File size: 9,485 Bytes
f7009b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import sys, os, json
root = os.sep + os.sep.join(__file__.split(os.sep)[1:__file__.split(os.sep).index("Recurrent-Parameter-Generation")+1])
sys.path.append(root)
os.chdir(root)
with open("./workspace/config.json", "r") as f:
additional_config = json.load(f)
USE_WANDB = additional_config["use_wandb"]
# set global seed
import random
import numpy as np
import torch
seed = SEED = 995
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
np.random.seed(seed)
random.seed(seed)
# other
import math
import random
import warnings
from _thread import start_new_thread
warnings.filterwarnings("ignore", category=UserWarning)
if USE_WANDB: import wandb
# torch
import torch
import torch.nn as nn
import bitsandbytes.optim as optim
from torch.nn import functional as F
from torch.cuda.amp import autocast
# model
from mamba_ssm import Mamba2 as Mamba
from model import MambaDiffusion as Model
from model.diffusion import DDPMSampler, DDIMSampler
from torch.optim.lr_scheduler import CosineAnnealingLR, LinearLR, SequentialLR
from accelerate.utils import DistributedDataParallelKwargs
from accelerate.utils import AutocastKwargs
from accelerate import Accelerator
# dataset
from dataset import ImageNet_ViTBase as Dataset
from torch.utils.data import DataLoader
config = {
"resume": False,
"seed": SEED,
# dataset setting
"dataset": Dataset,
"dim_per_token": 16384,
"sequence_length": 'auto',
# train setting
"batch_size": 2,
"num_workers": 4,
"total_steps": 120000,
"learning_rate": 0.00001,
"weight_decay": 0.0,
"save_every": 120000//30,
"print_every": 50,
"autocast": lambda i: 5000 < i < 100000,
"checkpoint_save_path": "./checkpoint",
# test setting
"test_batch_size": 1, # fixed, don't change this
"generated_path": Dataset.generated_path,
"test_command": Dataset.test_command,
# to log
"model_config": {
"num_permutation": "auto",
# mamba config
"d_condition": 1,
"d_model": 12288,
"post_d_model": 16384,
"d_state": 128,
"d_conv": 4,
"expand": 2,
"num_layers": 2,
# diffusion config
"diffusion_batch": 512,
"layer_channels": [1, 64, 96, 64, 1],
"model_dim": 16384,
"condition_dim": 16384,
"kernel_size": 7,
"sample_mode": DDIMSampler,
"beta": (0.0001, 0.02),
"T": 1000,
"forward_once": True,
},
"tag": "main_vitbase_16384",
}
# Data
print('==> Preparing data..')
train_set = config["dataset"](dim_per_token=config["dim_per_token"])
print("Dataset length:", train_set.real_length)
print("input shape:", train_set[0][0].shape)
if config["model_config"]["num_permutation"] == "auto":
config["model_config"]["num_permutation"] = train_set.max_permutation_state
if config["model_config"]["condition_dim"] == "auto":
config["model_config"]["condition_dim"] = config["model_config"]["d_model"]
if config["model_config"]["model_dim"] == "auto":
config["model_config"]["model_dim"] = config["dim_per_token"]
if config["sequence_length"] == "auto":
config["sequence_length"] = train_set.sequence_length
print(f"sequence length: {config['sequence_length']}")
else: # set fixed sequence_length
assert train_set.sequence_length == config["sequence_length"], f"sequence_length={train_set.sequence_length}"
train_loader = DataLoader(
dataset=train_set,
batch_size=config["batch_size"],
num_workers=config["num_workers"],
persistent_workers=True,
drop_last=True,
shuffle=True,
)
# Model
print('==> Building model..')
