File size: 8,301 Bytes
bc55b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING, Any, Dict, List, Sequence, Tuple
import pytest
import torch
from PIL import Image
from llamafactory.data.mm_plugin import get_mm_plugin
from llamafactory.hparams import ModelArguments
from llamafactory.model import load_tokenizer
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
from llamafactory.data.mm_plugin import BasePlugin
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
MM_MESSAGES = [
{"role": "user", "content": "<image>What is in this image?"},
{"role": "assistant", "content": "A cat."},
]
TEXT_MESSAGES = [
{"role": "user", "content": "How are you"},
{"role": "assistant", "content": "I am fine!"},
]
IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))]
NO_IMAGES = []
NO_VIDEOS = []
IMGLENS = [1]
NO_IMGLENS = [0]
NO_VIDLENS = [0]
INPUT_IDS = [0, 1, 2, 3, 4]
LABELS = [0, 1, 2, 3, 4]
SEQLENS = [1024]
def _get_mm_inputs(processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
return image_processor(images=IMAGES, return_tensors="pt")
def _is_close(batch_a: Dict[str, Any], batch_b: Dict[str, Any]) -> None:
assert batch_a.keys() == batch_b.keys()
for key in batch_a.keys():
if isinstance(batch_a[key], torch.Tensor):
assert torch.allclose(batch_a[key], batch_b[key], rtol=1e-4, atol=1e-5)
else:
assert batch_a[key] == batch_b[key]
def _load_tokenizer_module(model_name_or_path: str) -> Tuple["PreTrainedTokenizer", "ProcessorMixin"]:
model_args = ModelArguments(model_name_or_path=model_name_or_path)
tokenizer_module = load_tokenizer(model_args)
return tokenizer_module["tokenizer"], tokenizer_module["processor"]
def _check_plugin(
plugin: "BasePlugin",
tokenizer: "PreTrainedTokenizer",
processor: "ProcessorMixin",
expected_mm_messages: Sequence[Dict[str, str]] = MM_MESSAGES,
expected_input_ids: List[int] = INPUT_IDS,
expected_labels: List[int] = LABELS,
expected_mm_inputs: Dict[str, Any] = {},
expected_no_mm_inputs: Dict[str, Any] = {},
) -> None:
# test mm_messages
assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, processor) == expected_mm_messages
assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, tokenizer, processor) == (
expected_input_ids,
expected_labels,
)
_is_close(
plugin.get_mm_inputs(IMAGES, NO_VIDEOS, IMGLENS, NO_VIDLENS, SEQLENS, processor),
expected_mm_inputs,
)
# test text_messages
assert plugin.process_messages(TEXT_MESSAGES, NO_IMAGES, NO_VIDEOS, processor) == TEXT_MESSAGES
assert plugin.process_token_ids(INPUT_IDS, LABELS, NO_IMAGES, NO_VIDEOS, tokenizer, processor) == (
INPUT_IDS,
LABELS,
)
_is_close(
plugin.get_mm_inputs(NO_IMAGES, NO_VIDEOS, NO_IMGLENS, NO_VIDLENS, SEQLENS, processor),
expected_no_mm_inputs,
)
def test_base_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path=TINY_LLAMA)
base_plugin = get_mm_plugin(name="base", image_token="<image>")
check_inputs = {"plugin": base_plugin, "tokenizer": tokenizer, "processor": processor}
_check_plugin(**check_inputs)
def test_llava_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
llava_plugin = get_mm_plugin(name="llava", image_token="<image>")
image_seqlen = 576
check_inputs = {"plugin": llava_plugin, "tokenizer": tokenizer, "processor": processor}
check_inputs["expected_mm_messages"] = [
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
for message in MM_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)
def test_llava_next_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf")
llava_next_plugin = get_mm_plugin(name="llava_next", image_token="<image>")
check_inputs = {"plugin": llava_next_plugin, "tokenizer": tokenizer, "processor": processor}
image_seqlen = 1176
check_inputs["expected_mm_messages"] = [
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
for message in MM_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)
def test_llava_next_video_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf")
llava_next_video_plugin = get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>")
check_inputs = {"plugin": llava_next_video_plugin, "tokenizer": tokenizer, "processor": processor}
image_seqlen = 1176
check_inputs["expected_mm_messages"] = [
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
for message in MM_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_paligemma_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224")
paligemma_plugin = get_mm_plugin(name="paligemma", image_token="<image>")
image_seqlen = 256
check_inputs = {"plugin": paligemma_plugin, "tokenizer": tokenizer, "processor": processor}
check_inputs["expected_mm_messages"] = [
{key: value.replace("<image>", "") for key, value in message.items()} for message in MM_MESSAGES
]
check_inputs["expected_input_ids"] = [tokenizer.convert_tokens_to_ids("<image>")] * image_seqlen + INPUT_IDS
check_inputs["expected_labels"] = [-100] * image_seqlen + LABELS
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
check_inputs["expected_mm_inputs"]["token_type_ids"] = [[0] * image_seqlen + [1] * (1024 - image_seqlen)]
check_inputs["expected_no_mm_inputs"] = {"token_type_ids": [[1] * 1024]}
_check_plugin(**check_inputs)
def test_qwen2_vl_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")
qwen2_vl_plugin = get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>")
image_seqlen = 4
check_inputs = {"plugin": qwen2_vl_plugin, "tokenizer": tokenizer, "processor": processor}
check_inputs["expected_mm_messages"] = [
{
key: value.replace("<image>", "<|vision_start|>{}<|vision_end|>".format("<|image_pad|>" * image_seqlen))
for key, value in message.items()
}
for message in MM_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)
def test_video_llava_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="LanguageBind/Video-LLaVA-7B-hf")
video_llava_plugin = get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>")
check_inputs = {"plugin": video_llava_plugin, "tokenizer": tokenizer, "processor": processor}
image_seqlen = 256
check_inputs["expected_mm_messages"] = [
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
for message in MM_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)
|