|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import pytest |
|
import torch |
|
|
|
from llamafactory.train.test_utils import ( |
|
check_lora_model, |
|
compare_model, |
|
load_infer_model, |
|
load_reference_model, |
|
load_train_model, |
|
patch_valuehead_model, |
|
) |
|
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TINY_LLAMA_ADAPTER = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-lora") |
|
|
|
TINY_LLAMA_VALUEHEAD = os.environ.get("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead") |
|
|
|
TRAIN_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"stage": "sft", |
|
"do_train": True, |
|
"finetuning_type": "lora", |
|
"dataset": "llamafactory/tiny-supervised-dataset", |
|
"dataset_dir": "ONLINE", |
|
"template": "llama3", |
|
"cutoff_len": 1024, |
|
"overwrite_cache": True, |
|
"output_dir": "dummy_dir", |
|
"overwrite_output_dir": True, |
|
"fp16": True, |
|
} |
|
|
|
INFER_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"adapter_name_or_path": TINY_LLAMA_ADAPTER, |
|
"finetuning_type": "lora", |
|
"template": "llama3", |
|
"infer_dtype": "float16", |
|
} |
|
|
|
|
|
@pytest.fixture |
|
def fix_valuehead_cpu_loading(): |
|
patch_valuehead_model() |
|
|
|
|
|
def test_lora_train_qv_modules(): |
|
model = load_train_model(lora_target="q_proj,v_proj", **TRAIN_ARGS) |
|
linear_modules, _ = check_lora_model(model) |
|
assert linear_modules == {"q_proj", "v_proj"} |
|
|
|
|
|
def test_lora_train_all_modules(): |
|
model = load_train_model(lora_target="all", **TRAIN_ARGS) |
|
linear_modules, _ = check_lora_model(model) |
|
assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"} |
|
|
|
|
|
def test_lora_train_extra_modules(): |
|
model = load_train_model(additional_target="embed_tokens,lm_head", **TRAIN_ARGS) |
|
_, extra_modules = check_lora_model(model) |
|
assert extra_modules == {"embed_tokens", "lm_head"} |
|
|
|
|
|
def test_lora_train_old_adapters(): |
|
model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=False, **TRAIN_ARGS) |
|
ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True) |
|
compare_model(model, ref_model) |
|
|
|
|
|
def test_lora_train_new_adapters(): |
|
model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=True, **TRAIN_ARGS) |
|
ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True) |
|
compare_model( |
|
model, ref_model, diff_keys=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"] |
|
) |
|
|
|
|
|
@pytest.mark.usefixtures("fix_valuehead_cpu_loading") |
|
def test_lora_train_valuehead(): |
|
model = load_train_model(add_valuehead=True, **TRAIN_ARGS) |
|
ref_model = load_reference_model(TINY_LLAMA_VALUEHEAD, is_trainable=True, add_valuehead=True) |
|
state_dict = model.state_dict() |
|
ref_state_dict = ref_model.state_dict() |
|
assert torch.allclose(state_dict["v_head.summary.weight"], ref_state_dict["v_head.summary.weight"]) |
|
assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"]) |
|
|
|
|
|
def test_lora_inference(): |
|
model = load_infer_model(**INFER_ARGS) |
|
ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True).merge_and_unload() |
|
compare_model(model, ref_model) |
|
|