nielsr HF staff commited on
Commit
0dd8546
·
verified ·
1 Parent(s): bc55b34

Add pipeline tag, library name and link to paper

Browse files

This PR improves the model card by:

- making sure the model can be found at https://huggingface.co/models?pipeline_tag=text-generation&sort=trending
- adding the transformers library.
- is linked to https://huggingface.co/papers/2402.07625

Files changed (1) hide show
  1. README.md +43 -488
README.md CHANGED
@@ -1,10 +1,18 @@
 
 
 
 
 
 
1
  ![# LLaMA Factory](assets/logo.png)
2
 
 
 
3
  [![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
4
  [![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
5
  [![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
6
  [![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
7
- [![Citation](https://img.shields.io/badge/citation-91-green)](#projects-using-llama-factory)
8
  [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
9
  [![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
10
  [![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
@@ -87,9 +95,9 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
87
 
88
  <details><summary>Full Changelog</summary>
89
 
90
- [24/07/04] We support [contamination-free packed training](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing). Use `neat_packing: true` to activate it. Thank [@chuan298](https://github.com/chuan298)'s PR.
91
 
92
- [24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
93
 
94
  [24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
95
 
@@ -133,8 +141,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
133
 
134
  [23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `use_unsloth: true` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
135
 
136
- [23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
137
-
138
  [23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)**. See [this tutorial](#download-from-modelscope-hub) for usage.
139
 
140
  [23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune.
@@ -155,11 +162,11 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
155
 
156
  [23/07/18] We developed an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
157
 
158
- [23/07/09] We released **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
159
 
160
  [23/06/29] We provided a **reproducible example** of training a chat model using instruction-following datasets, see [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft) for details.
161
 
162
- [23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
163
 
164
  [23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). See [examples](examples/README.md) for usage.
165
 
@@ -167,36 +174,33 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
167
 
168
  ## Supported Models
169
 
170
- | Model | Model size | Template |
171
- | ----------------------------------------------------------------- | -------------------------------- | ---------------- |
172
- | [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
173
- | [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
174
- | [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
175
- | [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
176
- | [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
177
- | [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
178
- | [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
179
- | [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
180
- | [InternLM2/InternLM2.5](https://huggingface.co/internlm) | 7B/20B | intern2 |
181
- | [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
182
- | [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
183
- | [Llama 3-3.2](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
184
- | [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
185
- | [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
186
- | [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
187
- | [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
188
- | [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
189
- | [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
190
- | [PaliGemma](https://huggingface.co/google) | 3B | paligemma |
191
- | [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
192
- | [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
193
- | [Qwen (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
194
- | [Qwen2-VL](https://huggingface.co/Qwen) | 2B/7B/72B | qwen2_vl |
195
- | [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
196
- | [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
197
- | [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
198
- | [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
199
- | [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
200
 
201
  > [!NOTE]
202
  > For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
@@ -280,9 +284,9 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
280
  - [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
281
  - [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
282
  - [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
283
- - [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
284
  - [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
285
  - [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1)
 
