# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from llamafactory.train.test_utils import load_infer_model, load_train_model TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "freeze", "dataset": "llamafactory/tiny-supervised-dataset", "dataset_dir": "ONLINE", "template": "llama3", "cutoff_len": 1024, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } INFER_ARGS = { "model_name_or_path": TINY_LLAMA, "finetuning_type": "freeze", "template": "llama3", "infer_dtype": "float16", } def test_freeze_train_all_modules(): model = load_train_model(freeze_trainable_layers=1, **TRAIN_ARGS) for name, param in model.named_parameters(): if name.startswith("model.layers.1."): assert param.requires_grad is True assert param.dtype == torch.float32 else: assert param.requires_grad is False assert param.dtype == torch.float16 def test_freeze_train_extra_modules(): model = load_train_model(freeze_trainable_layers=1, freeze_extra_modules="embed_tokens,lm_head", **TRAIN_ARGS) for name, param in model.named_parameters(): if name.startswith("model.layers.1.") or any(module in name for module in ["embed_tokens", "lm_head"]): assert param.requires_grad is True assert param.dtype == torch.float32 else: assert param.requires_grad is False assert param.dtype == torch.float16 def test_freeze_inference(): model = load_infer_model(**INFER_ARGS) for param in model.parameters(): assert param.requires_grad is False assert param.dtype == torch.float16