|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import random |
|
|
|
import pytest |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from llamafactory.train.test_utils import load_train_dataset |
|
|
|
|
|
DEMO_DATA = os.environ.get("DEMO_DATA", "llamafactory/demo_data") |
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TINY_DATA = os.environ.get("TINY_DATA", "llamafactory/tiny-supervised-dataset") |
|
|
|
TRAIN_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"stage": "ppo", |
|
"do_train": True, |
|
"finetuning_type": "full", |
|
"reward_model": "", |
|
"reward_model_type": "full", |
|
"dataset": "system_chat", |
|
"dataset_dir": "REMOTE:" + DEMO_DATA, |
|
"template": "llama3", |
|
"cutoff_len": 8192, |
|
"overwrite_cache": True, |
|
"output_dir": "dummy_dir", |
|
"overwrite_output_dir": True, |
|
"fp16": True, |
|
} |
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [16]) |
|
def test_unsupervised_data(num_samples: int): |
|
train_dataset = load_train_dataset(**TRAIN_ARGS) |
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) |
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") |
|
indexes = random.choices(range(len(original_data)), k=num_samples) |
|
for index in indexes: |
|
messages = original_data["messages"][index] |
|
ref_ids = ref_tokenizer.apply_chat_template(messages) |
|
ref_input_ids = ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True) |
|
ref_labels = ref_ids[len(ref_input_ids) :] |
|
assert train_dataset["input_ids"][index] == ref_input_ids |
|
assert train_dataset["labels"][index] == ref_labels |
|
|