Madao-314 commited on
Commit
121c9f0
·
1 Parent(s): 6793b59

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.28 +/- 21.62
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f12e662fd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12e662fdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12e662fe50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12e662fee0>", "_build": "<function ActorCriticPolicy._build at 0x7f12e662ff70>", "forward": "<function ActorCriticPolicy.forward at 0x7f12e6634040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f12e66340d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12e6634160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f12e66341f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12e6634280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12e6634310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12e66343a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f12e662cdb0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677280579321980657, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE18OT6NKp0/ZcUWP26IAr/OjpM+jqg4PgAAAAAAAAAATe/DPXuil7q16W87QjiNOF4unzpYow+6AAAAAAAAgD+AOqM+HBtXPxO/Dzr+ngu/HuZ7Poth8b0AAAAAAAAAAJoAtb3Xpi+7skffPOOojjzZtYW8jet1PQAAAAAAAIA/BnQtvug9lLyZtQO71DxGuVp9/T0hny46AACAPwAAgD8arEU9rjmVujA2Uri8KT2zPDHdOOORczcAAIA/AACAP80STL2hDbI/IpcEv76+Ub7ODYi8b5wwvgAAAAAAAAAA5kdOPi/YLD/Pfxo8m5Devs/dDD7wwtC9AAAAAAAAAABA+bw9KWgSuutOOjtbMFE3LlCXu2t9LjYAAAAAAACAP9rg8z17MMS6lgBeMyBkPrAUnKC7MznRswAAgD8AAIA/ptYQPtKV7rskGUk8hRiauh8POL1atIG7AACAPwAAgD+zUZm9fO47PU9Rpj2B6ES+LkxfvNCTjTwAAAAAAAAAAABLJz5usMY+MV3HvRYqsb5ozKA8hMQ4vQAAAAAAAAAAGvMfPlrEDT6QVS++zpdYvhGTaruCE5O8AAAAAAAAAADgFj0+7P6dPt6elb3r7by+IfdrPX7pqL0AAAAAAAAAABoCNz2wSbw/UvLuPjscQz52v5C8gNq0PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgzRj0XQnbkCUhpRSlIwBbJRL/owBdJRHQJpw7dHlOoJ1fZQoaAZoCWgPQwjoacAg6VtuQJSGlFKUaBVL7WgWR0Cachz3AVO9dX2UKGgGaAloD0MI/rrTnacZb0CUhpRSlGgVS/VoFkdAmnOomsvIwXV9lChoBmgJaA9DCP/mxYmvOWJAlIaUUpRoFU3oA2gWR0Cac6kk8ifQdX2UKGgGaAloD0MIFwyuuSO4cUCUhpRSlGgVS91oFkdAmnUgdCE6DHV9lChoBmgJaA9DCJojK78MoklAlIaUUpRoFUvAaBZHQJp2TDgqEvl1fZQoaAZoCWgPQwgmqOFbGHlwQJSGlFKUaBVL5mgWR0Cad/2f029+dX2UKGgGaAloD0MIF9NM9/p4cUCUhpRSlGgVS8doFkdAmnkSBkI5YHV9lChoBmgJaA9DCPRSsTGvAXFAlIaUUpRoFU1LAWgWR0CaeUvKEFnqdX2UKGgGaAloD0MIiGcJMoLAZUCUhpRSlGgVTegDaBZHQJp5hEYwZfl1fZQoaAZoCWgPQwgqVDcX/yxyQJSGlFKUaBVL52gWR0CaeiLl3hXKdX2UKGgGaAloD0MIE9bG2AnHXkCUhpRSlGgVTegDaBZHQJp6+I/JNj91fZQoaAZoCWgPQwhpNo/DIBRxQJSGlFKUaBVL6WgWR0Cae4KKHfuUdX2UKGgGaAloD0MIP1JEhpVackCUhpRSlGgVTS0BaBZHQJp7xJZntfJ1fZQoaAZoCWgPQwhQN1DgnZdlQJSGlFKUaBVN6ANoFkdAmnwUvboKUnV9lChoBmgJaA9DCJXUCWiia3BAlIaUUpRoFUv0aBZHQJp9LuVopQV1fZQoaAZoCWgPQwgGE38UNR1xQJSGlFKUaBVL+WgWR0CafVoMrmQsdX2UKGgGaAloD0MI0y8Rb53FckCUhpRSlGgVS+xoFkdAmn4zd56dD3V9lChoBmgJaA9DCHTwTGgSZG1AlIaUUpRoFUvZaBZHQJp+gaS9ugp1fZQoaAZoCWgPQwiNt5VeG5dxQJSGlFKUaBVL/WgWR0CagTQ1JlJ6dX2UKGgGaAloD0MIfJ4/bRSmcECUhpRSlGgVS+VoFkdAmoFlSKm8/XV9lChoBmgJaA9DCKewUkEFMHJAlIaUUpRoFUvfaBZHQJqB/kOqebx1fZQoaAZoCWgPQwjwarkz03hxQJSGlFKUaBVL92gWR0CagkciGFi8dX2UKGgGaAloD0MI4j/dQAHHb0CUhpRSlGgVS+xoFkdAmoNpUPxx1nV9lChoBmgJaA9DCEERixj2Y2JAlIaUUpRoFU3oA2gWR0Cag5/2Cdz5dX2UKGgGaAloD0MIu7n4294HcUCUhpRSlGgVS+poFkdAmoPrNjbzsnV9lChoBmgJaA9DCGPVIMxt33BAlIaUUpRoFUv3aBZHQJqFDnxJ/Xp1fZQoaAZoCWgPQwiBkgILoKtxQJSGlFKUaBVNJQJoFkdAmoWIOUdJa3V9lChoBmgJaA9DCNxlv+50HmZAlIaUUpRoFU3oA2gWR0CahigaWHDadX2UKGgGaAloD0MIJoqQup1vcUCUhpRSlGgVS/NoFkdAmobPd69kBnV9lChoBmgJaA9DCG/0MR8QEXBAlIaUUpRoFU0VAWgWR0CahtugHu7ZdX2UKGgGaAloD0MI4ZhlTwL3cECUhpRSlGgVS+hoFkdAmofpQ+EAYHV9lChoBmgJaA9DCLjmjv4XVXBAlIaUUpRoFUvTaBZHQJqLL8YQ8Ol1fZQoaAZoCWgPQwheTDPdK/twQJSGlFKUaBVL/WgWR0CajD15Sm65dX2UKGgGaAloD0MIL1G9NbApcECUhpRSlGgVS+JoFkdAmoxA8OkLyHV9lChoBmgJaA9DCOGbps8OXW5AlIaUUpRoFUvPaBZHQJqNXZCfHxV1fZQoaAZoCWgPQwgmipC63dRxQJSGlFKUaBVL3GgWR0CajZ3GXHBDdX2UKGgGaAloD0MI/p5Yp4oBcECUhpRSlGgVS+ZoFkdAmo+p0W/JvHV9lChoBmgJaA9DCD/mAwKdr3BAlIaUUpRoFUvfaBZHQJqPxUxVQyh1fZQoaAZoCWgPQwglICbhAg5zQJSGlFKUaBVNEQFoFkdAmpAjwUg0THV9lChoBmgJaA9DCGKBr+jWS1BAlIaUUpRoFUvIaBZHQJqRipxWDHx1fZQoaAZoCWgPQwgBTBk44ClxQJSGlFKUaBVL5mgWR0CakaYU34sVdX2UKGgGaAloD0MI7KS+LK2mcECUhpRSlGgVS/1oFkdAmpHvIS13MnV9lChoBmgJaA9DCCfeAZ40r3FAlIaUUpRoFUv2aBZHQJqSYYIjW091fZQoaAZoCWgPQwhtcY3P5BtvQJSGlFKUaBVLxmgWR0Calls+FDfFdX2UKGgGaAloD0MI2SQ/4le2b0CUhpRSlGgVS+VoFkdAmpbhIOH313V9lChoBmgJaA9DCFopBHLJzHFAlIaUUpRoFUvwaBZHQJqYrQE6kqN1fZQoaAZoCWgPQwiCqzyBsM5tQJSGlFKUaBVL6GgWR0CamT12q1gIdX2UKGgGaAloD0MI3sZmR6rYcUCUhpRSlGgVS/VoFkdAmpndw3o9tHV9lChoBmgJaA9DCJzexfsx2XFAlIaUUpRoFUvWaBZHQJqagnb7CSB1fZQoaAZoCWgPQwh2xvfFJYFxQJSGlFKUaBVLxWgWR0Cam4RdhRZVdX2UKGgGaAloD0MI48PsZRt5cECUhpRSlGgVS/BoFkdAmpx0UO/cnHV9lChoBmgJaA9DCC/4NCevBXNAlIaUUpRoFU0IAWgWR0CanWc81XNkdX2UKGgGaAloD0MIhVs+ktKKcUCUhpRSlGgVTR4BaBZHQJqedZr56+p1fZQoaAZoCWgPQwgRixh2GB9vQJSGlFKUaBVL1mgWR0Can1JAdGRWdX2UKGgGaAloD0MIHnBdMaPOcECUhpRSlGgVS8hoFkdAmqCh6jWTYHV9lChoBmgJaA9DCIuH9xwYw3JAlIaUUpRoFUv2aBZHQJqh08wHqu91fZQoaAZoCWgPQwjwbfqzH0VtQJSGlFKUaBVL4mgWR0CaolT0g8r7dX2UKGgGaAloD0MI/5Hp0Gn+ZkCUhpRSlGgVTegDaBZHQJqjGG+K0lZ1fZQoaAZoCWgPQwh2GmmpvPdyQJSGlFKUaBVNBQFoFkdAmqRSIk7fYXV9lChoBmgJaA9DCHSYLy8AzHFAlIaUUpRoFU33AWgWR0CapRt5le4TdX2UKGgGaAloD0MIrtnKS741cECUhpRSlGgVS9loFkdAmqWrBj4Ho3V9lChoBmgJaA9DCLEWnwIgoHJAlIaUUpRoFUv5aBZHQJql4TsY2sJ1fZQoaAZoCWgPQwhJLv8hff1xQJSGlFKUaBVNJQFoFkdAmqaK9oN/fHV9lChoBmgJaA9DCCz1LAjlTHFAlIaUUpRoFUvZaBZHQJqmskyDZlF1fZQoaAZoCWgPQwiD3bBtUcpjQJSGlFKUaBVN6ANoFkdAmqdypWFN+XV9lChoBmgJaA9DCIC3QILimmNAlIaUUpRoFU3oA2gWR0CaqFlMRHwxdX2UKGgGaAloD0MI3xYs1YWGb0CUhpRSlGgVS+xoFkdAmqlA9aEBbXV9lChoBmgJaA9DCH5TWKmgK3BAlIaUUpRoFUvWaBZHQJqp/Sw4bS91fZQoaAZoCWgPQwiVJxB2ir9yQJSGlFKUaBVNMAFoFkdAmqpg4CIUJ3V9lChoBmgJaA9DCHBcxk0NBWRAlIaUUpRoFU3oA2gWR0Caq0WWQfZFdX2UKGgGaAloD0MIGeWZl4N0cECUhpRSlGgVS+xoFkdAmqtXR9gF5nV9lChoBmgJaA9DCFIMkGhCW3JAlIaUUpRoFU0VAWgWR0Caq5sjFAE/dX2UKGgGaAloD0MI0oxF09nebkCUhpRSlGgVS/NoFkdAmqyGJemelXV9lChoBmgJaA9DCCwsuB/wz3JAlIaUUpRoFUv0aBZHQJqtylZX+2p1fZQoaAZoCWgPQwh8mShCKjJwQJSGlFKUaBVL82gWR0CarraOxSpBdX2UKGgGaAloD0MIZVbvcHubckCUhpRSlGgVS/1oFkdAmq/Mn/kvK3V9lChoBmgJaA9DCHuGcMzyUnJAlIaUUpRoFUvpaBZHQJqwAqy4Wk91fZQoaAZoCWgPQwirzmqBveNyQJSGlFKUaBVL4GgWR0CasLPci4axdX2UKGgGaAloD0MI6udNRSoWR0CUhpRSlGgVS6loFkdAmrDrdnCfpXV9lChoBmgJaA9DCMEffv57/nFAlIaUUpRoFUvVaBZHQJqxg5cTrVx1fZQoaAZoCWgPQwgHJcy0/TZxQJSGlFKUaBVL92gWR0Cas+Vu76HkdX2UKGgGaAloD0MIYcH9gEduckCUhpRSlGgVS/JoFkdAmrQNaMaS93V9lChoBmgJaA9DCPENhc9WwHFAlIaUUpRoFUvyaBZHQJq1QC1Z1V51fZQoaAZoCWgPQwjuBzwwABBhQJSGlFKUaBVN6ANoFkdAmrZ4W+GoJnV9lChoBmgJaA9DCE4pr5XQkVFAlIaUUpRoFUvuaBZHQJq2j5TIeYF1fZQoaAZoCWgPQwixwcJJGhhwQJSGlFKUaBVL9WgWR0Cat+TisGPgdX2UKGgGaAloD0MIWU5C6Uu8cUCUhpRSlGgVS95oFkdAmrk7xd6cAnV9lChoBmgJaA9DCL05XKt9N3BAlIaUUpRoFUvzaBZHQJq5UTRIBil1fZQoaAZoCWgPQwhe1sQCH8xwQJSGlFKUaBVL3WgWR0CauW8jiXIEdX2UKGgGaAloD0MIjGmme52DckCUhpRSlGgVS/xoFkdAmrlu9Ba9snV9lChoBmgJaA9DCIHOpE3VWWJAlIaUUpRoFU3oA2gWR0Cau1u3MINWdX2UKGgGaAloD0MIXhCRmjZscECUhpRSlGgVTV4CaBZHQJq7+3mV7hN1fZQoaAZoCWgPQwgPXru0YYtyQJSGlFKUaBVNKAFoFkdAmrx7qUu+RHV9lChoBmgJaA9DCPGdmPWiQXBAlIaUUpRoFUvQaBZHQJq8wTRIBil1fZQoaAZoCWgPQwj3ArNCEddxQJSGlFKUaBVNEwFoFkdAmr28ifQKKHV9lChoBmgJaA9DCEAYeO49xnFAlIaUUpRoFU0VAWgWR0Cavev/zasZdX2UKGgGaAloD0MIEVSNXs0CcECUhpRSlGgVS99oFkdAmr9PDpC8e3V9lChoBmgJaA9DCMhbrn7seHFAlIaUUpRoFU0VAWgWR0Cav/DQJHAidX2UKGgGaAloD0MI007N5QaockCUhpRSlGgVTRcBaBZHQJq/704BFNN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
my_model_landing.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae9cc28880e86a56e080fdae1d58321d4aee63c751fd43717ce751b775835a19
3
+ size 147331
my_model_landing/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
my_model_landing/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f12e662fd30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12e662fdc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12e662fe50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12e662fee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f12e662ff70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f12e6634040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f12e66340d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12e6634160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f12e66341f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12e6634280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12e6634310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12e66343a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f12e662cdb0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677280579321980657,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE18OT6NKp0/ZcUWP26IAr/OjpM+jqg4PgAAAAAAAAAATe/DPXuil7q16W87QjiNOF4unzpYow+6AAAAAAAAgD+AOqM+HBtXPxO/Dzr+ngu/HuZ7Poth8b0AAAAAAAAAAJoAtb3Xpi+7skffPOOojjzZtYW8jet1PQAAAAAAAIA/BnQtvug9lLyZtQO71DxGuVp9/T0hny46AACAPwAAgD8arEU9rjmVujA2Uri8KT2zPDHdOOORczcAAIA/AACAP80STL2hDbI/IpcEv76+Ub7ODYi8b5wwvgAAAAAAAAAA5kdOPi/YLD/Pfxo8m5Devs/dDD7wwtC9AAAAAAAAAABA+bw9KWgSuutOOjtbMFE3LlCXu2t9LjYAAAAAAACAP9rg8z17MMS6lgBeMyBkPrAUnKC7MznRswAAgD8AAIA/ptYQPtKV7rskGUk8hRiauh8POL1atIG7AACAPwAAgD+zUZm9fO47PU9Rpj2B6ES+LkxfvNCTjTwAAAAAAAAAAABLJz5usMY+MV3HvRYqsb5ozKA8hMQ4vQAAAAAAAAAAGvMfPlrEDT6QVS++zpdYvhGTaruCE5O8AAAAAAAAAADgFj0+7P6dPt6elb3r7by+IfdrPX7pqL0AAAAAAAAAABoCNz2wSbw/UvLuPjscQz52v5C8gNq0PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVOxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgzRj0XQnbkCUhpRSlIwBbJRL/owBdJRHQJpw7dHlOoJ1fZQoaAZoCWgPQwjoacAg6VtuQJSGlFKUaBVL7WgWR0Cachz3AVO9dX2UKGgGaAloD0MI/rrTnacZb0CUhpRSlGgVS/VoFkdAmnOomsvIwXV9lChoBmgJaA9DCP/mxYmvOWJAlIaUUpRoFU3oA2gWR0Cac6kk8ifQdX2UKGgGaAloD0MIFwyuuSO4cUCUhpRSlGgVS91oFkdAmnUgdCE6DHV9lChoBmgJaA9DCJojK78MoklAlIaUUpRoFUvAaBZHQJp2TDgqEvl1fZQoaAZoCWgPQwgmqOFbGHlwQJSGlFKUaBVL5mgWR0Cad/2f029+dX2UKGgGaAloD0MIF9NM9/p4cUCUhpRSlGgVS8doFkdAmnkSBkI5YHV9lChoBmgJaA9DCPRSsTGvAXFAlIaUUpRoFU1LAWgWR0CaeUvKEFnqdX2UKGgGaAloD0MIiGcJMoLAZUCUhpRSlGgVTegDaBZHQJp5hEYwZfl1fZQoaAZoCWgPQwgqVDcX/yxyQJSGlFKUaBVL52gWR0CaeiLl3hXKdX2UKGgGaAloD0MIE9bG2AnHXkCUhpRSlGgVTegDaBZHQJp6+I/JNj91fZQoaAZoCWgPQwhpNo/DIBRxQJSGlFKUaBVL6WgWR0Cae4KKHfuUdX2UKGgGaAloD0MIP1JEhpVackCUhpRSlGgVTS0BaBZHQJp7xJZntfJ1fZQoaAZoCWgPQwhQN1DgnZdlQJSGlFKUaBVN6ANoFkdAmnwUvboKUnV9lChoBmgJaA9DCJXUCWiia3BAlIaUUpRoFUv0aBZHQJp9LuVopQV1fZQoaAZoCWgPQwgGE38UNR1xQJSGlFKUaBVL+WgWR0CafVoMrmQsdX2UKGgGaAloD0MI0y8Rb53FckCUhpRSlGgVS+xoFkdAmn4zd56dD3V9lChoBmgJaA9DCHTwTGgSZG1AlIaUUpRoFUvZaBZHQJp+gaS9ugp1fZQoaAZoCWgPQwiNt5VeG5dxQJSGlFKUaBVL/WgWR0CagTQ1JlJ6dX2UKGgGaAloD0MIfJ4/bRSmcECUhpRSlGgVS+VoFkdAmoFlSKm8/XV9lChoBmgJaA9DCKewUkEFMHJAlIaUUpRoFUvfaBZHQJqB/kOqebx1fZQoaAZoCWgPQwjwarkz03hxQJSGlFKUaBVL92gWR0CagkciGFi8dX2UKGgGaAloD0MI4j/dQAHHb0CUhpRSlGgVS+xoFkdAmoNpUPxx1nV9lChoBmgJaA9DCEERixj2Y2JAlIaUUpRoFU3oA2gWR0Cag5/2Cdz5dX2UKGgGaAloD0MIu7n4294HcUCUhpRSlGgVS+poFkdAmoPrNjbzsnV9lChoBmgJaA9DCGPVIMxt33BAlIaUUpRoFUv3aBZHQJqFDnxJ/Xp1fZQoaAZoCWgPQwiBkgILoKtxQJSGlFKUaBVNJQJoFkdAmoWIOUdJa3V9lChoBmgJaA9DCNxlv+50HmZAlIaUUpRoFU3oA2gWR0CahigaWHDadX2UKGgGaAloD0MIJoqQup1vcUCUhpRSlGgVS/NoFkdAmobPd69kBnV9lChoBmgJaA9DCG/0MR8QEXBAlIaUUpRoFU0VAWgWR0CahtugHu7ZdX2UKGgGaAloD0MI4ZhlTwL3cECUhpRSlGgVS+hoFkdAmofpQ+EAYHV9lChoBmgJaA9DCLjmjv4XVXBAlIaUUpRoFUvTaBZHQJqLL8YQ8Ol1fZQoaAZoCWgPQwheTDPdK/twQJSGlFKUaBVL/WgWR0CajD15Sm65dX2UKGgGaAloD0MIL1G9NbApcECUhpRSlGgVS+JoFkdAmoxA8OkLyHV9lChoBmgJaA9DCOGbps8OXW5AlIaUUpRoFUvPaBZHQJqNXZCfHxV1fZQoaAZoCWgPQwgmipC63dRxQJSGlFKUaBVL3GgWR0CajZ3GXHBDdX2UKGgGaAloD0MI/p5Yp4oBcECUhpRSlGgVS+ZoFkdAmo+p0W/JvHV9lChoBmgJaA9DCD/mAwKdr3BAlIaUUpRoFUvfaBZHQJqPxUxVQyh1fZQoaAZoCWgPQwglICbhAg5zQJSGlFKUaBVNEQFoFkdAmpAjwUg0THV9lChoBmgJaA9DCGKBr+jWS1BAlIaUUpRoFUvIaBZHQJqRipxWDHx1fZQoaAZoCWgPQwgBTBk44ClxQJSGlFKUaBVL5mgWR0CakaYU34sVdX2UKGgGaAloD0MI7KS+LK2mcECUhpRSlGgVS/1oFkdAmpHvIS13MnV9lChoBmgJaA9DCCfeAZ40r3FAlIaUUpRoFUv2aBZHQJqSYYIjW091fZQoaAZoCWgPQwhtcY3P5BtvQJSGlFKUaBVLxmgWR0Calls+FDfFdX2UKGgGaAloD0MI2SQ/4le2b0CUhpRSlGgVS+VoFkdAmpbhIOH313V9lChoBmgJaA9DCFopBHLJzHFAlIaUUpRoFUvwaBZHQJqYrQE6kqN1fZQoaAZoCWgPQwiCqzyBsM5tQJSGlFKUaBVL6GgWR0CamT12q1gIdX2UKGgGaAloD0MI3sZmR6rYcUCUhpRSlGgVS/VoFkdAmpndw3o9tHV9lChoBmgJaA9DCJzexfsx2XFAlIaUUpRoFUvWaBZHQJqagnb7CSB1fZQoaAZoCWgPQwh2xvfFJYFxQJSGlFKUaBVLxWgWR0Cam4RdhRZVdX2UKGgGaAloD0MI48PsZRt5cECUhpRSlGgVS/BoFkdAmpx0UO/cnHV9lChoBmgJaA9DCC/4NCevBXNAlIaUUpRoFU0IAWgWR0CanWc81XNkdX2UKGgGaAloD0MIhVs+ktKKcUCUhpRSlGgVTR4BaBZHQJqedZr56+p1fZQoaAZoCWgPQwgRixh2GB9vQJSGlFKUaBVL1mgWR0Can1JAdGRWdX2UKGgGaAloD0MIHnBdMaPOcECUhpRSlGgVS8hoFkdAmqCh6jWTYHV9lChoBmgJaA9DCIuH9xwYw3JAlIaUUpRoFUv2aBZHQJqh08wHqu91fZQoaAZoCWgPQwjwbfqzH0VtQJSGlFKUaBVL4mgWR0CaolT0g8r7dX2UKGgGaAloD0MI/5Hp0Gn+ZkCUhpRSlGgVTegDaBZHQJqjGG+K0lZ1fZQoaAZoCWgPQwh2GmmpvPdyQJSGlFKUaBVNBQFoFkdAmqRSIk7fYXV9lChoBmgJaA9DCHSYLy8AzHFAlIaUUpRoFU33AWgWR0CapRt5le4TdX2UKGgGaAloD0MIrtnKS741cECUhpRSlGgVS9loFkdAmqWrBj4Ho3V9lChoBmgJaA9DCLEWnwIgoHJAlIaUUpRoFUv5aBZHQJql4TsY2sJ1fZQoaAZoCWgPQwhJLv8hff1xQJSGlFKUaBVNJQFoFkdAmqaK9oN/fHV9lChoBmgJaA9DCCz1LAjlTHFAlIaUUpRoFUvZaBZHQJqmskyDZlF1fZQoaAZoCWgPQwiD3bBtUcpjQJSGlFKUaBVN6ANoFkdAmqdypWFN+XV9lChoBmgJaA9DCIC3QILimmNAlIaUUpRoFU3oA2gWR0CaqFlMRHwxdX2UKGgGaAloD0MI3xYs1YWGb0CUhpRSlGgVS+xoFkdAmqlA9aEBbXV9lChoBmgJaA9DCH5TWKmgK3BAlIaUUpRoFUvWaBZHQJqp/Sw4bS91fZQoaAZoCWgPQwiVJxB2ir9yQJSGlFKUaBVNMAFoFkdAmqpg4CIUJ3V9lChoBmgJaA9DCHBcxk0NBWRAlIaUUpRoFU3oA2gWR0Caq0WWQfZFdX2UKGgGaAloD0MIGeWZl4N0cECUhpRSlGgVS+xoFkdAmqtXR9gF5nV9lChoBmgJaA9DCFIMkGhCW3JAlIaUUpRoFU0VAWgWR0Caq5sjFAE/dX2UKGgGaAloD0MI0oxF09nebkCUhpRSlGgVS/NoFkdAmqyGJemelXV9lChoBmgJaA9DCCwsuB/wz3JAlIaUUpRoFUv0aBZHQJqtylZX+2p1fZQoaAZoCWgPQwh8mShCKjJwQJSGlFKUaBVL82gWR0CarraOxSpBdX2UKGgGaAloD0MIZVbvcHubckCUhpRSlGgVS/1oFkdAmq/Mn/kvK3V9lChoBmgJaA9DCHuGcMzyUnJAlIaUUpRoFUvpaBZHQJqwAqy4Wk91fZQoaAZoCWgPQwirzmqBveNyQJSGlFKUaBVL4GgWR0CasLPci4axdX2UKGgGaAloD0MI6udNRSoWR0CUhpRSlGgVS6loFkdAmrDrdnCfpXV9lChoBmgJaA9DCMEffv57/nFAlIaUUpRoFUvVaBZHQJqxg5cTrVx1fZQoaAZoCWgPQwgHJcy0/TZxQJSGlFKUaBVL92gWR0Cas+Vu76HkdX2UKGgGaAloD0MIYcH9gEduckCUhpRSlGgVS/JoFkdAmrQNaMaS93V9lChoBmgJaA9DCPENhc9WwHFAlIaUUpRoFUvyaBZHQJq1QC1Z1V51fZQoaAZoCWgPQwjuBzwwABBhQJSGlFKUaBVN6ANoFkdAmrZ4W+GoJnV9lChoBmgJaA9DCE4pr5XQkVFAlIaUUpRoFUvuaBZHQJq2j5TIeYF1fZQoaAZoCWgPQwixwcJJGhhwQJSGlFKUaBVL9WgWR0Cat+TisGPgdX2UKGgGaAloD0MIWU5C6Uu8cUCUhpRSlGgVS95oFkdAmrk7xd6cAnV9lChoBmgJaA9DCL05XKt9N3BAlIaUUpRoFUvzaBZHQJq5UTRIBil1fZQoaAZoCWgPQwhe1sQCH8xwQJSGlFKUaBVL3WgWR0CauW8jiXIEdX2UKGgGaAloD0MIjGmme52DckCUhpRSlGgVS/xoFkdAmrlu9Ba9snV9lChoBmgJaA9DCIHOpE3VWWJAlIaUUpRoFU3oA2gWR0Cau1u3MINWdX2UKGgGaAloD0MIXhCRmjZscECUhpRSlGgVTV4CaBZHQJq7+3mV7hN1fZQoaAZoCWgPQwgPXru0YYtyQJSGlFKUaBVNKAFoFkdAmrx7qUu+RHV9lChoBmgJaA9DCPGdmPWiQXBAlIaUUpRoFUvQaBZHQJq8wTRIBil1fZQoaAZoCWgPQwj3ArNCEddxQJSGlFKUaBVNEwFoFkdAmr28ifQKKHV9lChoBmgJaA9DCEAYeO49xnFAlIaUUpRoFU0VAWgWR0Cavev/zasZdX2UKGgGaAloD0MIEVSNXs0CcECUhpRSlGgVS99oFkdAmr9PDpC8e3V9lChoBmgJaA9DCMhbrn7seHFAlIaUUpRoFU0VAWgWR0Cav/DQJHAidX2UKGgGaAloD0MI007N5QaockCUhpRSlGgVTRcBaBZHQJq/704BFNN1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
my_model_landing/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b4a5ce8ce45c36fc2ff5521ab5f5e279dc6b0a92551dc2fb9b8795e443dcfec
3
+ size 87929
my_model_landing/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33ee937644895db7d4d646393d79faa75964db7b679c2de7deccb72b58cb583f
3
+ size 43393
my_model_landing/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
my_model_landing/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (172 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.28472951241713, "std_reward": 21.624152870335354, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-24T23:47:12.457006"}