|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import random |
|
from typing import Dict, List |
|
|
|
import pytest |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from llamafactory.extras.constants import IGNORE_INDEX |
|
from llamafactory.train.test_utils import load_train_dataset |
|
|
|
|
|
DEMO_DATA = os.environ.get("DEMO_DATA", "llamafactory/demo_data") |
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TRAIN_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"stage": "rm", |
|
"do_train": True, |
|
"finetuning_type": "full", |
|
"dataset": "dpo_en_demo", |
|
"dataset_dir": "REMOTE:" + DEMO_DATA, |
|
"template": "llama3", |
|
"cutoff_len": 8192, |
|
"overwrite_cache": True, |
|
"output_dir": "dummy_dir", |
|
"overwrite_output_dir": True, |
|
"fp16": True, |
|
} |
|
|
|
|
|
def _convert_sharegpt_to_openai(messages: List[Dict[str, str]]) -> List[Dict[str, str]]: |
|
role_mapping = {"human": "user", "gpt": "assistant", "system": "system"} |
|
new_messages = [] |
|
for message in messages: |
|
new_messages.append({"role": role_mapping[message["from"]], "content": message["value"]}) |
|
|
|
return new_messages |
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [16]) |
|
def test_pairwise_data(num_samples: int): |
|
train_dataset = load_train_dataset(**TRAIN_ARGS) |
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) |
|
original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train") |
|
indexes = random.choices(range(len(original_data)), k=num_samples) |
|
for index in indexes: |
|
chosen_messages = original_data["conversations"][index] + [original_data["chosen"][index]] |
|
rejected_messages = original_data["conversations"][index] + [original_data["rejected"][index]] |
|
chosen_messages = _convert_sharegpt_to_openai(chosen_messages) |
|
rejected_messages = _convert_sharegpt_to_openai(rejected_messages) |
|
ref_chosen_input_ids = ref_tokenizer.apply_chat_template(chosen_messages) |
|
chosen_prompt_len = len(ref_tokenizer.apply_chat_template(chosen_messages[:-1], add_generation_prompt=True)) |
|
ref_chosen_labels = [IGNORE_INDEX] * chosen_prompt_len + ref_chosen_input_ids[chosen_prompt_len:] |
|
ref_rejected_input_ids = ref_tokenizer.apply_chat_template(rejected_messages) |
|
rejected_prompt_len = len( |
|
ref_tokenizer.apply_chat_template(rejected_messages[:-1], add_generation_prompt=True) |
|
) |
|
ref_rejected_labels = [IGNORE_INDEX] * rejected_prompt_len + ref_rejected_input_ids[rejected_prompt_len:] |
|
assert train_dataset["chosen_input_ids"][index] == ref_chosen_input_ids |
|
assert train_dataset["chosen_labels"][index] == ref_chosen_labels |
|
assert train_dataset["rejected_input_ids"][index] == ref_rejected_input_ids |
|
assert train_dataset["rejected_labels"][index] == ref_rejected_labels |
|
|