|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import TYPE_CHECKING, List, Sequence |
|
|
|
import pytest |
|
from transformers import AutoTokenizer |
|
|
|
from llamafactory.data import get_template_and_fix_tokenizer |
|
from llamafactory.data.template import _get_jinja_template |
|
from llamafactory.hparams import DataArguments |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedTokenizer |
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
MESSAGES = [ |
|
{"role": "user", "content": "How are you"}, |
|
{"role": "assistant", "content": "I am fine!"}, |
|
{"role": "user", "content": "你好"}, |
|
{"role": "assistant", "content": "很高兴认识你!"}, |
|
] |
|
|
|
|
|
def _check_tokenization( |
|
tokenizer: "PreTrainedTokenizer", batch_input_ids: Sequence[Sequence[int]], batch_text: Sequence[str] |
|
) -> None: |
|
for input_ids, text in zip(batch_input_ids, batch_text): |
|
assert input_ids == tokenizer.encode(text, add_special_tokens=False) |
|
assert tokenizer.decode(input_ids) == text |
|
|
|
|
|
def _check_single_template( |
|
model_id: str, template_name: str, prompt_str: str, answer_str: str, extra_str: str, use_fast: bool |
|
) -> List[str]: |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN) |
|
content_str = tokenizer.apply_chat_template(MESSAGES, tokenize=False) |
|
content_ids = tokenizer.apply_chat_template(MESSAGES, tokenize=True) |
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template=template_name)) |
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES) |
|
assert content_str == prompt_str + answer_str + extra_str |
|
assert content_ids == prompt_ids + answer_ids + tokenizer.encode(extra_str, add_special_tokens=False) |
|
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str)) |
|
return content_ids |
|
|
|
|
|
def _check_template(model_id: str, template_name: str, prompt_str: str, answer_str: str, extra_str: str = "") -> None: |
|
""" |
|
Checks template for both the slow tokenizer and the fast tokenizer. |
|
|
|
Args: |
|
model_id: the model id on hugging face hub. |
|
template_name: the template name. |
|
prompt_str: the string corresponding to the prompt part. |
|
answer_str: the string corresponding to the answer part. |
|
extra_str: the extra string in the jinja template of the original tokenizer. |
|
""" |
|
slow_ids = _check_single_template(model_id, template_name, prompt_str, answer_str, extra_str, use_fast=False) |
|
fast_ids = _check_single_template(model_id, template_name, prompt_str, answer_str, extra_str, use_fast=True) |
|
assert slow_ids == fast_ids |
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False]) |
|
def test_encode_oneturn(use_fast: bool): |
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) |
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) |
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES) |
|
prompt_str = ( |
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>" |
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
answer_str = "很高兴认识你!<|eot_id|>" |
|
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str)) |
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False]) |
|
def test_encode_multiturn(use_fast: bool): |
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) |
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) |
|
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES) |
|
prompt_str_1 = ( |
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
answer_str_1 = "I am fine!<|eot_id|>" |
|
prompt_str_2 = ( |
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
answer_str_2 = "很高兴认识你!<|eot_id|>" |
|
_check_tokenization( |
|
tokenizer, |
|
(encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]), |
|
(prompt_str_1, answer_str_1, prompt_str_2, answer_str_2), |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False]) |
|
def test_jinja_template(use_fast: bool): |
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) |
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) |
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) |
|
tokenizer.chat_template = _get_jinja_template(template, tokenizer) |
|
assert tokenizer.chat_template != ref_tokenizer.chat_template |
|
assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES) |
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") |
|
def test_gemma_template(): |
|
prompt_str = ( |
|
"<bos><start_of_turn>user\nHow are you<end_of_turn>\n" |
|
"<start_of_turn>model\nI am fine!<end_of_turn>\n" |
|
"<start_of_turn>user\n你好<end_of_turn>\n" |
|
"<start_of_turn>model\n" |
|
) |
|
answer_str = "很高兴认识你!" |
|
_check_template("google/gemma-2-9b-it", "gemma", prompt_str, answer_str, extra_str="<end_of_turn>\n") |
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") |
|
def test_llama3_template(): |
|
prompt_str = ( |
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>" |
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
answer_str = "很高兴认识你!<|eot_id|>" |
|
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str) |
|
|
|
|
|
def test_qwen_template(): |
|
prompt_str = ( |
|
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" |
|
"<|im_start|>user\nHow are you<|im_end|>\n" |
|
"<|im_start|>assistant\nI am fine!<|im_end|>\n" |
|
"<|im_start|>user\n你好<|im_end|>\n" |
|
"<|im_start|>assistant\n" |
|
) |
|
answer_str = "很高兴认识你!<|im_end|>" |
|
_check_template("Qwen/Qwen2-7B-Instruct", "qwen", prompt_str, answer_str, extra_str="\n") |
|
|
|
|
|
@pytest.mark.xfail(reason="The fast tokenizer of Yi model is corrupted.") |
|
def test_yi_template(): |
|
prompt_str = ( |
|
"<|im_start|>user\nHow are you<|im_end|>\n" |
|
"<|im_start|>assistant\nI am fine!<|im_end|>\n" |
|
"<|im_start|>user\n你好<|im_end|>\n" |
|
"<|im_start|>assistant\n" |
|
) |
|
answer_str = "很高兴认识你!<|im_end|>" |
|
_check_template("01-ai/Yi-1.5-6B-Chat", "yi", prompt_str, answer_str) |
|
|