286
  - [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
287
  - [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions)
288
  - [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
@@ -290,453 +294,4 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
290
  - [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
291
  - [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de)
292
  - [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de)
293
- - [Dolphin (de)](https://huggingface.co/datasets/mayflowergmbh/dolphin_de)
294
- - [Booksum (de)](https://huggingface.co/datasets/mayflowergmbh/booksum_de)
295
- - [Airoboros (de)](https://huggingface.co/datasets/mayflowergmbh/airoboros-3.0_de)
296
- - [Ultrachat (de)](https://huggingface.co/datasets/mayflowergmbh/ultra-chat_de)
297
-
298
- </details>
299
-
300
- <details><summary>Preference datasets</summary>
301
-
302
- - [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
303
- - [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
304
- - [RLHF-V (en)](https://huggingface.co/datasets/openbmb/RLHF-V-Dataset)
305
- - [VLFeedback (en)](https://huggingface.co/datasets/Zhihui/VLFeedback)
306
- - [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
307
- - [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
308
- - [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
309
- - [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
310
- - [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k)
311
-
312
- </details>
313
-
314
- Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
315
-
316
- ```bash
317
- pip install --upgrade huggingface_hub
318
- huggingface-cli login
319
- ```
320
-
321
- ## Requirement
322
-
323
- | Mandatory | Minimum | Recommend |
324
- | ------------ | ------- | --------- |
325
- | python | 3.8 | 3.11 |
326
- | torch | 1.13.1 | 2.4.0 |
327
- | transformers | 4.41.2 | 4.43.4 |
328
- | datasets | 2.16.0 | 2.20.0 |
329
- | accelerate | 0.30.1 | 0.32.0 |
330
- | peft | 0.11.1 | 0.12.0 |
331
- | trl | 0.8.6 | 0.9.6 |
332
-
333
- | Optional | Minimum | Recommend |
334
- | ------------ | ------- | --------- |
335
- | CUDA | 11.6 | 12.2 |
336
- | deepspeed | 0.10.0 | 0.14.0 |
337
- | bitsandbytes | 0.39.0 | 0.43.1 |
338
- | vllm | 0.4.3 | 0.5.0 |
339
- | flash-attn | 2.3.0 | 2.6.3 |
340
-
341
- ### Hardware Requirement
342
-
343
- \* *estimated*
344
-
345
- | Method | Bits | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
346
- | ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
347
- | Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
348
- | Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
349
- | Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
350
- | LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
351
- | QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
352
- | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
353
- | QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
354
-
355
- ## Getting Started
356
-
357
- ### Installation
358
-
359
- > [!IMPORTANT]
360
- > Installation is mandatory.
361
-
362
- ```bash
363
- git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
364
- cd LLaMA-Factory
365
- pip install -e ".[torch,metrics]"
366
- ```
367
-
368
- Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, adam-mini, qwen, modelscope, openmind, quality
369
-
370
- > [!TIP]
371
- > Use `pip install --no-deps -e .` to resolve package conflicts.
372
-
373
- <details><summary>For Windows users</summary>
374
-
375
- If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
376
-
377
- ```bash
378
- pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
379
- ```
380
-
381
- To enable FlashAttention-2 on the Windows platform, you need to install the precompiled `flash-attn` library, which supports CUDA 12.1 to 12.2. Please download the corresponding version from [flash-attention](https://github.com/bdashore3/flash-attention/releases) based on your requirements.
382
-
383
- </details>
384
-
385
- <details><summary>For Ascend NPU users</summary>
386
-
387
- To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
388
-
389
- ```bash
390
- # replace the url according to your CANN version and devices
391
- # install CANN Toolkit
392
- wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
393
- bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
394
-
395
- # install CANN Kernels
396
- wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
397
- bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
398
-
399
- # set env variables
400
- source /usr/local/Ascend/ascend-toolkit/set_env.sh
401
- ```
402
-
403
- | Requirement | Minimum | Recommend |
404
- | ------------ | ------- | ----------- |
405
- | CANN | 8.0.RC1 | 8.0.RC1 |
406
- | torch | 2.1.0 | 2.1.0 |
407
- | torch-npu | 2.1.0 | 2.1.0.post3 |
408
- | deepspeed | 0.13.2 | 0.13.2 |
409
-
410
- Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
411
-
412
- If you cannot infer model on NPU devices, try setting `do_sample: false` in the configurations.
413
-
414
- Download the pre-built Docker images: [32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
415
-
416
- </details>
417
-
418
- ### Data Preparation
419
-
420
- Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope / Modelers hub or load the dataset in local disk.
421
-
422
- > [!NOTE]
423
- > Please update `data/dataset_info.json` to use your custom dataset.
424
-
425
- ### Quickstart
426
-
427
- Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
428
-
429
- ```bash
430
- llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
431
- llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
432
- llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
433
- ```
434
-
435
- See [examples/README.md](examples/README.md) for advanced usage (including distributed training).
436
-
437
- > [!TIP]
438
- > Use `llamafactory-cli help` to show help information.
439
-
440
- ### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
441
-
442
- ```bash
443
- llamafactory-cli webui
444
- ```
445
-
446
- ### Build Docker
447
-
448
- For CUDA users:
449
-
450
- ```bash
451
- cd docker/docker-cuda/
452
- docker compose up -d
453
- docker compose exec llamafactory bash
454
- ```
455
-
456
- For Ascend NPU users:
457
-
458
- ```bash
459
- cd docker/docker-npu/
460
- docker compose up -d
461
- docker compose exec llamafactory bash
462
- ```
463
-
464
- For AMD ROCm users:
465
-
466
- ```bash
467
- cd docker/docker-rocm/
468
- docker compose up -d
469
- docker compose exec llamafactory bash
470
- ```
471
-
472
- <details><summary>Build without Docker Compose</summary>
473
-
474
- For CUDA users:
475
-
476
- ```bash
477
- docker build -f ./docker/docker-cuda/Dockerfile \
478
- --build-arg INSTALL_BNB=false \
479
- --build-arg INSTALL_VLLM=false \
480
- --build-arg INSTALL_DEEPSPEED=false \
481
- --build-arg INSTALL_FLASHATTN=false \
482
- --build-arg PIP_INDEX=https://pypi.org/simple \
483
- -t llamafactory:latest .
484
-
485
- docker run -dit --gpus=all \
486
- -v ./hf_cache:/root/.cache/huggingface \
487
- -v ./ms_cache:/root/.cache/modelscope \
488
- -v ./om_cache:/root/.cache/openmind \
489
- -v ./data:/app/data \
490
- -v ./output:/app/output \
491
- -p 7860:7860 \
492
- -p 8000:8000 \
493
- --shm-size 16G \
494
- --name llamafactory \
495
- llamafactory:latest
496
-
497
- docker exec -it llamafactory bash
498
- ```
499
-
500
- For Ascend NPU users:
501
-
502
- ```bash
503
- # Choose docker image upon your environment
504
- docker build -f ./docker/docker-npu/Dockerfile \
505
- --build-arg INSTALL_DEEPSPEED=false \
506
- --build-arg PIP_INDEX=https://pypi.org/simple \
507
- -t llamafactory:latest .
508
-
509
- # Change `device` upon your resources
510
- docker run -dit \
511
- -v ./hf_cache:/root/.cache/huggingface \
512
- -v ./ms_cache:/root/.cache/modelscope \
513
- -v ./om_cache:/root/.cache/openmind \
514
- -v ./data:/app/data \
515
- -v ./output:/app/output \
516
- -v /usr/local/dcmi:/usr/local/dcmi \
517
- -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
518
- -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
519
- -v /etc/ascend_install.info:/etc/ascend_install.info \
520
- -p 7860:7860 \
521
- -p 8000:8000 \
522
- --device /dev/davinci0 \
523
- --device /dev/davinci_manager \
524
- --device /dev/devmm_svm \
525
- --device /dev/hisi_hdc \
526
- --shm-size 16G \
527
- --name llamafactory \
528
- llamafactory:latest
529
-
530
- docker exec -it llamafactory bash
531
- ```
532
-
533
- For AMD ROCm users:
534
-
535
- ```bash
536
- docker build -f ./docker/docker-rocm/Dockerfile \
537
- --build-arg INSTALL_BNB=false \
538
- --build-arg INSTALL_VLLM=false \
539
- --build-arg INSTALL_DEEPSPEED=false \
540
- --build-arg INSTALL_FLASHATTN=false \
541
- --build-arg PIP_INDEX=https://pypi.org/simple \
542
- -t llamafactory:latest .
543
-
544
- docker run -dit \
545
- -v ./hf_cache:/root/.cache/huggingface \
546
- -v ./ms_cache:/root/.cache/modelscope \
547
- -v ./om_cache:/root/.cache/openmind \
548
- -v ./data:/app/data \
549
- -v ./output:/app/output \
550
- -v ./saves:/app/saves \
551
- -p 7860:7860 \
552
- -p 8000:8000 \
553
- --device /dev/kfd \
554
- --device /dev/dri \
555
- --shm-size 16G \
556
- --name llamafactory \
557
- llamafactory:latest
558
-
559
- docker exec -it llamafactory bash
560
- ```
561
-
562
- </details>
563
-
564
- <details><summary>Details about volume</summary>
565
-
566
- - `hf_cache`: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
567
- - `ms_cache`: Similar to Hugging Face cache but for ModelScope users.
568
- - `om_cache`: Similar to Hugging Face cache but for Modelers users.
569
- - `data`: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
570
- - `output`: Set export dir to this location so that the merged result can be accessed directly on the host machine.
571
-
572
- </details>
573
-
574
- ### Deploy with OpenAI-style API and vLLM
575
-
576
- ```bash
577
- API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
578
- ```
579
-
580
- > [!TIP]
581
- > Visit [this page](https://platform.openai.com/docs/api-reference/chat/create) for API document.
582
-
583
- ### Download from ModelScope Hub
584
-
585
- If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.
586
-
587
- ```bash
588
- export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
589
- ```
590
-
591
- Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
592
-
593
- ### Download from Modelers Hub
594
-
595
- You can also use Modelers Hub to download models and datasets.
596
-
597
- ```bash
598
- export USE_OPENMIND_HUB=1 # `set USE_OPENMIND_HUB=1` for Windows
599
- ```
600
-
601
- Train the model by specifying a model ID of the Modelers Hub as the `model_name_or_path`. You can find a full list of model IDs at [Modelers Hub](https://modelers.cn/models), e.g., `TeleAI/TeleChat-7B-pt`.
602
-
603
- ### Use W&B Logger
604
-
605
- To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments to yaml files.
606
-
607
- ```yaml
608
- report_to: wandb
609
- run_name: test_run # optional
610
- ```
611
-
612
- Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
613
-
614
- ## Projects using LLaMA Factory
615
-
616
