--- base_model: meta-llama/Meta-Llama-3.1-8B tags: - alignment-handbook - trl - dpo - generated_from_trainer datasets: - princeton-nlp/llama3-ultrafeedback-armorm model-index: - name: Llama-3.1-8B-Magpie-Align-v0.1-RC1 results: [] --- This model is a fine-tuned version of [Magpie-Align/Llama-3.1-8B-Magpie-Align-SFT-v0.1](https://huggingface.co/Magpie-Align/Llama-3.1-8B-Magpie-Align-SFT-v0.1) on the princeton-nlp/llama3-ultrafeedback-armorm dataset. It achieves the following results on the evaluation set: - Loss: 0.3290 - Rewards/chosen: -4.8185 - Rewards/rejected: -6.6901 - Rewards/accuracies: 0.8952 - Rewards/margins: 1.8716 - Logps/rejected: -867.8638 - Logps/chosen: -686.8736 - Logits/rejected: -0.5907 - Logits/chosen: -0.5749 ## Model description More details will be added soon. ## Benchmark - **MT-Bench: 8.375 (1st Turn), 7.650 (Second Turn), 8.013 (Average)** - **Alpaca Eval 2 (GPT-4-Turbo-1106): 45.73 (LC), 52.79 (WR)** - **Arena Hard: 42.4** ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.4439 | 0.4275 | 100 | 0.4168 | -4.9964 | -6.3086 | 0.8145 | 1.3123 | -829.7151 | -704.6570 | -0.5150 | -0.5001 | | 0.343 | 0.8549 | 200 | 0.3298 | -4.9310 | -6.7966 | 0.8952 | 1.8655 | -878.5105 | -698.1248 | -0.5776 | -0.5622 | ### Framework versions - Transformers 4.43.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1