File size: 8,301 Bytes
bc55b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import TYPE_CHECKING, Any, Dict, List, Sequence, Tuple

import pytest
import torch
from PIL import Image

from llamafactory.data.mm_plugin import get_mm_plugin
from llamafactory.hparams import ModelArguments
from llamafactory.model import load_tokenizer


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer, ProcessorMixin
    from transformers.image_processing_utils import BaseImageProcessor

    from llamafactory.data.mm_plugin import BasePlugin


HF_TOKEN = os.environ.get("HF_TOKEN", None)

TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")

MM_MESSAGES = [
    {"role": "user", "content": "<image>What is in this image?"},
    {"role": "assistant", "content": "A cat."},
]

TEXT_MESSAGES = [
    {"role": "user", "content": "How are you"},
    {"role": "assistant", "content": "I am fine!"},
]

IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))]

NO_IMAGES = []

NO_VIDEOS = []

IMGLENS = [1]

NO_IMGLENS = [0]

NO_VIDLENS = [0]

INPUT_IDS = [0, 1, 2, 3, 4]

LABELS = [0, 1, 2, 3, 4]

SEQLENS = [1024]


def _get_mm_inputs(processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
    image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
    return image_processor(images=IMAGES, return_tensors="pt")


def _is_close(batch_a: Dict[str, Any], batch_b: Dict[str, Any]) -> None:
    assert batch_a.keys() == batch_b.keys()
    for key in batch_a.keys():
        if isinstance(batch_a[key], torch.Tensor):
            assert torch.allclose(batch_a[key], batch_b[key], rtol=1e-4, atol=1e-5)
        else:
            assert batch_a[key] == batch_b[key]


def _load_tokenizer_module(model_name_or_path: str) -> Tuple["PreTrainedTokenizer", "ProcessorMixin"]:
    model_args = ModelArguments(model_name_or_path=model_name_or_path)
    tokenizer_module = load_tokenizer(model_args)
    return tokenizer_module["tokenizer"], tokenizer_module["processor"]


def _check_plugin(
    plugin: "BasePlugin",
    tokenizer: "PreTrainedTokenizer",
    processor: "ProcessorMixin",
    expected_mm_messages: Sequence[Dict[str, str]] = MM_MESSAGES,
    expected_input_ids: List[int] = INPUT_IDS,
    expected_labels: List[int] = LABELS,
    expected_mm_inputs: Dict[str, Any] = {},
    expected_no_mm_inputs: Dict[str, Any] = {},
) -> None:
    # test mm_messages
    assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, processor) == expected_mm_messages
    assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, tokenizer, processor) == (
        expected_input_ids,
        expected_labels,
    )
    _is_close(
        plugin.get_mm_inputs(IMAGES, NO_VIDEOS, IMGLENS, NO_VIDLENS, SEQLENS, processor),
        expected_mm_inputs,
    )
    # test text_messages
    assert plugin.process_messages(TEXT_MESSAGES, NO_IMAGES, NO_VIDEOS, processor) == TEXT_MESSAGES
    assert plugin.process_token_ids(INPUT_IDS, LABELS, NO_IMAGES, NO_VIDEOS, tokenizer, processor) == (
        INPUT_IDS,
        LABELS,
    )
    _is_close(
        plugin.get_mm_inputs(NO_IMAGES, NO_VIDEOS, NO_IMGLENS, NO_VIDLENS, SEQLENS, processor),
        expected_no_mm_inputs,
    )


def test_base_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path=TINY_LLAMA)
    base_plugin = get_mm_plugin(name="base", image_token="<image>")
    check_inputs = {"plugin": base_plugin, "tokenizer": tokenizer, "processor": processor}
    _check_plugin(**check_inputs)


def test_llava_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
    llava_plugin = get_mm_plugin(name="llava", image_token="<image>")
    image_seqlen = 576
    check_inputs = {"plugin": llava_plugin, "tokenizer": tokenizer, "processor": processor}
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    _check_plugin(**check_inputs)


def test_llava_next_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf")
    llava_next_plugin = get_mm_plugin(name="llava_next", image_token="<image>")
    check_inputs = {"plugin": llava_next_plugin, "tokenizer": tokenizer, "processor": processor}
    image_seqlen = 1176
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    _check_plugin(**check_inputs)


def test_llava_next_video_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf")
    llava_next_video_plugin = get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>")
    check_inputs = {"plugin": llava_next_video_plugin, "tokenizer": tokenizer, "processor": processor}
    image_seqlen = 1176
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    _check_plugin(**check_inputs)


@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_paligemma_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224")
    paligemma_plugin = get_mm_plugin(name="paligemma", image_token="<image>")
    image_seqlen = 256
    check_inputs = {"plugin": paligemma_plugin, "tokenizer": tokenizer, "processor": processor}
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "") for key, value in message.items()} for message in MM_MESSAGES
    ]
    check_inputs["expected_input_ids"] = [tokenizer.convert_tokens_to_ids("<image>")] * image_seqlen + INPUT_IDS
    check_inputs["expected_labels"] = [-100] * image_seqlen + LABELS
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * image_seqlen + [1] * (1024 - image_seqlen)]
    check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[1] * 1024]}
    _check_plugin(**check_inputs)


def test_qwen2_vl_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")
    qwen2_vl_plugin = get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>")
    image_seqlen = 4
    check_inputs = {"plugin": qwen2_vl_plugin, "tokenizer": tokenizer, "processor": processor}
    check_inputs["expected_mm_messages"] = [
        {
            key: value.replace("<image>", "<|vision_start|>{}<|vision_end|>".format("<|image_pad|>" * image_seqlen))
            for key, value in message.items()
        }
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    _check_plugin(**check_inputs)


def test_video_llava_plugin():
    tokenizer, processor = _load_tokenizer_module(model_name_or_path="LanguageBind/Video-LLaVA-7B-hf")
    video_llava_plugin = get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>")
    check_inputs = {"plugin": video_llava_plugin, "tokenizer": tokenizer, "processor": processor}
    image_seqlen = 256
    check_inputs["expected_mm_messages"] = [
        {key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
        for message in MM_MESSAGES
    ]
    check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
    _check_plugin(**check_inputs)