- If you have a project that should be incorporated, please contact via email or create a pull request.
617
-
618
- <details><summary>Click to show</summary>
619
-
620
- 1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
621
- 1. Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [[arxiv]](https://arxiv.org/abs/2308.10092)
622
- 1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
623
- 1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
624
- 1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
625
- 1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. KDD 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
626
- 1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
627
- 1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
628
- 1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
629
- 1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
630
- 1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
631
- 1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
632
- 1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
633
- 1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2402.11809)
634
- 1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
635
- 1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
636
- 1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
637
- 1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
638
- 1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
639
- 1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
640
- 1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
641
- 1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
642
- 1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
643
- 1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
644
- 1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. COLING 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
645
- 1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
646
- 1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
647
- 1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
648
- 1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
649
- 1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. ICML 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
650
- 1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
651
- 1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
652
- 1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
653
- 1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
654
- 1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
655
- 1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2404.17140)
656
- 1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. NAACL 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
657
- 1. Xu et al. Large Language Models for Cyber Security: A Systematic Literature Review. 2024. [[arxiv]](https://arxiv.org/abs/2405.04760)
658
- 1. Dammu et al. "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations. 2024. [[arxiv]](https://arxiv.org/abs/2405.05378)
659
- 1. Yi et al. A safety realignment framework via subspace-oriented model fusion for large language models. 2024. [[arxiv]](https://arxiv.org/abs/2405.09055)
660
- 1. Lou et al. SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling. 2024. [[arxiv]](https://arxiv.org/abs/2405.12739)
661
- 1. Zhang et al. Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2405.13816)
662
- 1. Zhang et al. TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2405.20215)
663
- 1. Zihong Chen. Sentence Segmentation and Sentence Punctuation Based on XunziALLM. 2024. [[paper]](https://aclanthology.org/2024.lt4hala-1.30)
664
- 1. Gao et al. The Best of Both Worlds: Toward an Honest and Helpful Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2406.00380)
665
- 1. Wang and Song. MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset. 2024. [[arxiv]](https://arxiv.org/abs/2406.02106)
666
- 1. Hu et al. Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models. 2024. [[arxiv]](https://arxiv.org/abs/2406.03136)
667
- 1. Ge et al. Time Sensitive Knowledge Editing through Efficient Finetuning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2406.04496)
668
- 1. Tan et al. Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions. 2024. [[arxiv]](https://arxiv.org/abs/2406.05688)
669
- 1. Song et al. Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters. 2024. [[arxiv]](https://arxiv.org/abs/2406.05955)
670
- 1. Gu et al. RWKV-CLIP: A Robust Vision-Language Representation Learner. 2024. [[arxiv]](https://arxiv.org/abs/2406.06973)
671
- 1. Chen et al. Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees. 2024. [[arxiv]](https://arxiv.org/abs/2406.07115)
672
- 1. Zhu et al. Are Large Language Models Good Statisticians?. 2024. [[arxiv]](https://arxiv.org/abs/2406.07815)
673
- 1. Li et al. Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2406.10099)
674
- 1. Ding et al. IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce. 2024. [[arxiv]](https://arxiv.org/abs/2406.10173)
675
- 1. He et al. COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generation for Aligning Large Language Models to Online Communities. 2024. [[arxiv]](https://arxiv.org/abs/2406.12074)
676
- 1. Lin et al. FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving. 2024. [[arxiv]](https://arxiv.org/abs/2406.14408)
677
- 1. Treutlein et al. Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data. 2024. [[arxiv]](https://arxiv.org/abs/2406.14546)
678
- 1. Feng et al. SS-Bench: A Benchmark for Social Story Generation and Evaluation. 2024. [[arxiv]](https://arxiv.org/abs/2406.15695)
679
