File size: 2,763 Bytes
590b033
 
 
c95a9bb
590b033
 
 
c95a9bb
 
 
 
 
590b033
 
 
 
 
 
 
 
 
 
 
c95a9bb
590b033
c95a9bb
 
 
590b033
c95a9bb
 
 
 
 
590b033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
base_model: Magpie-Align/Llama-3.1-8B-Magpie-Mix-300KMT-150KR
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- flydust/llama3-ultrafeedback-armorm-2
model-index:
- name: Llama-3.1-8B-Magpie-Pro-MTR-UltraDPO-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/uw-nsl/huggingface/runs/ro30b4xx)
# Llama-3.1-8B-Magpie-Pro-MTR-UltraDPO-1

This model is a fine-tuned version of [Magpie-Align/Llama-3.1-8B-Magpie-Mix-300KMT-150KR](https://huggingface.co/Magpie-Align/Llama-3.1-8B-Magpie-Mix-300KMT-150KR) on the flydust/llama3-ultrafeedback-armorm-2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3290
- Rewards/chosen: -4.8185
- Rewards/rejected: -6.6901
- Rewards/accuracies: 0.8952
- Rewards/margins: 1.8716
- Logps/rejected: -867.8638
- Logps/chosen: -686.8736
- Logits/rejected: -0.5907
- Logits/chosen: -0.5749

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4439        | 0.4275 | 100  | 0.4168          | -4.9964        | -6.3086          | 0.8145             | 1.3123          | -829.7151      | -704.6570    | -0.5150         | -0.5001       |
| 0.343         | 0.8549 | 200  | 0.3298          | -4.9310        | -6.7966          | 0.8952             | 1.8655          | -878.5105      | -698.1248    | -0.5776         | -0.5622       |


### Framework versions

- Transformers 4.43.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1