true
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset

* Size: 169 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 169 samples:
  |         | sentence1                                                                           | sentence2                                                                           | label                                           |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                              | string                                                                              | int                                             |
  | details | <ul><li>min: 13 tokens</li><li>mean: 46.01 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 46.01 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>0: ~66.86%</li><li>1: ~33.14%</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code><br>I understand and accept that the BON Hotels Group collects the personal information ("personal<br>information") of all persons in my party for purposes of loyalty programmes and special offers. I, on behalf of<br>all in my party, expressly consent and grant permission to the BON Hotels Group to: -<br>collect, collate, process, study and use the personal information; and<br>communicate directly with me/us from time to time, unless I have stated to the contrary below.</code> | <code><br>I understand and accept that the BON Hotels Group collects the personal information ("personal<br>information") of all persons in my party for purposes of loyalty programmes and special offers. I, on behalf of<br>all in my party, expressly consent and grant permission to the BON Hotels Group to: -<br>collect, collate, process, study and use the personal information; and<br>communicate directly with me/us from time to time, unless I have stated to the contrary below.</code> | <code>0</code> |
  | <code>However, in lieu of the above, any such goods will only be kept by us for 6 (six) months. At the end of which<br>period, we reserve the right in our sole discretion to dispose thereof and you will have no right of recourse<br>against us.</code>                                                                                                                                                                                                                                              | <code>However, in lieu of the above, any such goods will only be kept by us for 6 (six) months. At the end of which<br>period, we reserve the right in our sole discretion to dispose thereof and you will have no right of recourse<br>against us.</code>                                                                                                                                                                                                                                              | <code>0</code> |
  | <code> In cases where the hotel<br>suffers damage (either physical, or moral) due to the guests’ violation of the above rules, it<br>may charge a compensation fee in proportion to the damage. Moral damage may be for<br>example disturbing other guests, thus ruining the reputation of the hotel.</code>                                                                                                                                                                                            | <code> In cases where the hotel<br>suffers damage (either physical, or moral) due to the guests’ violation of the above rules, it<br>may charge a compensation fee in proportion to the damage. Moral damage may be for<br>example disturbing other guests, thus ruining the reputation of the hotel.</code>                                                                                                                                                                                            | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
  ```json
  {
      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
      "margin": 0.5,
      "size_average": true
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | dot_ap |
|:------:|:----:|:-------------:|:---------------:|:------:|
| -1     | -1   | -             | -               | 0.3294 |
| 2.3333 | 100  | 0.0298        | 0.0865          | -      |
| 4.6905 | 200  | 0.0241        | 0.0865          | -      |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### ContrastiveLoss
```bibtex
@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->