- 1. Feng et al. Self-Constructed Context Decompilation with Fined-grained Alignment Enhancement. 2024. [[arxiv]](https://arxiv.org/abs/2406.17233)
680
- 1. Liu et al. Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals. 2024. [[arxiv]](https://arxiv.org/abs/2406.18069)
681
- 1. Iyer et al. Exploring Very Low-Resource Translation with LLMs: The University of Edinburgh's Submission to AmericasNLP 2024 Translation Task. AmericasNLP 2024. [[paper]](https://aclanthology.org/2024.americasnlp-1.25)
682
- 1. Li et al. Calibrating LLMs with Preference Optimization on Thought Trees for Generating Rationale in Science Question Scoring. 2024. [[arxiv]](https://arxiv.org/abs/2406.19949)
683
- 1. Yang et al. Financial Knowledge Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2407.00365)
684
- 1. Lin et al. DogeRM: Equipping Reward Models with Domain Knowledge through Model Merging. 2024. [[arxiv]](https://arxiv.org/abs/2407.01470)
685
- 1. Bako et al. Evaluating the Semantic Profiling Abilities of LLMs for Natural Language Utterances in Data Visualization. 2024. [[arxiv]](https://arxiv.org/abs/2407.06129)
686
- 1. Huang et al. RoLoRA: Fine-tuning Rotated Outlier-free LLMs for Effective Weight-Activation Quantization. 2024. [[arxiv]](https://arxiv.org/abs/2407.08044)
687
- 1. Jiang et al. LLM-Collaboration on Automatic Science Journalism for the General Audience. 2024. [[arxiv]](https://arxiv.org/abs/2407.09756)
688
- 1. Inouye et al. Applied Auto-tuning on LoRA Hyperparameters. 2024. [[paper]](https://scholarcommons.scu.edu/cseng_senior/272/)
689
- 1. Qi et al. Research on Tibetan Tourism Viewpoints information generation system based on LLM. 2024. [[arxiv]](https://arxiv.org/abs/2407.13561)
690
- 1. Xu et al. Course-Correction: Safety Alignment Using Synthetic Preferences. 2024. [[arxiv]](https://arxiv.org/abs/2407.16637)
691
- 1. Sun et al. LAMBDA: A Large Model Based Data Agent. 2024. [[arxiv]](https://arxiv.org/abs/2407.17535)
692
- 1. Zhu et al. CollectiveSFT: Scaling Large Language Models for Chinese Medical Benchmark with Collective Instructions in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2407.19705)
693
- 1. Yu et al. Correcting Negative Bias in Large Language Models through Negative Attention Score Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2408.00137)
694
- 1. Xie et al. The Power of Personalized Datasets: Advancing Chinese Composition Writing for Elementary School through Targeted Model Fine-Tuning. IALP 2024. [[paper]](https://www.asianlp.sg/conferences/ialp2024/proceedings/papers/IALP2024_P055.pdf)
695
- 1. Liu et al. Instruct-Code-Llama: Improving Capabilities of Language Model in Competition Level Code Generation by Online Judge Feedback. ICIC 2024. [[paper]](https://link.springer.com/chapter/10.1007/978-981-97-5669-8_11)
696
- 1. Wang et al. Cybernetic Sentinels: Unveiling the Impact of Safety Data Selection on Model Security in Supervised Fine-Tuning. ICIC 2024. [[paper]](https://link.springer.com/chapter/10.1007/978-981-97-5669-8_23)
697
- 1. Xia et al. Understanding the Performance and Estimating the Cost of LLM Fine-Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2408.04693)
698
- 1. Zeng et al. Perceive, Reflect, and Plan: Designing LLM Agent for Goal-Directed City Navigation without Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2408.04168)
699
- 1. Xia et al. Using Pre-trained Language Model for Accurate ESG Prediction. FinNLP 2024. [[paper]](https://aclanthology.org/2024.finnlp-2.1/)
700
- 1. Liang et al. I-SHEEP: Self-Alignment of LLM from Scratch through an Iterative Self-Enhancement Paradigm. 2024. [[arxiv]](https://arxiv.org/abs/2408.08072)
701
- 1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
702
- 1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
703
- 1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
704
- 1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
705
- 1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
706
- 1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
707
- 1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B.
708
- 1. **[AutoRE](https://github.com/THUDM/AutoRE)**: A document-level relation extraction system based on large language models.
709
- 1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: SDKs for fine-tuning LLMs on Windows PC for NVIDIA RTX.
710
- 1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**: An easy and lazy way for building multi-agent LLMs applications and supports model fine-tuning via LLaMA Factory.
711
-
712
- </details>
713
-
714
- ## License
715
-
716
- This repository is licensed under the [Apache-2.0 License](LICENSE).
717
-
718
- Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
719
-
720
- ## Citation
721
-
722
- If this work is helpful, please kindly cite as:
723
-
724
- ```bibtex
725
- @inproceedings{zheng2024llamafactory,
726
- title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
727
- author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
728
- booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
729
- address={Bangkok, Thailand},
730
- publisher={Association for Computational Linguistics},
731
- year={2024},
732
- url={http://arxiv.org/abs/2403.13372}
733
- }
734
- ```
735
-
736
- ## Acknowledgement
737
-
738
- This repo benefits from [PEFT](https://github.com/huggingface/peft), [TRL](https://github.com/huggingface/trl), [QLoRA](https://github.com/artidoro/qlora) and [FastChat](https://github.com/lm-sys/FastChat). Thanks for their wonderful works.
739
-
740
- ## Star History
741
-
742
- ![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date)
 