Model.config = config["model_config"]
model = Model(
sequence_length=config["sequence_length"],
positional_embedding=train_set.get_position_embedding(
positional_embedding_dim=config["model_config"]["d_model"]
) # positional_embedding
) # model setting is in model
class VaryMambaModel(nn.Module):
config = {}
def __init__(self, positional_embedding):
super().__init__()
mamba1 = Mamba(d_model=config["model_config"]["d_model"],
d_state=config["model_config"]["d_state"],
d_conv=config["model_config"]["d_conv"],
expand=config["model_config"]["expand"])
mamba2 = Mamba(d_model=config["model_config"]["post_d_model"],
d_state=config["model_config"]["d_state"],
d_conv=config["model_config"]["d_conv"],
expand=config["model_config"]["expand"])
mamba2.in_proj = nn.Linear(mamba1.out_proj.out_features, mamba2.in_proj.out_features, bias=False)
self.mamba_forward = nn.Sequential(*[mamba1, mamba2])
pe = positional_embedding[None, :, :]
if self.config.get("trainable_pe"):
self.pe = nn.Parameter(pe)
else: # fixed positional embedding
self.register_buffer("pe", pe)
def forward(self, output_shape, condition=None):
x = self.mamba_forward(self.pe.repeat(output_shape[0], 1, 1) + condition)
return x
VaryMambaModel.config = config["model_config"]
model.model = VaryMambaModel(
positional_embedding=train_set.get_position_embedding(
positional_embedding_dim=config["model_config"]["d_model"]
) # positional_embedding
) # update mamba model
torch.cuda.empty_cache()
# Optimizer
print('==> Building optimizer..')
optimizer = optim.AdamW8bit(
params=model.parameters(),
lr=config["learning_rate"],
weight_decay=config["weight_decay"],
)
scheduler = CosineAnnealingLR(
optimizer=optimizer,
T_max=config["total_steps"],
)
# load checkpoint
if config["resume"] and os.path.exists(f"./cache_{config['tag']}.pt"):
diction = torch.load(f"./cache_{config['tag']}.pt", map_location="cpu")
model.load_state_dict(diction["model"])
optimizer.load_state_dict(diction["optimizer"])
scheduler.load_state_dict(diction["scheduler"])
start_batch_idx = diction["step"] + 1
else: # not resume
start_batch_idx = 0
# accelerator
if __name__ == "__main__":
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(kwargs_handlers=[kwargs,])
if config["dim_per_token"] > 12288 and accelerator.state.num_processes == 1:
print(f"\033[91mWARNING: With token size {config['dim_per_token']}, we suggest to train on multiple GPUs.\033[0m")
model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
# wandb
if __name__ == "__main__" and USE_WANDB and accelerator.is_main_process:
wandb.login(key=additional_config["wandb_api_key"])
wandb.init(project="Recurrent-Parameter-Generation", name=config['tag'], config=config,)
# Training
print('==> Defining training..')
def train():
if not USE_WANDB:
train_loss = 0
this_steps = 0
print("==> Start training..")
model.train()
for batch_idx, (param, permutation_state) in enumerate(train_loader):
batch_idx += start_batch_idx
optimizer.zero_grad()
# train
# noinspection PyArgumentList
with accelerator.autocast(autocast_handler=AutocastKwargs(enabled=config["autocast"](batch_idx))):
loss = model(output_shape=param.shape, x_0=param, permutation_state=permutation_state)
accelerator.backward(loss)
optimizer.step()
if accelerator.is_main_process:
scheduler.step()
# to logging losses and print and save
if USE_WANDB and accelerator.is_main_process:
wandb.log({"train_loss": loss.item()})
elif USE_WANDB:
pass # don't print
else: # not use wandb
train_loss += loss.item()
this_steps += 1
if this_steps % config["print_every"] == 0:
print('Loss: %.6f' % (train_loss/this_steps))
this_steps = 0
train_loss = 0
if batch_idx % config["save_every"] == 0 and accelerator.is_main_process:
os.makedirs(config["checkpoint_save_path"], exist_ok=True)
state = accelerator.unwrap_model(model).state_dict()
torch.save(state, os.path.join(config["checkpoint_save_path"], config["tag"]+".pth"))
torch.save({
"model": accelerator.unwrap_model(model).state_dict(),
"optimizer": accelerator.unwrap_model(optimizer).state_dict(),
"scheduler": scheduler.state_dict(),
"step": batch_idx
}, f"./cache_{config['tag']}.pt")
generate(save_path=config["generated_path"], need_test=True)
if batch_idx >= config["total_steps"]:
break
def generate(save_path=config["generated_path"], need_test=True):
print("\n==> Generating..")
model.eval()
with torch.no_grad():
prediction = model(sample=True)
generated_norm = prediction.abs().mean()
print("Generated_norm:", generated_norm.item())
if USE_WANDB:
wandb.log({"generated_norm": generated_norm.item()})
train_set.save_params(prediction, save_path=save_path)
if need_test:
start_new_thread(os.system, (config["test_command"],))
model.train()
return prediction
if __name__ == '__main__':
train()
del train_loader # deal problems by dataloader
print("Finished Training!")
exit(0) |