File size: 2,048 Bytes
24aebda
 
 
 
 
 
 
 
 
9ba181d
 
 
 
 
24aebda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba181d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: finetuned_bartbase_on_medi_data
  results: []
datasets:
- amagastya/medical-abstract-summaries
language:
- en
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned_bartbase_on_medi_data

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1259
- Rouge1: 0.8208
- Rouge2: 0.6644
- Rougel: 0.7467
- Rougelsum: 0.7542
- Gen Len: 75.0167

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.660730299084495e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 175  | 0.1297          | 0.812  | 0.6479 | 0.7393 | 0.7477    | 76.0533 |
| No log        | 2.0   | 350  | 0.1037          | 0.817  | 0.6546 | 0.7393 | 0.7497    | 77.2933 |
| 0.0519        | 3.0   | 525  | 0.1095          | 0.8196 | 0.6656 | 0.7504 | 0.7588    | 75.38   |
| 0.0519        | 4.0   | 700  | 0.1157          | 0.8141 | 0.6539 | 0.7397 | 0.7494    | 76.3633 |
| 0.0519        | 5.0   | 875  | 0.1259          | 0.8208 | 0.6644 | 0.7467 | 0.7542    | 75.0167 |


### Framework versions

- Transformers 4.30.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.13.3