1
+ ---
2
+ license: other
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ ---
6
+
7
  ![# LLaMA Factory](assets/logo.png)
8
 
9
+ This repository provides the codebase as presented in [Autonomous Data Selection with Language Models for Mathematical Texts](https://huggingface.co/papers/2402.07625).
10
+
11
  [![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
12
  [![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
13
  [![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
14
  [![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
15
+ [![Citation](https://img.shields.io/badge/citation-238-green)](#projects-using-llama-factory)
16
  [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
17
  [![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
18
  [![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
 
95
 
96
  <details><summary>Full Changelog</summary>
97
 
98
+ [24/07/04] We supported [contamination-free packed training](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing). Use `neat_packing: true` to activate it. Thank [@chuan298](https://github.com/chuan298)'s PR.
99
 
100
+ [24/06/16] We supported **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
101
 
102
  [24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
103
 
 
141
 
142
  [23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `use_unsloth: true` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
143
 
144
+ [23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).\n
 
145
  [23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)**. See [this tutorial](#download-from-modelscope-hub) for usage.
146
 
147
  [23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune.
 
162
 
163
  [23/07/18] We developed an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
164
 
165
+ [23/07/09] We released **[FastEdit](https://github.com/hiyouga/FastEdit)** 🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
166
 
167
  [23/06/29] We provided a **reproducible example** of training a chat model using instruction-following datasets, see [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft) for details.
168
 
169
+ [23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat/create) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
170
 
171
  [23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). See [examples](examples/README.md) for usage.
172
 
 
174
 
175
  ## Supported Models
176
 
177
+ | Model | Model size | Template |
178
+ | ----------------------------------------------------------------- | -------------------------------- | ------------------- |
179
+ | [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
180
+ | [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
181
+ | [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
182
+ | [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
183
+ | [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
184
+ | [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
185
+ | [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
186
+ | [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
187
+ | [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
188
+ | [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
189
+ | [Llama 3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
190
+ | [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
191
+ | [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
192
+ | [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
193
+ | [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
194
+ | [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
195
+ | [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
196
+ | [PaliGemma](https://huggingface.co/google) | 3B | paligemma |
197
+ | [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
198
+ | [Qwen (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
199
+ | [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
200
+ | [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
201
+ | [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
202
+ | [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
203
+ | [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
 
 
 
204
 
205
  > [!NOTE]
206
  > For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
 
284
  - [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
285
  - [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
286
  - [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
 
287
  - [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
288
  - [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1)
289
+ - [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
290
  - [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
291
  - [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions)
292
  - [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
 
294
  - [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
295
  - [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de)
296
  - [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de)
297
+ - [Dolphin (de)](https://huggingface